Land Use Change and Other Factors Affecting Water Temperature in the Johnson Creek Watershed

Michael Halleen Zach Bevens Denisse Fisher

Data Sources

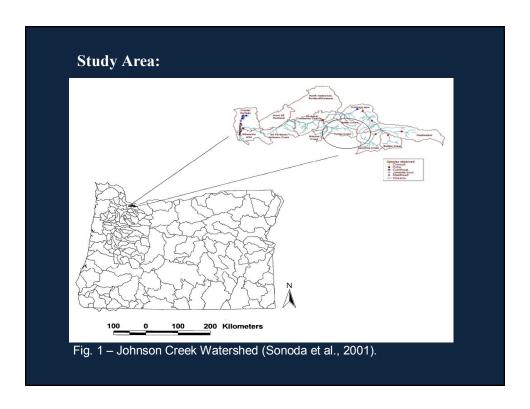
Environmental Services, City of Portland: Johnson Creek Watershed Streams, Rivers, Lakes JC Impervious Areas Urban Growth Boundary JC Storm Links

USGS:

Land Use Raster (1992) Water Quality Data

NOAA

Land Use images (1996 and 2001)


RLIS 10 m DEM

Special Thanks To

Mark Liebe and Kevin Ramey

Environmental Services

City of Portland

Stream degradation through thermal pollution

The optimal water temperature range for most cold-water fish species ranges from 12-14°C, while lethal levels ranging from 23-29°C.

Increased water temperatures influence fish growth rate, egg survival, migration cues, level of disease resistance and ultimate survival when lethal limits are reached. (Brazier and Brown, 1973; Rounds, 2007).

Objectives:

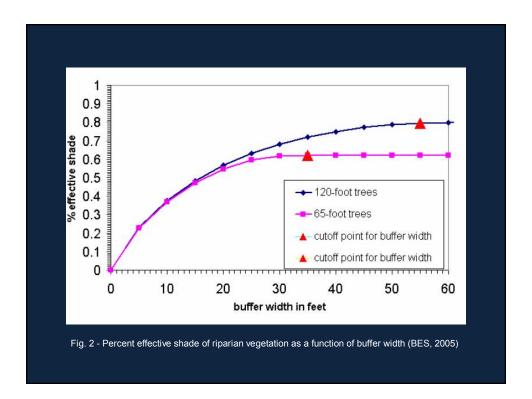
- i. Detect the land cover changes that have occurred within the Johnson Creek Watershed and assess the spatial pattern of the change.
- ii. Analyze available data to determine how land use may be leading to increases in stream water temperature.

Methods:					
Land Cover Classification					
Urban	Includes all residential, commercial/industrial, paved areas and public open space.				
Agriculture	Includes all cultivated areas and grasslands				
Forest	Includes forested areas				
Shrub/ Scrub	Includes areas that present mainly shrub or secondary vegetation.				
Wetland	Low areas saturated with water				
Bare land	Unvegetated areas				
Water	Lakes, streams and man-made reservoirs.				

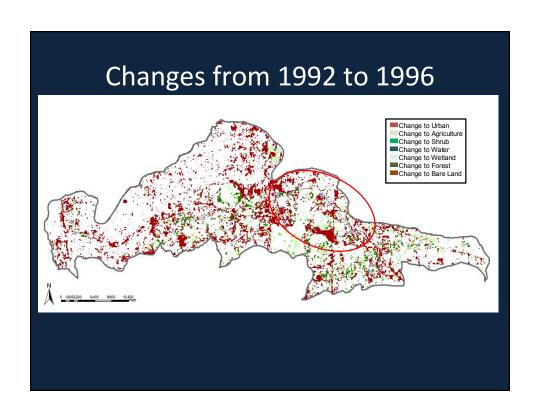
Using the combine tool, we calculated the changes from 1992-1996 and 1996-2001. The resulting change matrix was use to calculate the percent change using the following equation (Long *et al.*, 2007; Long *et al.*, 2008):

$$Ch_i = (p_i - p_j) / p_j * 100$$

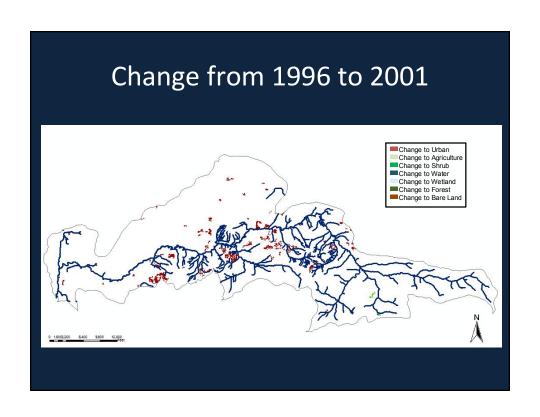
where Chi = change of LULC in row *i* relative to previous year, pi. = row total of category, and p.i = column total of category*i*

