
1

Basic Programming Algorithms

1-D Arrays
• 1-D fixed-size array

Dim arr(5) As Double ‘0-base, 6 elements
Dim arr(0 to 5) As Double ‘0-base, 6 elements
Dim arr(1 to 5) As Double ‘1-base, 5 elements
Option Base 1

• 1-D dynamic array
Dim arr() As Double
…
Redim arr(5) ‘allocate 6 elements to the array
…
Redim Preserve arr(10) ‘increase the array size to 11 while

preserving the values
Redim Preserve arr(1 to 10) ‘this will cause an out of range error

2

2-D Arrays
• 2-D fixed-size array

Dim arr(5, 10) As Double ‘6 rows, 11 columns

• 2-D dynamic array
Dim arr() As Double
…
Redim arr(5, 10)
…
Redim Preserve arr(5, 20) ‘when using Preserve

keyword, you can only change the size of the highest
dimension

2-D Arrays

…2,21,20,23,12,11,10,13,02,01,00,0

3,33,23,13,0

2,32,22,12,0

1,31,21,11,0

0,70,60,50,40,30,20,10,0

Dim A (3, 7)
‘the array has 4 rows, 8 cols, a total of 32 elements

3

Working with 2-D Arrays

Dim A(3, 7) As Integer ‘2-D array with 32 elements
Dim B(31) As Integer ‘1-D array with 32 elements
Dim iIndex As Long
Dim irow As Integer, icol As Integer

For icol = 0 to 7
For irow = 0 to 3

iIndex = icol * 4 + irow
A(irow, icol) = iIndex
B(iIndex) = iIndex

Next
Next

Array Size
• UBound
• LBound

Dim A()
Redim A(5)
Redim A(UBound(A) + 1) ‘increase the size of the array by 1

Dim A (1 To 100, 0 To 3, -3 To 4)

‘Statement Return Value
UBound(A, 1) 100
UBound(A, 2) 3
UBound(A, 3) 4

4

Calculate Mean Value
Dim i As Integer
Dim n As Integer
Dim inarr() As Double
Dim arr_sum As Double, arr_avg As Double
‘set the value of n
…
Redim inarr(1 to n)
‘Redim Preserve inarr(1 to n)
‘Initialize inarr
…
arr_sum = 0
For i = 1 to n

arr_sum = arr_sum + inarr(i)
Next

arr_avg = arr_sum / n

Swap a pair of numbers

Dim a As Integer, b As Integer
Dim tempval As Integer

tempval = a
a = b
b = tempval

5

Subroutines & Functions

Public Sub Swap(a As Integer, b As Integer)

– Scope
– Sub or Function
– Name of sub (function)
– Argument list (called by value versus by reference)
– Return data type

Subroutine and Function Example 1
Option Explicit

Sub test()
Dim response As String
Dim dArea As Double

response = InputBox("Enter the radius of a cirle")
If Len(response) = 0 Then Exit Sub 'User press cancel

MsgBox "Area of the cirlce is " & Area_of_Circle(CDbl(response))
End Sub

Public Function Area_of_Circle(r As Double) As Double
Dim pi
pi = 4 * Atn(1) 'pi equals 4 times the arctangent of 1
Area_of_Circle = pi * r * r

End Function

6

Subroutine and Function Example 2
Sub test()

Dim a As String, b As String
a = "First"
b = "Second"
MsgBox "Before swap: a is " & a & ", b is " & b

Swap_Values a, b 'or Call Swap_Value(a, b)

MsgBox "After swap: a is " & a & ", b is " & b
End Sub

Public Sub Swap_Values(ByRef Item1 As Variant, ByRef Item2 As Variant)
Dim tempval As Variant

tempval = Item1
Item1 = Item2
Item2 = tempval

End Sub

Variable Scope

• Scope
– Public
– Private

Dim B As Integer

Private Sub Sub1()
Dim A As Integer

End Sub

7

Debug

• VBA IDE Debug Tool
– Breakpoint
– Step
– Variable values browsing

• Debug.print and Debug.pause
• Error handler

Sorting Algorithms

• Rearrange a list of elements in certain
order.

• Sorting order:
– Numerical vs. lexicographical order
– Ascending vs. descending order

8

Quick Sort

• Quicksort is a divide and conquer
algorithm which relies on a partition
operation: to partition an array, we choose
an element, called a pivot, move all
smaller elements before the pivot, and
move all greater elements after it. We then
recursively sort the lesser and greater
sublists.

9

Pseud-code
function quicksort(array)

var list less, pivotList, greater

if length(array) ≤ 1
return array

select a pivot value pivot from array
for each x in array

if x < pivot then add x to less
if x = pivot then add x to pivotList
if x > pivot then add x to greater

return concatenate(quicksort(less), pivotList, quicksort(greater))

Stack & Queue

• Stack
– First in, last out

• Queue
– First in, first out

• Stack: A fixed amount of memory used by
program to preserve local variables and
arguments during procedure calls.

• Stack Overflow: Stack memory is full!

10

QuickSort Pesudo-code
function partition(array, left, right, pivotIndex)

pivotValue := array[pivotIndex]
swap(array, pivotIndex, right) // Move pivot to end
storeIndex := left
for i from left to right-1

if array[i] <= pivotValue
swap(array, storeIndex, i)
storeIndex := storeIndex + 1

swap(array, right, storeIndex) // Move pivot to its final place
return storeIndex

function quicksort(array, left, right)
if right > left

select a pivot index (e.g. pivotIndex := left)
pivotNewIndex := partition(array, left, right, pivotIndex)
quicksort(array, left, pivotNewIndex-1)
quicksort(array, pivotNewIndex+1, right)

