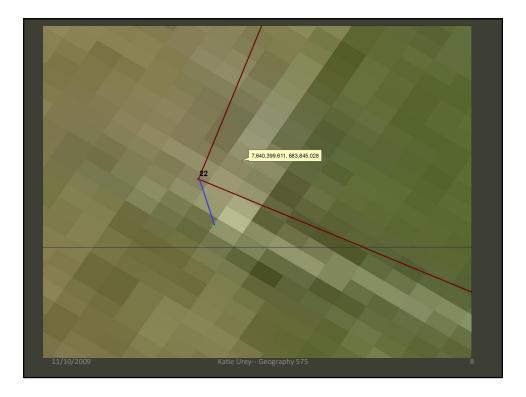

#### Compromises in Spatial Adjustments What Adjusts What Changes Rotate Parallelism Scale Affine Skew maintained Translate Rotate Shape Scale Similarity maintained Translate Used with aerial Projective photography ( warping)


### Spatial Adjustment Problem

- Setup a mathematical model that will calculate a new location for each cell or coordinate.
- Keep edges parallel. Allow objects to rescale, translate, and rotate.
- The model exists and requires 6 coefficients.
- Discover the coefficients from a link table of pairs of control points.









## Root Mean Square – Is the estimated location good enough.

#### Chang's recommendations

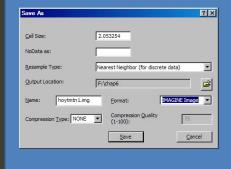
- The producers sets the RMS tolerance.
- Scale and Accuracy of input are factors
- Less than 6 meters for a 1:24,000 map
- Less than 1 pixel for a 30 meter raster

#### Root Mean Square Error

- RMS Error needs to stay within expected tolerance
- Errors in longitude and latitude on source maps may propagate through to errors in new maps.
- Tic marks may be inaccurate.
- Low RMS errors do not guarantee a good transform.

11/10/2009

Katie Urey-- Geography 57!


10



|                                                          | Map to Map                                                             | Image to Map                                                                                              |
|----------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| x and y                                                  | Vector coordinates                                                     | Raster rows and columns                                                                                   |
| Y equation                                               | Y = Dx + Ey + F                                                        | Y = Dx - Ey + F                                                                                           |
| Selection of Control<br>Points/<br>Ground Control Points | Use known values. Or project lat long to                               | Landmarks, best if<br>captured by a single<br>pixel, or adjusted to<br>known coordinates from<br>GPS/Maps |
| Number of Control<br>Points/ Ground Control<br>Pts       | 3 to find Coefficients<br>4 or more additional to<br>manage RMS error. | More than 4. Chang suggests ~20 for some images.                                                          |
| Additional Steps                                         | None                                                                   | Resample                                                                                                  |

There are two choices to save the transform. Either a new data set, or a world file with the transform coefficients.

#### Rectify (resample)



# Save Transform in external "WORLD" files.

| Value | Coefficient |
|-------|-------------|
| 20    | А           |
| 50    | В           |
| 0     | С           |
| 0     | D           |
| -15   | E           |
| 30    | F           |

#### References

ArcGIS Desktop Help 9.3, An overview of spatial adjustment

FAQ: What unit is RMS reported in ArcMap georeferencing tools?

TerraServer-USA <a href="http://terraserver-usa.com/">http://terraserver-usa.com/</a>

<u>Introduction to Geographic Information Systems,</u> Kang-tsung Chang

11/10/2009

Katie Urey-- Geography 57

14