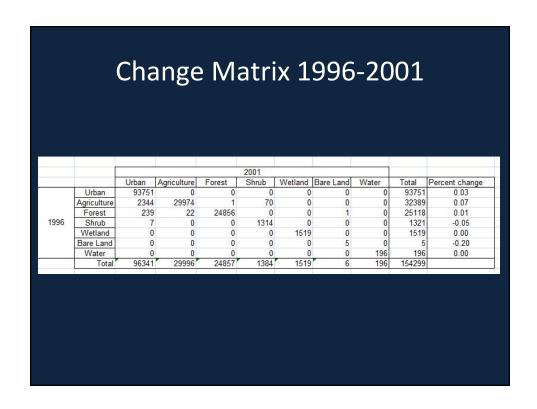

We then divided Johnson Creek Watershed into subwatersheds using the hydrology tools in Spatial Analyst.

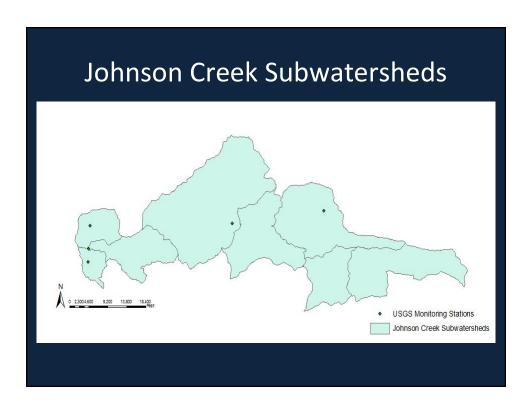
Using the resulting polygons, we then used zonal statistics to calculate extent of factors for each subwatershed for 2001.

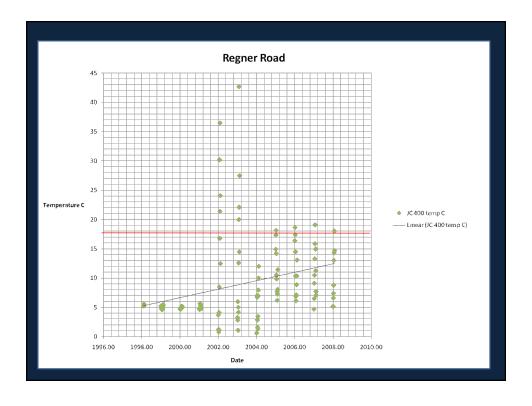

Buffering:

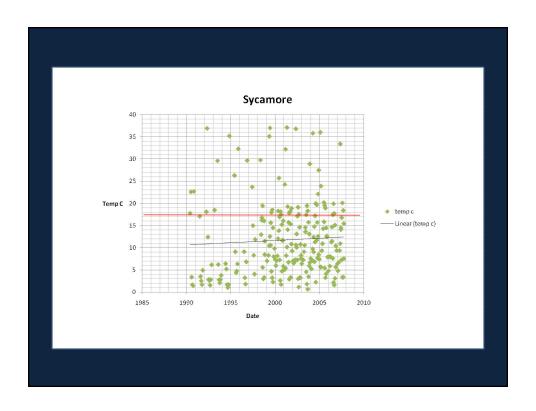
100 ft buffer around stream to calculate amount of riparian vegetation around streams (BES, 2005).

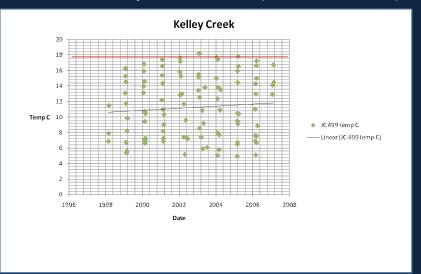

• 300 ft buffer – calculate land use near the stream.

