Modeling juvenile
salmonid presence in the
Tillamook Basin using
landscape-level attributes

Introduction

e Research Question: Can salmon habitat preference be
predicted from GIS-derived spatial features?
Develop a multiple logistic regression model
Response variable: Parr presence

Derive landscape specific data and relate to reach using

GIS

Steelhead
Chinook .




Data and Sources

e CLAMS (Coastal Landscape
Analysis and Modeling Study)
Stream Network
Discharge
Channel Confinement Index
Cl=ACW / VW
Gradient
e TEP (Tillamook Estuaries
Partnership)
Point Data-Count of Chinook,
Steelhead, Coho
e Land cover (NLCD)
e Land ownership (ODF)
e Roads (ESRI)
e Geology (DOGAMI)

Tillamook
Basin




Methods

® Reduce TEP point file 2708 to 2623

Pacific Ocean




Pacific Ocean

Methods

® Reclassify land ownership
(feature to raster)
public
private
® Reclassify land cover
developed
agriculture
wetland/water
forest
¢ Reclassify geology
(feature to raster)
erodible
resistant




Methods

® Derive road density with Kernel
e Distance to roads
e Sample Base points from all datasets
Contained CI, Q, Elevation, Gradient
e Converted TEP stream networl
to Major points
e Sample Major points from all
datasets
* Joined tables back to Base
points and exported as .dbf

Statistical Modeling

Logistic Regression

Event (1/0) = Presence / Absence of parr
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Variable Selection:

A AIC : Akaike Information Criterion Predictor Variable




GAM : Generalized Additive Model
A generalized version of GLM (Generalized Linear Model)
g(x) = by +f(x))+f,(x)+ ...
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Statistical Model Results: Chinook

Most straightforward — 3 variables

Full Model Results (terms added sequentially):

O = 11.0 + 1.64 * log(flow) — 0.000152 * elev —
0.00016 * elev?Z - 0.00045 * length + 2.6E9 * length?




Statistical Model Results: Steelhead

More complex

Full model results (terms added sequentially):

Statistical Model Results: Coho

Most complex — two major variables, many minor variables

Full model results (terms added sequentially)”




Flow —dominant variable

chinook
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Theta = function ( flow, length from mouth, total
channel width,gradient,
drainage area, confinement index,
road density)




Categorical Variables

Significant variations:
- Between the five major watersheds
-Between public/private lands
-Geology: Erodable/Resistant

Land cover: none
LiDAR-derived “rugosity” (Canopy Height Variation):
-Steelhead only

T

LiDAR-DEM-derived watershed variables

Earth System Institute watershed analysis tools could not
handle # of bytes ®

Increased DEM resolution:

Will not significantly change watershed delineation,
flow estimate

Will enable more precise stream width calculation

Would LiDAR-based data help?
Chinook: likely not. Flow is dominant factor.

Coho, steelhead: possibly. Stream width,
confinement index are minor contributors
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Methods

e Create new fields
Theta
Probability

* Create probability maps for all species

Pacific Ocean
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Pacific Ocean

Steelhead Probability
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Coho Probability
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Conclusions

e Variables used to predict parr habitat preference
differ among species and watersheds

e GIS, in conjunction with S-Plus, was used
effectively to model and predict

Limitations.....

e Time and Availability of Data
Try using difference in LiDAR HH - BE for rugosity
Derive our own stream network from LiDAR

e Keeping the model simple

e Model for whole basin, not individual watershed
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