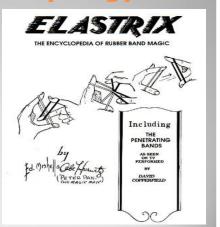
# **GIS Data Topology**


Produced By: Sean Pickner

### **Definition of Map Topology**

- Chang text defines topology as the study of properties of geometric objects that remain invariant under certain transformations. (Chang)
- A major area of mathematics concerned with spatial properties that are preserved under continuous deformations of objects. (Wikipedia)


## **Example of Topology**

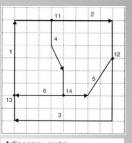
- The Rubber Band example
- A rubber band can be stretched and twisted, but as a result of it being a closed circuit the rubber band demonstrates aspects of topology in the sense that it well stay a closed circuit even when its shape is transformed or manipulated.




## **My Experience with Topology**

- Mapping tract boundaries of USFWS lands
- Topology was used to insure correct property boundaries
- Restricted certain analysis of properties that included easements




# **Graph Theory**

- A field of mathematics that uses diagrams or graphs to study the arrangements of geometric objects and how they are related.
- Digraphs (Directed Graphs)
- Arc- Line connected with two
- > Node- The beginning or end point on a line
- Vertices- Points that fall between Nodes on Arcs



# **Adjacency**

- A Matrix or Matrices are used to show relationships
- -1 and 0 are used to define characteristics of adjacency Direction of an Arc is used to
- determine value



Adjacency matrix

|    | 11 | 12 | 13 | 14 |
|----|----|----|----|----|
| 11 | 0  | 1  | 0  | 1  |
| 12 | 0  | 0  | 1  | 0  |
| 13 | 1  | 0  | 0  | 0  |
| 14 | 0  | 1  | 1  | 0  |

### **Incidence**

 A Matrix or Matrices are used to show relationships

-1, -1, and 0 are used to define characteristics of Incidence Nodes are used to define connectivity of Arcs



| HICK | ence n | ici(i i) |
|------|--------|----------|
|      | _      |          |
|      | 1 1    | 9        |

|    | 1  | 2  | 3  | 4  | 5  | 6  |
|----|----|----|----|----|----|----|
| 11 | -1 | 1  | 0  | 1  | 0  | 0  |
| 12 | 0  | -1 | 1  | 0  | -1 | 0  |
| 13 | 1  | 0  | -1 | 0  | 0  | -1 |
| 14 | 0  | 0  | 0  | -1 | 1  | 1  |

### **Benefits of Topology**

- Insure Data Quality
- Shared lines can restrict boundary discrepancies
- Gaps in line segments can restrict aspects of connectivity to a network
- Defined areas can insure land use restrictions
- **Enhances GIS Analysis**
- Attribute rules benefit address locating by reducing attributes to be searched
- Transit directions benefit route finding by depicting realistic transportation options
- Housing needs assessments are benefited through restrictions in property uses.

#### **Sources**

- Chang, Kang-tsung. "Introduction to GIS 5<sup>th</sup> Edition" Chang 2009, 5<sup>th</sup> Edition
- Viro, Ivanov, Netsvetaev, Kharlamov. "Topology" Wikipedia. 2009
  <a href="http://en.wikipedia.org/wiki/Topology">http://en.wikipedia.org/wiki/Topology</a>
- Magic Shop. "Elastrix" How Do Tricks: <u>Elastrix Book Image</u>
  <a href="http://www.howtodotricks.com/Books.html">http://www.howtodotricks.com/Books.html</a>
- USFWS. "FWS National Cadastral Data" Branch of Data and System Services. <<a href="http://www.fws.gov/data/Cadastral.htm">http://www.fws.gov/data/Cadastral.htm</a>>

### **Questions**

- 1. What values and how are those values used in matrices to define Adjacency?
- What values and how are those values used in matrices to define Incidence?
- 3. Name two important digraphs related to map topology of the Vector Data Model?
- 4. How can topology insure the integrity and quality of spatial data?