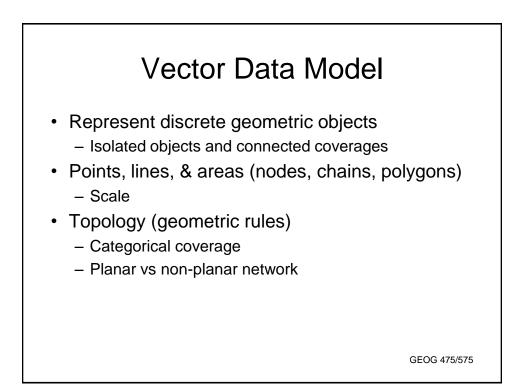
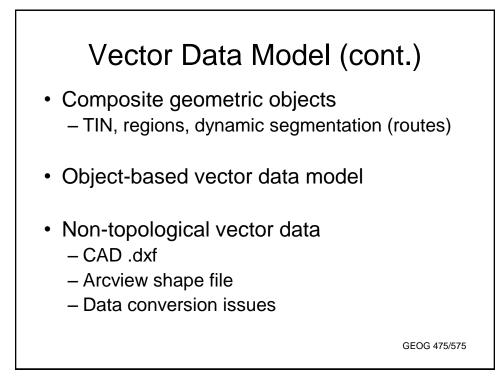


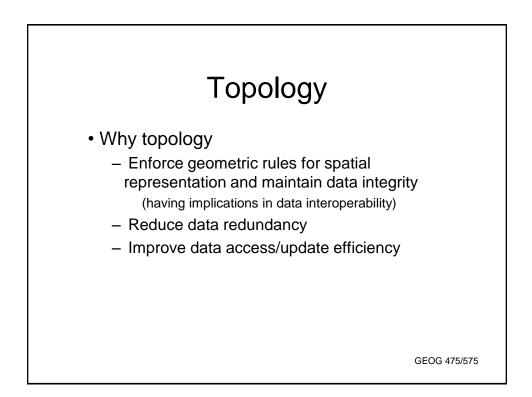
Types of Environmental Phenomena (Bian 2007)							
Category	Туре	Example					
Object	Mobil individuals	Individual or groups of animals					
Object	Sedentary individuals	Plants or bodies of water					
Field	Masses of individuals	Vegetation					
Region	Regions of individuals	Landscape patch					
Field	Continuous solid mass	Land surface					
Field	Continuous fluid mass	Water, air					
Region	Sedentary regions in mass	Watershed					
Region	Mobile regions in mass	Pollution plumes					

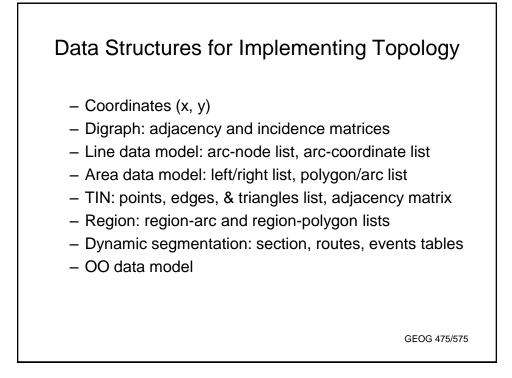
GIS Data Models for Areal Fields (Bian 2007)						
Field Models	GIS Model	Attribute Assoc				
Polygons	Vector	Piecewise				
Contours	Vector	Sampled				
TINs	Vector	Piecewise				
Cell-grids	Raster	Sampled				
Point-grids	Raster	Sampled				
Irregular points	Vector	Sampled				
		GEOG 475/575				

Conceptual vs implementation OO models
(Bian 2007)

