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Introduction

“*Water consumption to sustain outdoor features, such as lawns, gardens
and pools makes up a significant portion of municipal water budgets.

«»+ In Australia, it is estimated that almost half of all urban water use is for
gardens (Miller and Buys 2008) .

++During the summer in Phoenix, Arizona and Layton Utah, 50-75% of
overall municipal water is used outdoors to maintain non-native, water
intensive landscapes (Balling, Gober and Jones 2008; Endter-Wada et al.
2007).

«In Barcelona, Spain, houses with a high proportion of lawn exhibit higher
water consumption (Domene and Sauri 2006).

+«In Phoenix, Arizona, an increase in the percentage of mesic vegetation
per census block is significantly correlated with an increase in overall water
demand (Wentz and Gober 2007).




Introduction

+“ Object-based classification combines the tools of segmentation, the
nearest neighbor classifier, and integration of expert knowledge, which can
yield improved classification accuracy compared to the traditional pixel-
based method (Jobin et al. 2008; Platt and Rapoza 2008).

“Through object-based classification, information needed for image
analysis can be represented in meaningful image objects and their mutual
relations (Baatz and Schape 2000; Rahmnan and Saha 2008).

+“+In comparison to pixel-based classification, Rahman and Saha (2008)
found an increase in overall Kappa accuracy score from 83% to 90%.

“+Zhou, Troy and Grove (2008) recommend the use of the object-based
approach as a convenient and useful method of classifying fine-scale
measurements of tax lot lawn area.

«+For classification of land cover in urban areas, studies have shown that
the integration of Light Detection and Ranging (LiDAR) data significantly
improves overall accuracy (Huang et al. 2008; Chen et al. 2009)

Research Objectives

1. To classify land cover on single-family residential tax lots
in high and low summertime water consumption
neighborhoods, in Hillsboro, Oregon.

2. To quantify the average amount of lawn per tax lot in each
neighborhood.

3. To compare the average amount of lawn per tax lot in each
neighborhood.
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Conclusions

Limitations:
% Only leaf-on images available
“*Problems classifying areas of shadow
% Dead grass was often mis-classified as impervious
% Pools were not classified
% Unable to separate the spectral characteristics of
different vegetation species

Future Analysis:
% Integrate more available features, such as shape and
texture into the classification
% Optimize the segmentation process and rule set
s Create TTA mask in ERDAS to calculate a quantitative
accuracy assessment
s Combine lawn classification information with the rest of
my household level water use data using GIS
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