

INTRODUCTION

- Mountain Pine Beetle is a Bark Beetle native to forests of Western North America from Mexico to Canada.
 - Inhabits Pines, primarily Ponderosa, Lodgepole, Scots, and Limber.
- Beetles usually attack older, diseased trees or overcrowded stands.
 - Prefer larger trees (>6 inches diameter) but during epidemics, MPB will attack smaller trees.
- Lifespan is about one year; In July/August MPB fly from diseased tree to a healthy tree and bore to phloem layer to feed, lay eggs.
 - Larvae spend Winter under bark; reach pupae stage in Spring.
- MPB carry blue stain fungus that blocks tree's natural defense (resin). Within 2 weeks of attack, phloem layer is damaged enough to cut off flow of water and nutrients.
- 1996-2008: MPB infected 2 million acres in Colorado.

- 10-12 months after attack, trees turn yellow/red.
- · Red/brown needles eventually fall off and trees appear grey.
- · As trees die, they present fire danger, falling tree hazards, soil stability issues, and negatively affect visual landscape (tourism, real estate).
- Opportunities: Pellets for woodstoves, interesting "Blue Pine" for flooring, furniture, woodworking.

- Mining/logging/settlement in 1910s-20s and fire suppression has led to homogenous Pine stands of larger trees in overcrowded stands.
- Combined with drought conditions and warmer temperatures, perfect for MPB outbreak

ÓBJECTIVE

- Detect and assess damage to pine forest stands (presumably from MPB) using NDVI change and Enhanced Wetness Difference Index.
 - EWDI uses wetness images from Tasseled Cap transformation.
 - Certain EWDI values have been found to be strongly correlated strongly with MPB red-attack damage (Franklin et al., 2003; Skakun et al. 2003).

METHODS

- Mask out clouds/edges from both images and non-coniferous areas from 1996 image (from unsupervised classification).
- NDVI and Tasseled Cap Transformation.
- Subtract 05 images from 96 (positive values represent loss in moisture/vegetation).
- Limit pixels to elevations of 2500m to 3657m
 - Healthy and unhealthy Pinon and Juniper vegetation (found in elevations lower than 2500m) tend to exhibit similar spectral reflectance properties to damaged higher elevation pines (Cole, Christopher).
- Eliminate negative values (increase in moisture/vegetation).

METHODS

- Rescale values to 8-bit unsigned (0-255).
- Separate values into 10 quantiles; eliminate top and bottom quantiles.
 - Bottom quantile represents noise in change.
 - Top quantile represents greater magnitude of change; forest fire, logging, etc. (trees in 1996, bare ground in 2005).
 - Resulting values for NDVI change 3-31;
 EWDI 3-37

×	

ACCURACY ASSESSMENT

- Compare "damaged" pixels to polygons from aerial surveys* 1994-2005 (CSFS; CSU).
- Zonal Statistics as Table
 - Assigned all damaged pixels to value of 1
 - Calculated sum of pixels within polygons

Method	# of Pixels	% of Pixels
EWDI	1,121,280	29.50%
NDVI Change	1,280,629	29%
EWDI and NDVI	715,570	35%

*Aerial surveys by the nature of its data collection are not the most accurate data sets

CONCLUSIONS

- Both methods appear effective at detecting damaged pine stands.
 - Uncertainty of exactly what it is detecting (green, red, grey stage).
 - Uncertainty of differences in detection (EWDI vs. NDVI change).
- Better ground truth data would be helpful in interpreting results and determining the most effective method for detecting MPB damage.
 - Would provide more accurate calibration of EWDI and NDVI change values to actual damage.

- Cole, Christopher. Assessment of Conifer Health in Grand County, Colorado using Remotely Sensed Imagery
- Natural Resources Canada: <u>www.nrcan-rncan.gc.ca</u>
- Wulder et al. 2005 Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities
- Wikipedia: http://en.wikipedia.org/wiki/Mountain_pine_beetle
- Professor Geoffrey Duh