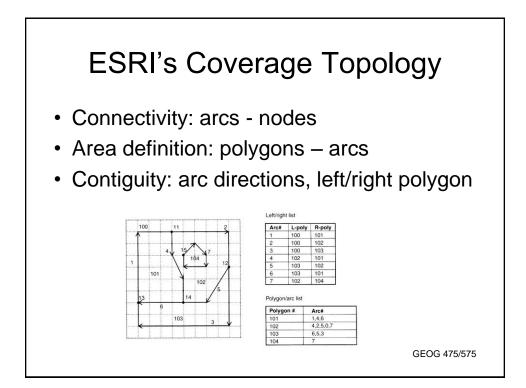

 Table 1. A summary of the compatibility between the principles of object-orientation, the object-oriented implementation, including both proprietary and in-house, and conceptual models of environmental phenomena

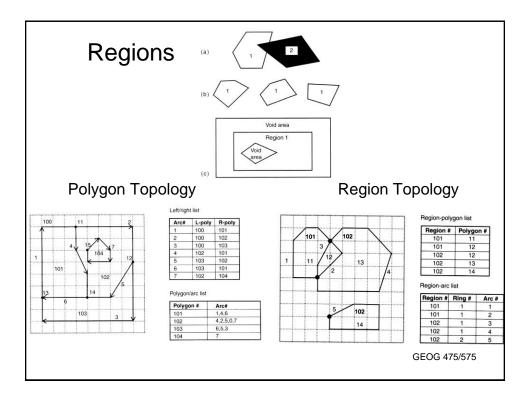

Environment phenomena			Object-oriented implementation			
	Examples	Object-oriented	ArcC	In-house		
		representation	Vector	Raster	Raster	
Mobile individuals	animals	yes	yes	no	yes	
Sedentary individuals	plants	yes	yes	no	yes	
Regions of individuals	plant patches	yes	yes	no	yes	
Sedentary regions in mass	watersheds	yes	yes	no	yes	
Mobile regions in mass	weather fronts	yes	yes	no	_	
Masses of individuals	vegetation	n.a.	_	yes	yes	
Continuous solid mass	land-surface	n.a.	-	yes	yes	
Continuous fluid mass	air mass	n.a.	-	yes	yes	

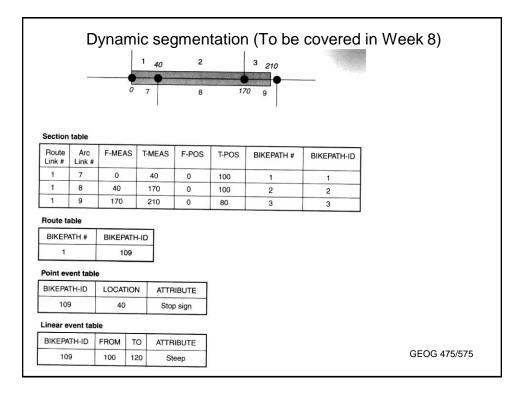

Note: For the object-oriented representation, "yes" and "no" designate whether they are appropriate to represent the eight categories of spatial objects, regions, and fields. For the object-oriented implementation, "yes" and "no" indicate whether it supports the categories of environmental phenomena. The dash indicates complex situations, depending on specific conceptualization and implementation models. Detailed discussions of these situations are presented in the article text.

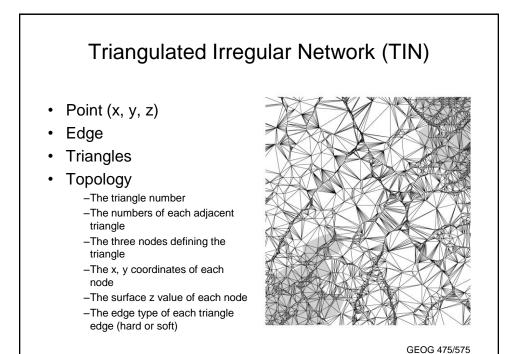

Next generation GIS data model?

