Lights, Plants, Action

Radiometric Normalization and NDVI

Nadia Jones Geog 582 Spring 2009

Introduction

Radiometric Correction

- Addresses variations in the pixel intensities (DNs) that are not caused by the object or scene being scanned. These variations include:
 - differing sensitivities or malfunctioning of the detectors
 - o topographic effects
 - o atmospheric effects
- In this case, normalizing a subject image to a reference image so they are comparable

Introduction

- Normalized Difference Vegetation Index (NDVI)
 - A ratio of the red visible and near infrared bands
 - used widely used as a measure of both the presence and health of vegetation
 - o values range from -1 to +1
- NDVI Change
 - Subtracting the NDVI results from 2 time periods to show a change in NDVI

Does radiometric normalization impact the results of an NDVI?

- and Washington
- Cascade Mtns
- Eastern Desert
- Landsat
 - Rows 28 & 29
 - Path 45

Preprocessing

 Register and Mosaic the Landsat scenes from the two time periods

Preprocessing

- Subset the imagery
 - Problem with radiometric normalization
 - Faster processing time
- Layer Stack for ease of use
 - Green, Red, NIR 1, NIR 2
 - 4 layers for each time

Preprocessing

Radiometric Normalization

o Followed Lab 3 in Erdas Imagine

Imagery before normalization:

Subject Image

Reference Image

1988 Subset		
	Mean	Stdv
Green	41.214	14.759
Red	52.022	26.177
NIR 1	72.722	19.485
NIR 2	96.545	38.651

1999 Subset			
	Mean	Stdv	
Green	55.577	18.727	
Red	62.565	30.702	
NIR 1	73.341	19.644	
NIR 2	74.741	34.743	

Radiometric Normalization

- Identified areas of No Change in feature space using the NIR 1 and NIR 2 Bands from both times
 - Found local maximums for water and land/surface

Radiometric Normalization

- Calculations
 - $a = (j_{umax} j_{lmax}) / (i_{umax} i_{lmax})$
 - $b = j_{lmax} (a * i_{lmax})$

	land/surface max	water max	а	b
NIR 1's	81.68, 76.54	9.997,16.117	0.8429	7.69
NIR 2's	133.677, 110.024	37.21, 28.54	0.8447	-2.8913
	i _{umax} , j _{umax}	i _{lmax} , j _{lmax}		

• $HVW_{NC} = \sqrt{(1 + a^2) * 4}$

HVW _{NC3}	5.2314
HVW _{NC4}	5.2361

Radiometric Normalization

- o Create an AOI of the No Change areas
- Use AOI to create No Change mask, to exclude these areas from normalization

- Use model to determine coefficients for normalization
- Collect a's and b's for all bands

Band	a_k	b _k
Green	1.2953	3.1088
Red	1.118	5.3557
NIR 1	0.765	17.4292
NIR 2	0.8472	-3.4811

Radiometric Normalization

 Run Normalize Model and stack the resulting bands into a new image

Normalization Results

Subject Image		Reference Image			
1988 Subset		1999 Sub	1999 Subset		
	Mean	Stdv		Mean	Stdv
Green	41.214	14.759	Green	55.577	18.727
Red	52.022	26.177	Red	62.565	30.702
NIR 1	72.722	19.485	NIR 1	73.341	19.644
NIR 2	96.545	38.651	NIR 2	74.741	34.743

1988 Normalized Subset			
	Mean	Stdv	
Green	56.495	19.117	
Red	63.515	29.265	
NIR 1	73.062	14.906	
NIR 2	78.307	32.743	

NDVI with Normalization

Post Processing

- Create a threshold for negative and positive change by isolating the top and bottom 5% of pixels
- Reclassified both images
- Ran the COMBINE command using Map Algebra to compare the two NDVI Change images.

COMBINE in ArcMap

- Gray: classified the same on both images
- Color: classified differently on both images
- o River?

Removing the River

- The normalization model does not like zeros.
- Masking out the river before the NDVI analysis does not impact the results

Conclusions

- Radiometric normalization does impact the results of an NDVI analysis
- More differences between the NDVI change results are in the mountainous region
- Ground truth data is needed to confirm accuracy

Limitations

- Rerunning the model with different sized areas
- No ground truth data
- o Trying different models
- Know your area

References

- o Lab 3
- Elvidge, C.D. et al. 1995. Relative radiometric normalization of Landsat MSS data using an automatic scattergramcontrolled regression. *PE&RS* 61(10):1255-1260.
- o Erdas Field Guide Volume 2