

Objectives

- Define the relationship between river stage, flooded area, and shallow water habitat area
- Refine and expand previous work by:
 - Incorporating a larger study area
 - Segmenting the study area and aggregating river reaches with similar characteristics
- Create visual representations of the terrain surface to communicate the topography and bathymetry of the study area

Shallow Water Habitat

- SWH is defined as peripheral sections of the river with 0.1 to 2m depth
 - Side channels
 - Sloughs
 - Floodplains
 - Salt marshes
- SWH provides refuge, nutrients, and is key habitat where out-migrating salmonids undergo smoltification

Shallow Water Habitat

- · Factors influencing the change in SWH
 - Levees/Dikes
 - Channelization of the river
 - · restricts flow to shipping channel
 - Infill for agriculture or development
 - Regulation of the Hydropower system
 - · Alters the flow cycle and reduces flooding
 - Climate change
 - · Alters the flow cycle and reduces flooding
- By understanding the relationship between river stage and SWH the system can be optimized to provide more SWH.

Digital Elevation Model LCR topography and bathymetry from rivermile 51 to rm 75 10 meter resolution Generated from LiDAR flown in 2005 Digital Ortho-quads USDA 2 meter resolution Shapefiles River reaches Dike polygons Approximate locations of dikes and protected area

Methods

- Calculate the hypsometric curve for 1 mile reaches then group reaches based on the characteristic distribution of elevation
- Two cases
 - Undiked Topography
 - Use the DEM as derived from LiDAR
 - Diked Topography
 - Raise the protected area behind the dikes to the height at which the dikes would be over topped

Creating the DEM to represent the dike protected case

- Identify potential levee locations
- · Assign a overtopping value to the levee polygons
- Convert polygons to raster
- Use raster calculator to created the diked scenario

Analysis Conclusions

- Derived curves relating total inundation and SWHA to stage can be used to hindcast historic conditions
- Restoration efforts and Hydropower system fluctuations can have substantially different influences on the system depending on where and how changes are implemented
- Dike surveying would improve accuracy of analysis
- What does 3,000 acres of SWH look like?

Visualizing the terrain

Advanced solutions for digital display, study reach

- Generation of animated fly through of study reach in ERDAS Imagine VirtualGIS
- Single pass for each animation
 - · 2 animations with and without consideration towards dikes/levees
- explore multiple options
 - Variables: pitch, azimuth, roll, speed, models, background, flight paths

Visualizing the terrain

Advanced solutions for digital display, inundation

- Waterlayers, LPS ERDAS VitualGIS
 - · 11, 13 ft Inundation, ~ lowest levee height
 - · 25 ft Inundation, ~ highest levee height
- Inundated with and without taking into account levees and their alteration of flood patterns.

Did you see them?

- Mosaiced lines obvious
- · Flat features: boats, cities, some islands
- Pixelated images
- · Flooding didn't seem that good
- · No cloud/fog/water features

Visualization Conclusions

- Different programs pose different problems and solutions
 - LPS ERDAS VirtualGIS
 - · Quicker rendering, "easier" interface
 - Model imports, hard to import *3ds, *kmz models
 - Difficult to export images (to *jpg, *emf form)
 - Conversion between animation tool and create movie can be troublesome
 - Mosaic lines still apparent, flat features, pixelation, flooding doesn't appear as nice as layers
 - ArcScene
 - Water features such as clouds & fog, and light easy to manipulate
 - · Difficulty rendering from scene to scene
 - Excellent exploratory capability, but limited animation tools, or the animation tools are non-intuitive to an ERDAS user