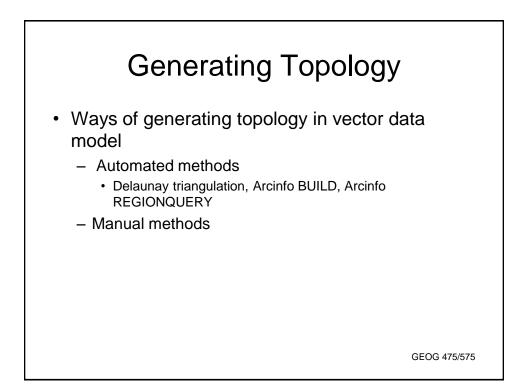
GEOG 475/575

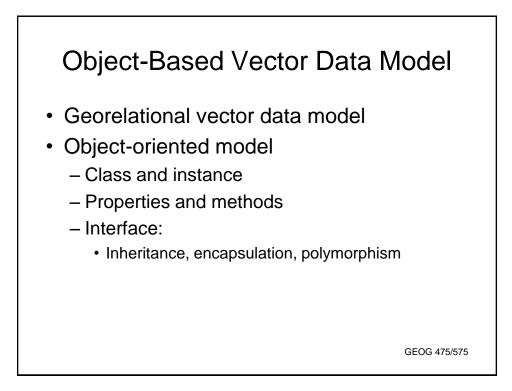


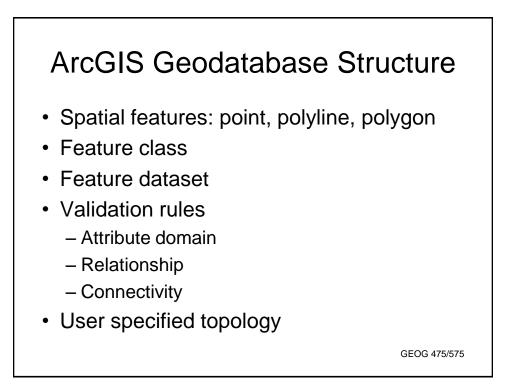


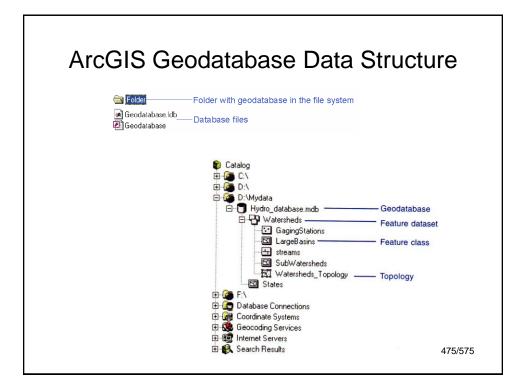


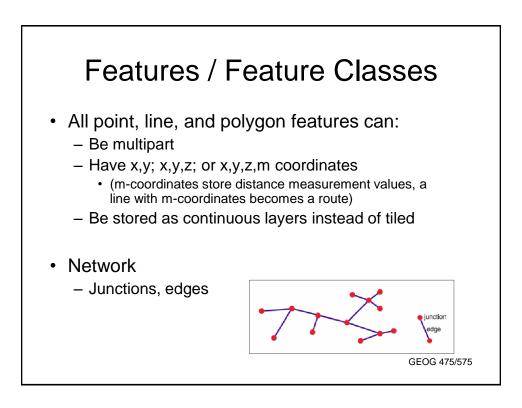

	Ad	ja	ce	nc	y 8	& inci	de	en	ce	m	nat	ric	e
		Aı In	rcs: cide	1, 2, nce	3, 4 : -1:	, 13, 14 4, 5, 6 end nod Yes, 0: N		: sta	art n	ode			
	Adjac	ency r	matrix	То			Incide	nce m	atrix		Aı	rcs	
		ency r	matrix	To	14		Incide	nce m	atrix	3	Ai	CCS	6
	11	<u> </u>					Incide			<u>3</u> 0			6 0
From		11	12	13	14	Nodes	11	1	2		4	5	
From	11	11 0	12 1	13 0	14 1		11	1 -1	2	0	4	5	0

