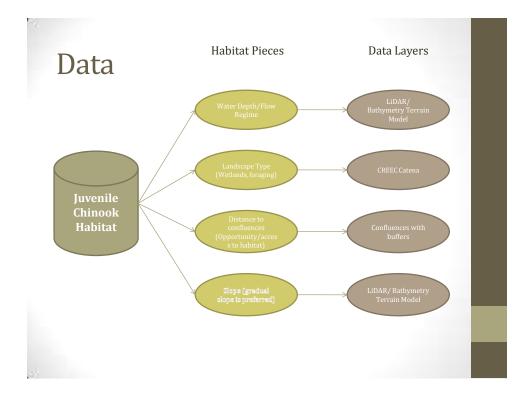


Scott Swenson, Jeremy Krueger, Haley Dillon GEOG 592 Final Project Winter 2011

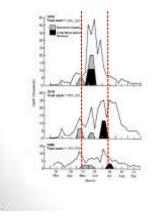
Introduction

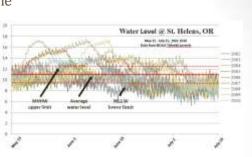
- Importance
 - Ecosystem
 - Historic
 - Cultural
 - Economy
 - Lacking current data (GIS data is line data and mapped at a very coarse scale)



- Disappearing Habitat
 - Development
 - Dams, diking, water control
 - Water quality
 - Endangered species list
 - Government, conservationist restoring/preserving habitat
- Species: Juvenile Chinook Salmon (spring run)
 - Specific habitat needs

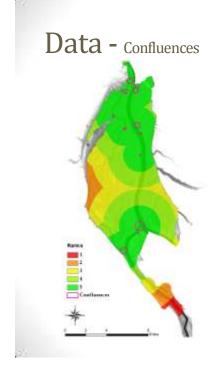
Study Area


- From river mile 86-105 of the Columbia River
- Extent of Columbia/Willamette River Floodplain (UW/USGS)
- Tidally affected

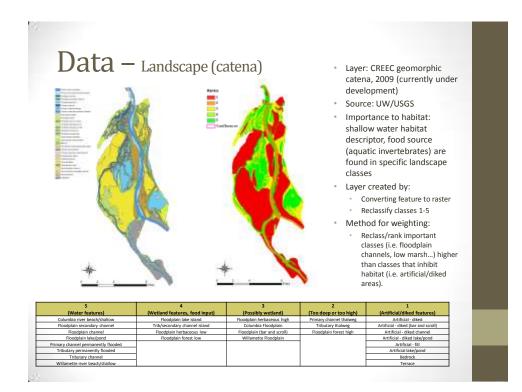


Data – Flow Regime

- Migration window roughly May July
- Flow regime during this period shows opportunity to access habitat



- Calculated average of flow over this time period from 2002-2010
- Our study area is tidally affected so we buffered the average with the tidal range in order to represent MHHW and MLLW.
- Preferred depth is .1 2 meters beneath the surface.

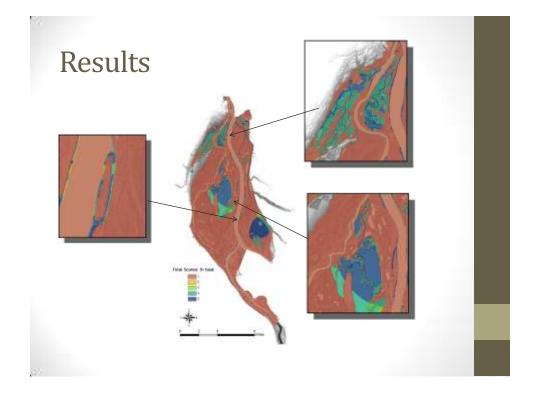


- Layer: Terrain Model, Bathymetry and LiDAR merge 2010
- Source: Army Corps of Engineers
- Importance to habitat: water is habitat and shallow depth is important to juveniles
- Layer created by:
 - Reclass terrain raster (2.89 12.32) = 1, all other values = 0
 - Convert to vector, select all connecting polygons, export
 - Convert back to raster

Data - slope Layer: Terrain Model, Bathymetry and LiDAR merge 2010 Source: Army Corps of Engineers Importance to habitat: Juvenile Chinook salmon prefer gently sloping bottom surfaces Layer created by: Slope tool was applied to DEM. Raster then reclassified into 5 classes. With 5%, 10%, 15% and 20% as break points.

- Layer: Confluences
- Importance to habitat: confluence areas represent an opportunity to access more habitat
- Layer created by:
 - Digitized confluences with buffers based on channel width
 - Euclidean Distance tool
 - Reclassified into 5 classes, 2,500m intervals
- Method for weighting: 5 classes – closer to confluence = higher rank

Methods


- Analytical Hierarchy Process
- Pairwise Comparison of 5 criteria
 - Depth
 - Slope
 - Vegetation/Landcover
 - Proximity to conflunces

			A	в		с		D	E	Geometric Mean	Weight
A	Slope	A	1.000	00	5.0000		1.0000	5.0000	0.1429	1.289937	0.1556
в	Distance to Confluence	В	0.200	00	1.0000		5.0000	3.0000	0.1111	0.802742	0.09686
с	Landcover/Vegetation	С	1.000	00	0.2000		1.0000	5.0000	0.1429	0.677611	0.08176
E	Depth	E	7.000	00	9.0000		7.0000	9.0000	1.0000	5.244888	0.63291
									Sum of Geometric		
									Means	8.286908	

Methods

• Add and/or multiply layers using the raster calculator

(.632913 * finaldepth) * (.15566 * slope_rcl1) * (.096869 * confluences) * (.081769 * catreclass2) *

Conclusion

- Importance of this study:
 - Our output is a more robust dataset than what we were able to find online (coarse scale line data)
 - Data could be provided to government/conservationists for environmental planning purposes

 prioritize valuable habitat protection sites
- Future Considerations...
 - Apply constraining datasets to results : Land ownership, openspace acquisition by bond measures, historical wetlands, water temperature, water quality, predation, etc...
 - Add a restoration component compare current opportunity with historic to find what is missing today and what could be restored.
 - Apply to the rest of the Columbia River Estuary

Questions???

References

- Daniel L. Bottom, Charles A. Simenstad, Jennifer Burke, Antonio M. Baptista, David A. Jay, Kim K. Jones, Edmundo Casillas, and Michael H. Schiewe. "Salmon at River's End: The Rold of the Estuary in the Decline and Recovery of Columbia River Salmon". NOAA Technical Memorandum NMFS-NWFSC-68 (August 2005).
- Ayesha Gray, Charles A. Simenstad, Daniel L. Bottom, Trevan J. Cornwell. "Salmon Habitat in Recovering Wetlands of the Salmon River Estuary, Oregon, U.S.A.". *Restoration Ecology Vol. 10 No. 3*, pp. 514–526 (September 2002)
- 3. Charles Simenstad, Jason Toft, Melora Haas, Michele Koehler, and Jeff Cordell. "Investigations of the juvenile Salmon Passage and Habitat Utilization". USACE – Seattle District 2001 Lake Washington and Hiram M. Chittenden Locks Juvenile Salmon Passage and Habitat Utilization. (2001)