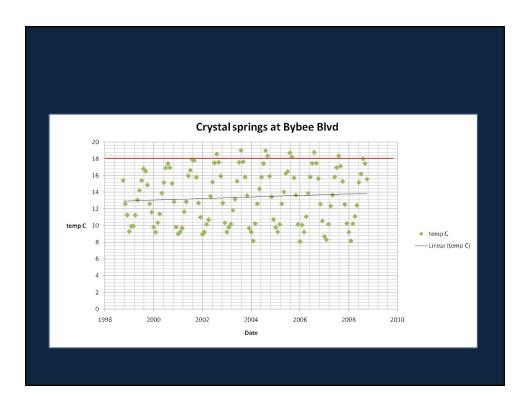


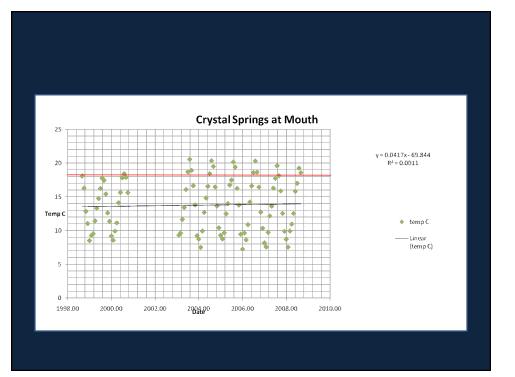

Results

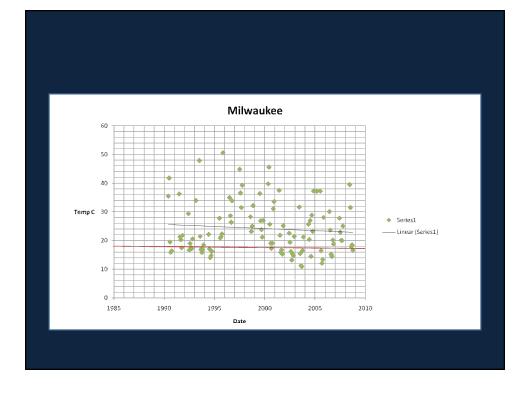

Change matrix 1992-1996										
			J							
					1996					
		Urban	Agriculture	Forest	Shrub	Wetland	Bare Land	Water	Total	Percent change
	Urban	62964	3070	2328	225	179	1	33	68800	35.74
	Agriculture	10047	22972	2622	393	459	0	11	36504	-12.30
	Forest	15528	4980	19854	662	808	4	41	41877	-40.23
1992	Shrub	4121	600	136	27	34	0	6	4924	-73.33
	Wetland	95	29	54	1	17	0	0	196	674.49
	Bare Land	604	350	32	4	6	0	25	1021	-99.51
	Water	31	13	2	1	15	0	78	140	38.57
	Total	93390	32014	25028	1313	1518	5	194	153462	



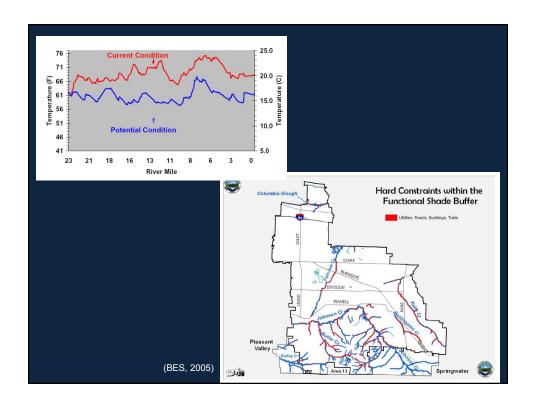



Percent Land use							
						Bare	
Station Name	Urban	Agriculture	Forest	Shrub	Wetland	land	Water
Johnson Creek at Regner Rd							
at Gresham, OR	41.12%	11.73%	40.59%	1.16%	4.81%	0.01%	0.04%
Kelley Creek at 159th Drive	39.84%	29.40%	24.93%	0.99%	3.94%	0.00%	0.02%
Johnson Creek at Sycamore,							
OR	38.69%	9.27%	48.74%	1.13%	1.60%	0.00%	0.01%
Crystal Springs Creek at							
Bybee St, Portland, OR	74.98%	4.00%	9.99%	0.21%	6.63%	0.00%	3.05%
Crystal Springs Creek at							
Mouth, Portland, OR	85.33%	2.07%	4.42%	1.44%	3.07%	0.14%	1.67%
Johnson Creek at Milwaukie,							
OR	99.42%	0.00%	0.30%	0.00%	0.76%	0.00%	0.15%





