Selection of wave energy sites in Southern Oregon's Territorial Sea

Kori Hutchison, Dennis Kurtz, Leanne Weiss
GIS II 4/592
3/18/2010

Restrictions (exclusionary factors)

- Underwater cables
 - 500 meter buffer (Nobre et al. 2009)
- Depth
 - Between 30 and 200 meters (Nobre et al. 2009)
- Navigation channels and harbor entrances
- Three miles (territorial sea)
- Marine gardens/protected areas

Weighted factors

- Wave Climatology
 - Wave height, wave period, wave power
- Sea bottom
 - Rock, mud, sand, gravel, shell
- Distance to port cities

Gathering Wave Data

 Buoy data collected from: the National Data Buoy Center and the Coastal Data Information Program

Calculations:

- Mean significant wave heights (Hs) and mean peak wave periods (Tp) were averaged for all active years for each buoy
- Mean wave power (kW/m) was calculated using the formula: P=0.42 x Hs² x Tp
- Simplified formula from EPRI literature
 - Adequate for initial assessments

Creating a Buoy Shapefile Number ID Source Latitude Longitude Mean_Hs Mean_Tp Mean_Power 1 00037 COQUILLE RIVER INNER, OR CDIP 43.11333500 -124.51333600 2.04 10.46 2 00053 UMPQUA RIVER, OR CDIP 43.67666600 -124.23833500 9.73 15.29 1.94 3 00064 SIUSLAW, OR CDIP 44.01499900 -124.24166900 11.40 2.79 37.19 4 00126 COOS BAY, OR CDIP 43.39704900 -124.65011600 2.70 12.20 37.35 5 00135 COOS BAY NORTH, OR CDIP 43.61821700 -124.55836500 2.05 11.04 19.49 6 00137 COQUILLE RIVER OUTER, OR CDIP 43.20833200 -124.70333100 2.44 9.93 24.76 7 00139 UMPQUA OFFSHORE, OR CDIP 43.76667000 -124.55085000 11.35 31.29 8 00035 COQUILLE RIVER, OR CDIP 43.12333300 -124.44000200 2.16 10.91 21.34 9 46015 PORT ORFORD, OR NDBC 42.74700000 -124.82300000 2.45 7.18 18.15 10 46027 CRESCENT CITY, CA NCBC 41.85000000 -124.38100000 7.17 15.91 Add Excel spreadsheet to ArcMap Display XY data Export as a shapefile

Methods: Using Constraints to Define The Study Area

- 1. Potential Study Area.
- 2. The SA was split by the 30 m bathymetric contour. All marine protected areas were near the coastline, within the 30 m depth range.
- 3. Tow Lane areas were then removed.
- 4. A buffered Cable Area was Removed

Methods: Creating Suitability Rasters

- Distance from Port City:
 Euclidean distance was used
 with a 20 mile limit and
 Reclassified into 10 classes (2
 mile bands)
- 2. Extracted to study region
- Sea Bottom Type: Existing raster was reclassified. Rocks/Shell = 1; Gravel = 5; Sand/Mud = 10.

(Waveplam: Wave Energy Planning and Marketing)

4. Extracted to study region

Methods: Creating Suitability
Rasters
Wave Layers (Height, Frequency,
Power)

1. Buoy Data Points
2. Interpolation using Inverse
Distance Weighting – export to
raster

3. Reclassified into 10 classes
4. Extrapolated and extracted to
study region

Buoy Data Interpolation Raster

Buoy Data Interpolation Raster

Buoy Data Estracted to Study Region