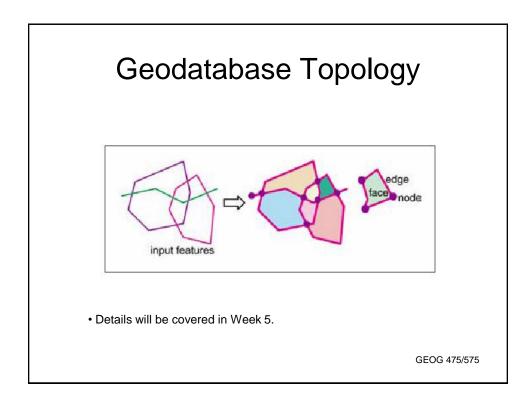


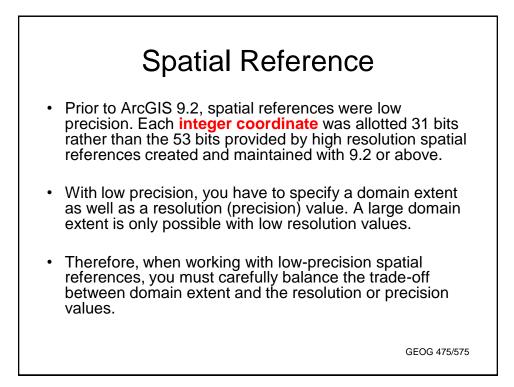

Univers	sal Poly	gon	in a	Polygo	n Cov	erage
	I Attributes of nhd pol	ygon				
	FID Shape AREA	PERIMETER	NHD# NHD-ID		<u>^</u>	
	2 Polygon 0.000011	0.043125	2 0			
	3 Polygon 0.000012 4 Polygon 0.000012		3 0		_	
	4 Polygon 0.000012 5 Polygon 0.000014		4 U 5 O			
	6 Polygon 0.000001	0.004991	6 0			
	7 Polygon 0.000065	0.030601	7 0			
	8 Polygon 0.000001	0.009622	8 0			
	9 Polygon 0.000016		9 0			
	10 Polygon 0.000006		10 0 11 0			
	11 Polygon 0.0000 12 Polygon 0.00003	0.030086	11 0 12 0			
	13 Polygon 0.00009	0.045571	12 0			
	14 Polygon 0.000004	0.007221	14 0			
	15 Polygon 0.004568	0.306295	15 0			
	16 Polygon (0.001584	16 0		×	
😂 Arc	Record: 14	1 > >I	Show: All Selec	ed Records (0 out of 109 s	Selected) Op	- 🗆 ×
Parameters		RCOMMAND				
Arc: describe nhd Desc	ription of DOL	NO 1	ARE -0.4280		NHD# NHD-ID 1 Ø	
		2	0.000	0.04312		
	FEAI	3 4	0 . 0000 0 . 0000		23456789 900000000000000000000000000000000000	
		5	0.0000		5 Ø 6 Ø	
Feature Class	Subclass	6 7	0 - 0000 0 - 0000		ь 0 7 0	
ARCS POLYGONS		8 9	0 - 0000 0 - 0000		8 Ø 9 Ø	
NODES		10	0.0000	0.02386	10 0	
ROUTES/SECTIONS	DRAIN LM	11 12	0 - 0000 0 - 0000		11 0 12 0	
	RCH	13	0.0000	9 0.04557	13 Ø	
REGIONS	LM RCH	14 15	0.0000 0.0045		14 0 15 0	
	WB	16	0.000	0.00158	16 Ø	
	SECON	17 18	0.0007 0.0003		17 0 18 0	
Tinn		19	0.0001	0.07227	19 0 20 0	
Tics Arc Segments		20 21	0.0030 0.0000		21 0	
Continue? _	MORI	22	0.0000	6 0.05113	22 Ø	•

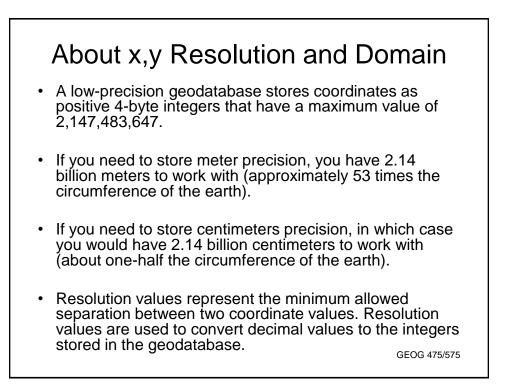












ESRI's GIS Data Structures							
Data Structure	Туре	Topology	Portability	Spatial Integrity			
Coverage	File-based	Required	Low	High			
Shapefile	File-based	None	High	None			
Personal Geodatabase	DBMS	Optional	High	High (if topology rules are defined)			
File Geodatabase	File-based	Optional	High	High (if topology rules are defined			

