# **GIS** Applications

Use of analytical GIS tools to:

- Describe
- Explain
- Predict
- Support decision-making

# Multi-criteria Decision Making

- Where to live in a city?
  - Rent
  - Transportation mode
  - Commuting time
  - Commuting distance
  - Community characteristics
  - Tax
  - Accessibility to outdoors

# Where to live?

|      |          |          |          | D        |          |          |  |
|------|----------|----------|----------|----------|----------|----------|--|
| Rent | \$600    | \$800    | \$1000   | \$500    | \$600    | \$300    |  |
| Size | 300 sqft | 500 sqft | 500 sqft | 400 sqft | 500 sqft | 300 sqft |  |
| Time | 10 min   | 10 min   | 5 min    | 15 min   | 15 min   | 30 min   |  |
|      |          |          |          |          |          |          |  |
|      |          |          |          |          |          |          |  |

Fuller, D.O., Williamson. R., Jeffe, M., and James, D. 2003.

Multi-criteria evaluation of safety and risks along transportation corridors on the Hopi Reservation.

Applied Geography, 23 (2-3): 177-188.

#### Background

- · Objectives:
  - to evaluate crash risk models
  - (To predict crash risk along transportation corridors)
- · Risk factors:
  - Natural hazards
  - Terrain
  - Road conditions
- · Criteria for the Hopi risk model
  - Slope steepness
  - Proximity to culverts
  - Proximity to intersections
  - Road curvature (sinuosity)
  - Proximity to washes

## Method

- Create 11 predicted crash risk maps (i.e., 11 risk models)
- Evaluate the predicted risk
  - Compare risk scores of 135 non-crash versus
     67 crash sites
  - t-test

# idrisi32

• MCE

 Overlays layers to create a suitability map based on standardized factors, factor weights, and/or constraints.

- FUZZY
  - Converts constraints to factors by evaluating the possibility that each pixel belongs to a fuzzy set based on a fuzzy set membership function.
- SAMPLE
  - Creates points using random, systematic, or stratified random sampling scheme.

# MCE

- Slope (from 10m DEM)
- Proximity to culverts (from DOQQ)
- Proximity to intersections (from DOQQ)
- Sinuosity (Count from rasterized road layer)
- Proximity to washes (from DEM)

# Idrisi32 – FUZZY

- a = membership rises above 0
- b = membership becomes 1
- c = membership falls below 1
- d = membership becomes 0

X-axis: input variable value Y-axis: fuzzy membership value













## FUZZY



## **Standardized Risk Factors**

|           | 0 % risk (0) | 100% risk (255) |  |
|-----------|--------------|-----------------|--|
| Slope     | < 10%        | > 25%           |  |
| Proximity | < 30 m       | < 10 m          |  |
| Sinuosity | ?            | ?               |  |

## **Factor Weights**

## **Risk Models**

Table 1 MCE composite risk maps with normally distributed scores (values from 0-255). Test 4J is shown in Fig. 3

| MCE test | Layers involved | Fuzzy functions | Factor weights            |
|----------|-----------------|-----------------|---------------------------|
| IJ       | 1: 2: 3: 4: 5   | L,L,L,L,J       | 0.2; 0.2; 0.2; 0.2; 0.2;  |
| 11       | 1: 2: 3: 4: 6   | L.L.L.L.L       | 0.2; 0.2; 0.2; 0.2; 0.2   |
| 23       | 1:2:3:4:5       | L.L.L.J         | 0.25; 0.15; 0.1; 0.2; 0.3 |
| 33       | 1:2:3:4:5       | L.L.L.L.J       | 0.3; 0.2; 0.15, 0.25; 0.1 |
| 3L       | 1; 2; 3; 4; 6   | L.L.L.L.L       | 0.3; 0.2; 0.15, 0.25; 0.1 |
| 4J       | 1; 2; 3; 4; 5   | L.L.L.J         | 0.1; 0.25; 0.2; 0.3; 0.15 |
| 4L       | 1; 2; 3; 4; 6   | L.L.L.L.L       | 0.1; 0.25; 0.2; 0.3; 0.15 |
| 63       | 1: 2: 3: 4: 5   | L.L.L.J         | 0.2; 0.1; 0.3; 0.15; 0.25 |
| 11       | 1: 3: 4: 5      | L.L.L.J         | 0.25; 0.25, 0.25, 0.25    |
| 14       | 1: 3; 4; 5      | L.L.J           | 0.2; 0.3; 0.3; 0.2        |
| 18       | 1; 3; 4; 5      | L.L.L.J         | 0.1; 0.4; 0.4; 0.1        |

L, linear function; J, J-shaped function; 1, slope steepness; 2, proximity to culverts; 3, proximity to intersections; 4, curvature; 5, proximity to washes (J-shaped function); 6, proximity to washes (linear function).