Water temperatures (1999-2002)



Conclusions

- The upper reaches of the watershed still present better water quality. However, these are the targeted areas for urban expansion and considering increasing water temperature trends, these areas might soon be limited to fish populations
- Other studies have concluded that as development continues and more natural and agricultural areas are urbanized, increases in water withdrawals and decreases low flows will lead to even higher water temperatures (Risley and Doyle, 1997; Risley, 1997).
- Fortunately, riparian restoration areas have shown to support populations of salmonids and cutthroat trout in recent years. GIS used in this manner can be used to target areas for restoration

Limitations

- Different classified land cover images lead to errors in change classification.
- Lack of sufficient water quality data from the USGS.
- Data contained many errors
- Groomed line by line eliminating errors
- Interpretation errors
- Statistical analysis limited by quality of data
- Overall warming trend except at Milwaukee

Data Sample

year_nu	month_	nu mean_va
1989	10	21.5
1989	11	39
1989	12	69.6
1990	1	183.2
1990	2	160.9
1990	3	69.8
1990	4	50.4
1990	5	35.5
1990	6	41.8
1990	7	19.5

References:

- Bureau of Environmental Services (BES). 2005. Johnson Creek Watershed Characterization. [viewed 2009] http://www.portlandonline.com/BES/index.cfm?c=33212&a=214368
- BES. 2009. Johnson Creek Watershed. [viewed 2009] http://www.portlandonline.com/BES/index.cfm?c=32201
- Boeder, M. and Chang, H. 2008. Multi-scale analysis of oxygen demand trends in an urbanizing Oregon watershed, USA. Journal of Environmental Management 87(4):567-581.
- Brazier, J.R. and Brown, G.W. 1973 Buffer Strips for Stream Temperature Control. Research Paper 15, OSU, Oregon Chang, H. 2008 Spatial Analysis of water quality trends in the Han River basin, South Korea. Water Research42: 3285-3304.
- Department of Environmental Quality (DEQ) 2002. Total Maximum Daily Loads (TMDLs) Program [viewed 2009] http://www.deq.state.or.us/wq/TMDLs/willamette.htm
- Krause, C.W., Lockard, B., Newcomb, T.J., Kibler, D., Lohani, V., and Orth, D.J. 2004. Predicting Influences of Urban Development on Thermal Habitat in a War Water Stream. Journal of the American Water Resources Association 1645-1658.
- Long, H., Heiling, G.K., Li, X., and Zhang, M. 2007. Socio-economic land transition in the Transect of the Yangste River, China. Land Use Policy 24: 141-153.
- Long, H., Wu, X., Wang, W., and Dong, G. 2008. Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chogqing, China. Sensors 8: 681-699.
- Paul, M.J. and Meyer, J.L. 2001. Streams in the Urban Landscape. Annual Review Ecol. Syst. 32: 333-365.
- Risley, J.C. 1997 Relations of Tualatin River Water Temperatures to Natural and Human caused Factors. U.S. Geological Survey Water-Resourves Investigation Report 97-4071.
- Risley, J.C. and Doyle, M.C. 1997 Water Temperature, Specific Conductance, and Metereolgical Data for the Tualatin River Basin, Oregon, 1994-95. U.S. Geological Survey Open-File Report 96-315
- Rounds, S.A. 2007 Temperature effects on point sources, riparian shading and dam operations on the Willamette River, Oregon. U.S. Geological Survey Scientific Investigation Report 2007-5185, 34p
 Scott et al., 2002 M.C. Scott, G.S. Helfman, M.E. McTammany, E.F. Benfield and P.V. Bolstad, Multiscale influences on physical and chemical stream conditions across blue ridge landscapes, *Journal of the American Water Resources Association* 38 (5) (2002), pp. 1379–1392.
- Sliva and Williams, 2001 L. Sliva and D.D. Williams, Buffer zone versus whole catchment approaches to studying land use impact on river water quality, Water Research 35 (14) (2001), pp. 3462–3472
- Sonoda, K., Yeakley, J.A., and Walker, C.E. 2001. Near-stream Landuse Effects on Streamwater Nutrient Distribution in an Urbanizing Watershed. Journal of the American Water Resources Association 37(6): 1517-