Statistic GIS Modeling

Lee, S. and Pradhan, P. 2007.

Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models.

Landslides, 4: 33-41.

Introduction

- Evaluate landslide hazards (landslide hazard mapping)
- · Landslide risk factors:
 - Slope, aspect, curvature
 - Distance from drainage
 - Geology
 - Distance from lineament (fault lines)
 - Soil
 - Land cover
 - Precipitation

Data

- Landslide locations (polygons)
 - Aerial photographs interpretation + field survey
- 10 m DEM (grid)
 - Topo map contours + survey point data
- 30 m Landsat Thematic Mapper (TM) image
 - Geological lineament, land cover, vegetation index (NDVI)
- 1 m distance surfaces (grid)
 - Distance from drainage and lineament
- Soil map (polygons)
- 100 m precipitation data (grid)
- · All data layers were resampled to 10 m resolution

Methods

- Frequency Ratio
- Logistic regression
- Assumption
 - Observed actual landslides represent the potential for slope stability

Land Type	% Area (PA)	% Occur Freq (POF)	Freq Ratio (= POF / PA)	Remarks
TYPE A	10	40	4	Association
TYPE B	30	20	0.66	Avoidance
TYPE C	30	30	1	Average
TYPE D	30	10	0.33	Avoidance
Sum	100%	100%		

Α	В				
(4)	(0.66)				
С	D				
(1)	(0.33)				
Slope					

Regression Analysis

 A power tool for discerning the relations between dependent (response) variables (Y) and independent (explanatory) variables (Xs). ε is the error term (or residual).

$$Y = a + bX + \epsilon$$
 (biv
 $Y = a + b_1X_1 + b_2X_2 + ... + \epsilon$ (mu

(bivariate regression) (multivariate regression)

http://www.math.csusb.edu/faculty/stanton/m262/regress/regress.html

Regression Analysis

- Tells us the directions and magnitudes of the effects of independent variables on dependent variables and the interactions between independent variables.
- Example: used car value model

Value(\$) = 16000 - 1000 x age(year) - 0.15 x miles

Assumptions of OLS Regression Analysis

- · Lack of measurement error
- Linearity (if linear regression is used)
- Normality
- No multicollinearity
- Homoscedasticity (zero means and equal variances in residuals)
- · No autocorrelation of the residuals

Logistic Regression Model

 A multivariate regression model with a binary dependent and/or independent variables:

$$p = 1/(1+e^{-z})$$

$$z = a + b_1X_1 + b_2X_2 + \dots + \varepsilon$$

$$e^{-z}: 1/2.71828182845904^{z}$$

```
 \begin{aligned} &z_p \\ &= (\texttt{o.o780} \times Slope) + Aspect_c + (-\texttt{o.o032} \times Curvature) \\ &+ (-\texttt{o.o048} \times Drainage) + Lithology_c \\ &+ (\texttt{o.o001} \times Lineament) + (-\texttt{1.3633} \times NDVI) \\ &+ Landcover_c + (\texttt{o.o043} + Precipitation) - \texttt{16.4726} \end{aligned}
```

Assumptions of Logistic Regression Analysis

- Lack of measurement error
- Linearity
- Normality
- No multicollinearity
- Homoscedasticity (zero means and equal variances in residuals)
- No autocorrelation of the residuals

Results

Table 2 Coefficient values for frequency ratio and logistic regression in the case of each factor

Factor	Class	Number of pixels showing landslide occurrence	Percentage of pixels showing Landslide occurrence	Pixels in domain	Pixel %	Frequency ratio	Coefficients of logistic regression
Slope	0~15 degree	67,777,334	82.86	115	35.17	0.42	0.0780
	16~25 degree	8,426,979	10.30	87	26.61	2.58	
	26~35 degree	4,648,328	5.68	68	20.80	3.66	
	35~85 degree	940,212	1.15	57	17.43	15.16	
Aspect	Flat	32,746,440	40.04	0	0.00	0.00	-9.1703
	North	5,541,254	6.77	55	16.82	2.48	-1.9392
	Northeast	6,678,670	8.17	45	13.76	1.69	-1.3081
	East	6,077,711	7.43	27	8.26	1.11	-1.2635
	Southeast	6,181,783	7.56	28	8.56	1.13	-1.9959
	South	5,564,596	6.80	29	8.87	1.30	-1.1984
	Southwest	6,721,149	8.22	35	10.70	1.30	-2.0135
	West	6,105,258	7.46	46	14.07	1.88	-2.0177
	Northwest	6,175,992	7.55	62	18.96	2.51	0.0000
Curvature	Concave	13,288,765	16.25	66	20.18	1.24	-0.0032
	Flat	55,283,859	67.59	15	4.59	0.07	
	Convex	13,220,229	16.16	246	75.23	4.65	_

Comments

- Factors weights of Frequency Ratio Model?
- Spatial autocorrelation & statistic models
 - Select uncorrelated samples
 - Spatial Regression
 - Spatial expansion method (location as an additional independent variable)
 - Geographically weighted regression (location as weights of independent variables)