# Which Model is the Best?

- 135 non-crash sites and 67 crash sites
- Are the predicted risk scores significantly different between crash and non-crash sites?



## T-test

Are these two groups of observations significantly different?



Why is normality important in t-test?



# **Test for Normality**

- Statistic
  - Kolmogorov-Smirnov (K-S)
  - Lilifors
  - Shapiro-Wilks
- Visual
  - DF (histogram) / CDF
  - Stemplot
  - QQ Plot

# Stem-and-leaf Plot

| Writing the data in numerical<br>order may help to organize<br>the data, but is NOT a<br>required step. Ordering can<br>be done later.                                 | 35, 36, 38, 40, 42, 42, 44, 45, 45, 47, 48,<br>49, 50, 50, 50 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Separate each number into a<br>stem and a leaf. Since these<br>are two digit numbers, the<br>tens digit is the <u>stem</u> and the<br>units digit is the <u>leaf</u> . | The number 38 would be represented as                         |
| Group the numbers with the                                                                                                                                             | Math Test Scores<br>(out of 50 pts)                           |
| in numerical order. (If your                                                                                                                                           | Stem Leaf                                                     |
| in numerical order. (11 your                                                                                                                                           | 3 568                                                         |
| increasing order, order them                                                                                                                                           | 4 9 0 2 2 4 5 5 7 8                                           |
| now.) Title the graph.                                                                                                                                                 | 5 000                                                         |
| Prepare an appropriate<br>legend<br>(key) for the graph.                                                                                                               | Legend: 3   6 means 36                                        |

#### Results

- More important factors:
  - Proximity to intersection
  - Road sinuosity (+ slope)

Table 2

T-tests showing the t-statistic and p-value for normally distributed MCE test data

| MCE test | Route number | I-statistic | p-value     |
|----------|--------------|-------------|-------------|
| 1L       | 17           | -2.44       | 0.016*      |
| 11       | 1.7          | -2.29       | 0.020*      |
| 23       | 17           | -1.94       | 0.054       |
| 3.1      | 17           | -2.02       | 0.045*      |
| 3L       | 17           | -2.05       | 0.041*      |
| 43       | 17           | -3.11       | 0.002*      |
| 4L.      | 17           | -3.16       | 0.019*      |
| 6J       | 17           | -2.42       | 0.017*      |
| 11       | 264          | 0.60        | 0.548       |
| 14       | 264          | 1.35        | 0.180       |
| 18       | 264          | 3.18        | $0.002^{*}$ |

"Indicates statistical significance at 95%.

#### **Risk Models**

Table 1 MCE composite risk maps with normally distributed scores (values from 0-255). Test 4J is shown in Fig. 3

| MCE test | Layers involved | Fuzzy functions | Factor weights            | p-value         |
|----------|-----------------|-----------------|---------------------------|-----------------|
| IJ       | 1: 2: 3: 4: 5   | L.L.L.J         | 0.2: 0.2: 0.2: 0.2: 0.2   | 0.016*          |
| 1L       | 1: 2: 3: 4: 6   | L.L.L.L.L       | 0.2; 0.2; 0.2; 0.2; 0.2   | $0.020^{\circ}$ |
| 23       | 1: 2: 3: 4: 5   | L.L.L.J         | 0.25; 0.15; 0.1; 0.2; 0.3 | 0.054           |
| 3J       | 1: 2: 3: 4: 5   | L.L.L.L.J       | 0.3; 0.2; 0.15, 0.25; 0.1 | 0.045"          |
| 3L       | 1; 2; 3; 4; 6   | L,L,L,L,L       | 0.3; 0.2; 0.15, 0.25; 0.1 | 0.041*          |
| 4J       | 1; 2; 3; 4; 5   | L.L.L.J.        | 0.1; 0.25; 0.2; 0.3; 0.15 | 0.0021          |
| 4L       | 1; 2; 3; 4; 6   | L.L.L.L.L       | 0.1; 0.25; 0.2; 0.3; 0.15 | 0.019°          |
| 6J       | 1: 2: 3: 4: 5   | L.L.L.J.        | 0.2; 0.1; 0.3; 0.15; 0.25 | 0.017*          |
| 11       | 1: 3: 4: 5      | L.L.L.J         | 0.25; 0.25, 0.25, 0.25    | 0.548           |
| 14       | 1: 3; 4: 5      | L.L.L.J         | 0.2; 0.3; 0.3; 0.2        | 0.180           |
| 18       | 1; 3; 4; 5      | L.L.L.J         | 0.1; 0.4; 0.4; 0.1        | 0.002*          |