Minimum separation between coordinates 1 cm	Resolution	Coordinate system units Meters
1 mm	0.001	Meters
2 cm	0.02	Meters
1 inch	0.083333	Feet
		GEOG 475/575

		GEOG 475/575
		0200

Advantages of ESRI Geodatabase

- Functionality (ArcObjects)
 - Attribute domain
 - Connectivity rules/geometric networks
 - Relationship class
 - Topology rules
- Web-based, versioned operations (ArcSDE)
- Portability (Personal Geodatabase)
- Integration with RDBMS
- · Customized data models

GEOG 475/575

Humans still do mapping

Navigation systems need them to plot streets

BY CHRISTOPHER JENSEN Newhouse News Service

CLEVELAND - How the rewards of ma ping have changed. Guys like Magell got glory; modern-day mappers get fa food and a night at some motel

Kind of unfair. After all, trundling around a new housing division near Cleveland, John Rhinerson and Briar Nash are doing heir part to help every about how to get from here to there. Nash and Rhinerson work for Navtee Corp. a Chicago-based company that provides the geographic data for more tens sold by automakers in bu Unifed States.

A variety of manufacturers, from Alpine to VDO, make in-car navigation systems. Usually offered as options, they allow a motorist to type in a destination and get turn-by-turn instructions. Many also offer information on everything from gas stations and restaurants to automobile dealerships. Such acceltance in pacific through the thouse the

Such assistance is possible thanks to a powerful computer, geographic data from Navtog and a global positioning system. The GPS takes information from several satellites to tell a vehicle's location and how quickly it is treavening. Make a wrong turn, and the navigation system will gently request a U-turn ("when safe") or recalculate how to get you to your destination.

How well and how easily each navigation system works varies greatly depending on the company that created the system, according to studies by J.D. Power and Associates, the market research firm. Some systems frustrate and others delight, depending on design factors such as how easy the system is to operate.

But none of them would be possible without detailed information on what is where, which is where Nash, who is based in Columbus, and Rhinerson, who is based in Youngstown, do their part.

NORMA CUMTRAREMOUSE NEWS SERVA In Rhinerson, right, gives directions to driver Brian Nash as they make their wa rough a neighborhood to plot new roads for vehicle navigation systems.

They are among the 250 Navteq field analysts in the United States and Canada who drive the nation's roads, big and lite, collecting such information, said Kelty Smith, the vice president of marketing

On a June afternoon, Rhinerson and sush are in the full Navete, humber gathner mode. Nash is driving a white Ford humerson has a Fuge laptop computer thinerson has a huge laptop computer aking signals from the satellites and ecording the route they are driving ecording the route they are driving lex. As they drive, the GPS records a line showing their route on the lapton.

Nash is the driver and spotter. It is his lob to note details such as street names ("Lakeview...one word") and the house numbers at the beginning and end of each street. Nash seems quite fond of people who use large signs for their

house numbers or, better yet, paint them on a boulder

"Those are Navteq-friendly," he said. Rhinerson has an electronic pad that allows him to write such information on the lonton's screen

Some mapping chores are more challenging than others. Rural routes and subdivisions can have a more leisurely pace. Working in a city, dealing with traffic and trying to collect all the proper information is more frantic, but Rhinerson and Nash say they enjoy the hectic, go-go-go pace.

the Navteq database, which is then sold to companies that make navigation systems. There are different levels of detail. If you want timy streets, it costs more. More detail may also make a navigation system operate more slowly, taking longer to calculate a new route, which can upset consumers. That explains why some navigation systems have more de-

GEOG 475/575