Spatial Data Editing

- · Why do we need to edit spatial data?
 - Correct location/topology errors
 - Update/modify spatial information
- Errors
 - Detection
 - Quantification
 - Spatial data accuracy standard
 - Correction

Sources of Errors in GIS Data

- Conception
- Measurement
- Representation
- Analysis

Detection of Errors

- External validation (using referencing data)
 - Remotely sensed imagery
 - Maps
 - GPS
 - HARN (High Accuracy Reference Network)
 - HPGN (High Precision Geodetic Network)
 - HARN and HPGN are both names for the same project that is focused on readjusting the NAD83 datum to a higher level of accuracy state by state.
- · Internal validation
 - Simulation
 - Spatial analysis (derivatives)
 - Scientific visualization

Geographic Visualization/Spatial Analysis

· Tools for GIS data verification

Quantifying Errors

- · Overall magnitude
 - RMSE
 - Producer's accuracy (probability of errors)
 - User's accuracy (reliability of data)
- Spatial distribution of errors
 - Simulation
 - Error propagation models
- · Qualitative / topological errors
 - Topology rules

Editing

- · Coverage, shapefile, geodatabase feature class
- · Topological/non-topological editing
- · Single layer/multiple layers editing
- Other editing tools/procedures
 - Line simplification and smoothing
 - Rubbersheeting
 - Transformation (scaling, shifting, rotation)
 - Edgematching

Spatial Data Accuracy Standards

- 1947 US National Map Accuracy Standard
 - <10% sample points with > 1/30" displacement for scale > 1:20K, or >1/50" for scale <= 1:20K
- 1990 American Society for Photogrammetry & Remote Sensing Standard
 - RMSE 16.7 ft for 1:20K; 2ft for 1:2400 (1/100")
- 1998 Federal Geographic Data Committee National Standard for Spatial Data Accuracy
 - Standard for < 1:20K maps and NSSDA statistic
 - Estimate accuracy: RMSE x 1.7308 (95% confidence level)

The Use of Accuracy Standards

- Interpretation
 - Confidence intervals (probability)
 - Scale
 - RMSE sample size (is 20 points enough?)
- Regulation
 - Quality control
 - Meta data
- Reporting measurements
 - Precision & accuracy

Use of Accuracy Information

Fuzzy tolerance (ArcInfo)

FuzzyT = Scale x Digitizer precision (in inches) / 12 Digitizer precision ~ 0.002" (500 dpi)

Cluster (xy) tolerance (ArcGIS)

An order of magnitude less then the highest accuracy of your data.

1 inch data accuracy \sim ClusterT = 1/12/10 = 0.00833 ft.

Line Simplification – Douglas-Peucker Algorithm

- 1. Connecting end points of a line to form a trend line
- 2. Calculate deviations of vertices from the trend line
- 3. If there are deviations larger than a user-specified tolerance, then the vertex with the largest deviation is selected as the new end point, otherwise stop
- 4. Repeat 1-3 until no deviation exceeds the tolerance

