Using Arc Hydro to study stream morphology in the Oregon coast range

> presented by Brian Block for Geog 592 - GIS II instructed by Dr. Duh

project objectives

- gain experience using Arc Hydro in water resource analysis for future projects.
- successfully define basins and streams using DEM.
- apply morphometric calculations to quantify basins and associated streams.

- drainage density = sum of stream lengths divided by area of basin
- quantifies landscape dissection and runoff potential.

using contours for hand digitizing analysis extent

more prep

- as this basin will span across two DEMs, the raster calculator will be used later to mosaic them together.
- with delineated (clipped) DEMs created the inputs can be tossed, this will improve processing time.
- next steps involve using the Arc Hydro Terrain preprocessor.

<text>

"stream segmentation" gives unique values to each segment

"catchment polygon processing" creates shapefile with area attributes

"drainage line processing" creates shapefile with length attributes

drainage density is low since low order streams were not generated

h_order	Cnt_h_orde	Sum_Shape_	length (mi)	Sum_Shape1	area sq (mi)	Dd
1	72	94,890.16	17.972	158,558,400.00	5.687	3.16
2	22	24,625.65	4.664	26,420,400.00	0.948	4.92
3	15	19,687.19	3.729	24,227,100.00	0.869	4.29
4	18	15,707.19	2.975	20,742,300.00	0.744	4.00
			29.339		8.248	3.56

final r	esults	with	strear	n	order	added			
to attribute table									

lessons learned

- it looks like no 1st and maybe even 2nd order streams were generated by Arc Hydro.
- 10 meter DEMs are probably not precise enough for this task, these are usually just scanned topos.
- were algorithms in Arc Hydro suitable for this analysis?

Literature referenced

- Hydrologic and Hydraulic Modeling Support with GIS, Maidment, D., Djokic, D.
- A View of the River, Leopold, L.B.
- Fluvial Processes in Geomorphology, Leopold, L.B., Wolman, M.G, and Miller, J.P.