Determination of the relationship between river stage and shallow water habitat area for juvenile salmonids in the Lower Columbia River

Loren Meagher GIS II Winter 2008

Shallow Water Habitat

 SWH is defined as peripheral sections of the river with 0.1 to 2m depth

- Side channels
- Sloughs
- Floodplains
- Salt marshes

 SWH provides refuge, nutrients, and is key habitat where out-migrating salmonids undergo smoltification

Shallow Water Habitat Area

- Factors influencing the change in SWHA
 - Levee/Dike construction
 - Channelization of the river
 - restricts flow to shipping channel
 - Infill for agriculture or other development
 - Regulation of the Hydropower system
 - Alters the flow cycle and reduces flooding
 - Climate change
 - Alters the flow cycle and reduces flooding

Research Goals

- Implement a tidal-fluvial model to hindcast the daily max river stage at tide stations back to the late 1800's
- Model the relationship between river stage at all levels and SWHA
- Combine the two models to assess the change in availability of SWHA

Implementation of GIS

- Manage elevation data from several sources
- Post-processing of LiDAR data
- Merging of topographic and bathymetric data sets
- Interpolation of river surface from stage gauge data
- Calculation of inundated area

Post Processing LiDAR

- **Reclassify the raster to bins with 0.5 ft intervals**
- Convert raster to polygons
- Convert polygons to polylines
- Generate raster ramps for the lower elevation data to highlight the transition from the water surface to terrain.
- Use ArcMap editor to digitize shoreline features in a file geodatabase.
 - Polylines and raster ramps distinguish the transition from water surface to shoreline. Digital orthophotos are used for reference, but shoreline selection is based on the LiDAR data.
- Once the shoreline is delineated use the boundaries to clip out the bad data resulting from the LiDAR scattering off the water surface.

Digitizing the shoreline

Calculating SWHA

- Build shapefile to locate tide gauge stations and build an attribute table containing the stage data
- Interpolate the river surface for river stages from datum to historic maximum
- Use raster calculator to calculate water depth of the flooded areas.
- Use raster calculator to count the flooded cells
- Iterative process

Migrate Tide Gauge Data to ArcGIS

- Create file geodatabase to locate tide gauge stations
- Create an attribute table containing the stage data for river surface interpolations

110	Shope *	-	CRD NAVDER	Shage_1	Stage 7	Stage 3	Slage_4	Stage_5	Stage_6	Stage_7	Stage #	Stage_S
0	Point	7%	3.544	4.544	5.544	6.544	7.544	0.544	9.544	10.544	11.544	12.544
1	Port	24	3.531	4.521	6.628	6.531	7.531	8.5.31	9.521	10.571	11 525	12 531
2	Post	73	3.437	4.497	5.497	6.437	7,497	8.497	9.497	10.497	11.457	12,497
2	Point	72	3.40	4.40	5.43	6.40	7.48	0.40	9.45	10.45	11.40	12.48
	Fort	H	3.645	4.645	5.445	5.445	2.446	8.445	9.445	10.448	11.445	12.645
. 6	Part	70	3.387	4.307	5.367	6.387	7.367	0.367	9.307	10.367	11.367	12.367
6	Port	69	3 2 9 4	4.204	5.204	8.294	7.254	8.254	9.204	10,204	11,254	12,254
7	Point	68	3.551	4.155	5158	8.851	7.151	8.151	9.151	10 151	11.158	12:151
- 0	Park	67	2.678	3.978	4.978	5.970	6.978	7.978	8.379	0.978	10.978	11.978
- 9	Port	65	2,819	3.818	4.819	5.819	6.019	7.819	8.819	9.819	10.813	11,810
10	Part	- 66	2.859	3.019	4.058	1.859	6.019	7.653	8.059	9.058	10.859	11.059
11	Port	- 54	2.749	2.749	4.749	\$.749	6.748	7.745	8.749	9.749	10.749	11.749
12	Port	83	2.683	3.663	4.683	1.683	6.685	7.863	8.843	9.603	10.683	11 683
13	Port	82	2.646	3846	4.545	5.646	6.648	7.646	8.646	9.646	10.646	11 845
- 14	Post	.75	3.544	4.544	5.544	0.544	7:544	0.544	3.544	10.544	11.544	12:544
15	Port	- 74	2.531	4.531	5.531	6.531	7.631	8.531	9.521	10.531	11.531	12:531
15	Port	75	2.544	4.544	5.544	6.544	7.544	8.544	9.544	10.544	11.544	12 544
+1	Fort	- 74	3.531	4.521	6.631	8.531	7.621	8.521	9.521	10.531	11.531	12 531
18	Port	71	3.446	4.446	5.446	6.446	7.646	8.445	9.445	10.648	11.445	12,448
+2	Puet	13	3.437	4.497	5.457	8.497	7.497	8.497	3.457	10.497	11.497	12.497
30	Port	73	3.497	4.497	5.457	6.497	7.497	8.497	9.497	10 497	11.437	12.497
- 24	Port	70	3.367	4.397	5.367	6.367	7.367	8.367	9.367	10.367	11.367	12.307
22	Fort	72	3.40	4.40	5.48	5.45	7.48	8.48	3.43	10.48	11.43	12.48
23	Port	72	3.40	4.42	5.48	6.40	7.48	0.48	9.49	10.48	11.45	12.40
- 34	Point	69	3.204	4.254	5.284	6.204	7.264	8.284	9.204	10.284	11,294	12,294
25	Part	31	3.445	4.445	5.445	8.445	7.446	8.445	3.445	10.446	11.445	12.445
38	Port	70	3.367	4.307	5.367	6.367	7.367	6.367	9.387	10.387	11.367	12.387
- 27	Port	68	3.151	4.151	5151	6.351	7.151	8.151	0.151	10.151	11.155	12:151
- 24	Post	69	3.294	4.204	\$.204	6.204	7,264	8,294	9.204	10.204	11.294	12,254
29	Port	87	2.978	3 979	4.978	5.878	6.978	7.978	8.878	9.978	10.978	11,871
91	2044		1.874	1.074	1 pre		6.675	7.679	8 276	3.076	10.076	11.879

River Surface Interpolation

Point data at tide stations used to interpolate surfaces at regular intervals of stage height:

Datum, 6, 9, 12, 15, 18, 21, 24, 30 feet

- Spline Interpolation results in a surface that
 - Passes exactly through the data points
 - Minimizes curvature
 - Results in a smooth surface

Statistical Interpolation Methods

- Resulted in anomalies near data points
- Input data too sparse

- Water Depth = River Surface Interpolation DEM
 - Raster with values from ≈ -1000 to 25
 - Dpthx = [Stgx] [DEM]
- Flooded area represented by all positive values
 - Fldx = con([Dpthx] > 0, 1)
- SWHA consists of flooded area with 0.1m to 2m depth
 SWHAx = con([Dpthx] > 0.1 & [Dpthx] < 2, 1)

Conclusions

- Hypsometric curve shows expected behavoir
- More work to be done
 - Defining the shoreline
 - Merging in bathymetry
 - Increase the resolution of the stage intervals

