OOP

Principles of OOP

Encapsulation — distinctive boundaries of
objects

Abstraction — fitting real-world objects into the
defined objects

Inheritance — relationship between objects
(association, composition, aggregation, etc)

Polymorphism — contextual behavior of objects

OOP Components

» Class (a collections of similar objects)
— Events
— Properties
— Methods

* Object (created by instantiation)
— Events (response to triggers)
— Properties
— Methods

* Interface (for accessing properties and methods of
objects)

Object Model

Farm; il I ___+ Orchard I
A . .
Tree
anm Layer
Lea I «.| Brancn I »| Apple Tj
. s S =y . Feature-
| Layer

Raster-| | TIN-
Layer | | Layer

MxDocument

5 4

zl

1 .Orchard is a type of farm (there are many other types of farm). - association
2. An orchard has trees. - composition

3. Atree has branches. - composition

4. A branch can grow fruit. - instantiation

5. A branch can grow leaves. - instantiation

6. An apple tree is a tree. — type inheritence

(@ Microsoft Visual Basic - Project

Fle Edt Wew Insert Format Debug Run Tools Adddns Window Help

QE-= B dh | o y o1 ombkd &Y @ | tna, cot i
| Project-Project EIJ ® Project - userrormi (Usertorm) . |=Uj|A]
=l=]= G

UserForm1
] @ Normal (Normal.mxt)
= @ Project
+- (23 ArcMap Objects
= Forms

UserFarm1
+ (17 References

M Project - UserForm1 (Code)

[UserFors <] fenesk -]
Frivate sub Usarfor ClIck()
|UserForm1 UserForm = End Sub

Alphabetic | catsgorisd |

UserFarml |
[]aHeoooo0oFs: ~|
M &HE00000126:

0 - fmBorderstyleNone
UserForm1

0 - fmCyclealForms

32000

True

Tahoma

M 2H200000128:

Project VB Component

— Forms
« Properties
¢ Events
« Procedures
— Declarations
— Events procedures
— General procedures
« Controls
— Properties, events
— Events
— Procedures
— Modules
¢ Declarations
¢ Subroutines & Functions

— Class Modules (User defined objects)
¢ Methods: sub and functions
« Properties
— Property Get
— Property Let
— Property Set

Variable Scope

* Scope
— Public
— Private

Dim B As Integer

Private Sub Sub1()
Dim A As Integer
End Sub

Public level

= Available to all procedures
within all module/forms

ModuleTForm level

= Available to all procedures
within its own module/form

&

F Y

4

N

variable C

variable B

variable B

Procedure 1:
rariable A

Procedure 1:
rariahle A

Procedure 2:
rariahle A

Procedure 2:
rariable A

Hodule 1

Form 1

proce

Procedure level {local)
= Available only within the
dure

Dim Number
Number = 8

Select Case Number

Debug.Print "Not between 1 and 10"

End Select

Select Case

Initialize variable.

" Evaluate Number.

Case 1 To 5 " Number between 1 and 5, inclusive.
Debug.Print "Between 1 and 5"

" The following is the only Case clause that
evaluates to True.

Case 6, 7, 8 " Number between 6 and 8.
Debug.Print "Between 6 and 8"
Case 9 To 10 " Number is 9 or 10.
Debug.Print "Greater than 8"

Case Else " Other values.

IF... THEN... ELSE

Dim Number, Digits, MyString
Number = 53 " Initialize variable.
1¥ Number < 10 Then

Digits = 1
Elself Number < 100 Then

" Condition evaluates to True so the next statement is
executed.

Digits = 2
Else

Digits = 3
End If

"Assign a value using the single-line form of syntax.

IT Digits = 1 Then MyString = "One" Else MyString = "More
than one"

FOR... NEXT

Dim Words, Chars, MyString
For Words = 10 To 1 Step -1 " Set up 10 repetitions.
For Chars = 0 To 9 " Set up 10 repetitions.
" Append number to string.
MyString = MyString & Chars
Next Chars " Increment counter
MyString = MyString & " " " Append a space.
Next Words

DO WHILE... LOOP

Dim Check, Counter
Check = True: Counter = 0 " Initialize variables.
Do * Outer loop.
Do Whille Counter < 20 " Inner loop.
Counter = Counter + 1 " Increment Counter.
IT Counter = 10 Then " If condition is True.
Check = False " Set value of flag to False.
Exit Do " Exit inner loop.
End IF
Loop
Loop Until Check = False " Exit outer loop immediately.

DO ... LOOP WHILE

Do
[statements]
[Exit Do]j
[statements]

Loop [{While | Until} condition]

WHILE... WEND

Dim Counter
Counter = 0 " Initialize variable.

While Counter < 20 *" Test value of Counter.
Counter = Counter + 1 * Increment Counter.
Wend * End While loop when Counter > 19.

" Prints 20 in the Immediate window.
Debug.Print Counter