L, linear function; J, J-shaped function; 1, slope steepness; 2, proximity to culverts; 3, proximity to intersections; 4, curvature; 5, proximity to washes (J-shaped function); 6, proximity to washes (linear function).

### Comments

- · The paper is not well written
- · GIS for explanation/model validation
- Use the presented method to find the optimal factor weights

#### Gemitzi, Tsihrintzis, Voudrias, Petalas, & Stravodimos 2007

# Combining GIS, multicriteria evaluation techniques and fuzzy logic in siting MSW landfills

Environmental Geology, 51: 797-811.

## Background

- · Multi-criteria decision considerations
  - Exclusionary constraints & non-exclusionary factors
  - Factor scores and weights
  - Manage uncertainty in decision
- Case study
  - Identifying the best sites for Municipal Solid Waste (MSW) landfills
  - Constraints (exclusionary criteria)
  - Environmental & socioeconomic factors (nonexclusionary criteria)

## Methods

- Convert variables to fuzzy membership
- · Do AHP to calculate factor weights
- Use order weights to adjust level of tradeoff (risk) of the decision

#### **Decision Criteria**

#### Constraints

- Residential area
- Land uses
- Highways & railways
- Environmental protected areas
- Important aquifers
- Surface water bodies
- Springs and wells
- Exceptional geological conditions
- Distance from country borders & coastline
- **Environmental Factors** 
  - Hydrogeology
    - Hydrology
    - Distance from water bodies

Socioeconomic & design factors

- Proximity to residential areas
- Site access
- Type of land use
- Proximity to waste production centers
- Site orientation
- Slope of land surface

# **IDRISI FUZZY**

a = membership rises above 0
b = membership becomes 1
c = membership falls below 1
d = membership becomes 0



# Socioeconomic & Design Factors





# **Determining Factor Weights**

- Assigned directly
- Analytical hierarchy process (AHP)

## Analytic Hierarchy Process (AHP) (Saaty 1980)

Pairwise comparisons: To determine the

weights for A, B, C

| How important is A relative to B? | Preference index<br>assigned |
|-----------------------------------|------------------------------|
| Equally important                 | 1                            |
| Moderately more important         | 3                            |
| Strongly more important           | 5                            |
| Very strongly more important      | 7                            |
| Overwhelmingly more<br>important  | 9                            |

| / | А   | В   | С | Criterion | Geometric mean                  | Weight |
|---|-----|-----|---|-----------|---------------------------------|--------|
| А | 1   | 5   | 9 | А         | (1*5*9) <sup>1/3</sup> = 3.5569 | 0.751  |
| В | 1/5 | 1   | 3 | В         | $(1/5^*1^*3)^{1/3} = 0.8434$    | 0.178  |
| С | 1/9 | 1/3 | 1 | С         | $(1/9^*1/3^*1)^{1/3} = 0.3333$  | 0.071  |
|   |     |     |   | Sum       | 4.7337                          | 1      |



# **Multi-Criteria Evaluation**

- 1. Boolean Intersection
  - Applied on constraints
  - AND, OR

#### 2. Weighted Linear Combination

- Sum of scores multiplied by factor weights
- Allows full trade-off among factors

#### 3. Ordered Weighted Average

Allows different levels of trade-off

Factor scores: [174, 187, 201]

| 0       | der Weij | ghờn 🔪  | Result |
|---------|----------|---------|--------|
| Min (I) | (2)      | Max (3) |        |
| 1.00    | 0.00     | 0.00    | 174    |
| 0.90    | 0.10     | 0.00    | 175    |
| 0.90    | 0.20     | 0.00    | 177    |
| 0,70    | 0.20     | 0.10    | 179    |
| 0.50    | 0.30     | 0.20    | 183    |
| 0.40    | 0.30     | 0,30    | 186    |
| 0.53    | 0.33     | 0.53    | 187    |
| 0.30    | 0.30     | 0.40    | 189    |
| 0.20    | 0.30     | 0,50    | 191    |
| 0.10    | 0.20     | 0.70    | 196    |
| 00:0    | 0.20     | 0:80    | 198    |
| 0.00    | 0.10     | 0.90    | 200    |
| 0.00    | 0.00     | 1.00    | 201    |

## Ordered Weighted Average (OWA)

- OWA considers the risk of making a (wrong) decision.
- The risk of a decision is not the same as the risk of, say, ground water contamination given a certain hydrogeological condition.
- The risk of a decision refers to the consequence of making a bad decision (i.e., pick the wrong site for a landfill).
- If you want to reduce the risk of a decision, then you need to be more conservative in making a decision, that is, if one of the factors has a very low score (i.e., less suitable), regardless how high the scores of the other factors are, you should consider the site is not suitable. The site might have a satisfactory averaged score with the LWC method.

# Ordered Weighted Average

| Moderate level of ris | k – moderate str   | ict decision – full | trade off |          |
|-----------------------|--------------------|---------------------|-----------|----------|
| Factors               | HDG                | HGR                 | DWB       |          |
| Order weights         | 0.33               | 0.33                | 0.33      | – W/I C  |
| Rank                  | lst                | 2nd                 | 3rd       |          |
| Low Level of Risk -   | very strict decisi | on – no trade of    | Ē         |          |
| Factors               | HDG                | HGR                 | DWB       |          |
| Order weights         | 1                  | 0                   | 0         | ~ IVIIIN |
| Rank                  | lst                | 2nd                 | 3rd       |          |
| High Level of Risk -  | no strict decisio  | n – no trade off    |           |          |
| Factors               | HDG                | HGR                 | DWB       | ~ MAX    |
| Order weights         | 0                  | 0                   | 1         |          |
| Rank                  | 1st                | 2nd                 | 3rd       |          |

Table 2 Example of order weight assignment

## MCE Example: Land Slide

|            | WLC |       | Min | Max | OWA |
|------------|-----|-------|-----|-----|-----|
| Soil Type  | 0.1 | Rank1 | 1   | 0   | 0   |
| Vegetation | 0.3 | Rank2 | 0   | 0   | 0.4 |
| Slope      | 0.6 | Rank3 | 0   | 1   | 0.6 |

|            | Site A | Site B | Site C | Site D | Site E | Site F | Site G |
|------------|--------|--------|--------|--------|--------|--------|--------|
| Soil Type  | 90     | 10     | 50     | 80     | 50     | 90     | 10     |
| Vegetation | 10     | 10     | 50     | 80     | 70     | 70     | 10     |
| Slope      | 10     | 90     | 50     | 80     | 90     | 50     | 10     |
| WLC        |        |        |        |        |        |        |        |
| Min        |        |        |        |        |        |        |        |
| Max        |        |        |        |        |        |        |        |
| OWA        |        |        |        |        |        |        |        |

|            | Site A   | Site B   | Site C   | Site D   | Site E   | Site F   | Site G   |
|------------|----------|----------|----------|----------|----------|----------|----------|
| Soil Type  | 90       | 10       | 50       | 80       | 50       | 90       | 10       |
| Vegetation | 10       | 10       | 50       | 80       | 70       | 70       | 10       |
| Slope      | 10       | 90       | 50       | 80       | 90       | 50       | 10       |
| WLC        | 18       | 58       | 50       | 80       | 80       | 60       | 10       |
|            |          |          |          |          |          |          |          |
| Min        | 10       | 10       | 50       | 80       | 50       | 50       | 10       |
| Min<br>Max | 10<br>90 | 10<br>90 | 50<br>50 | 80<br>80 | 50<br>90 | 50<br>50 | 10<br>10 |