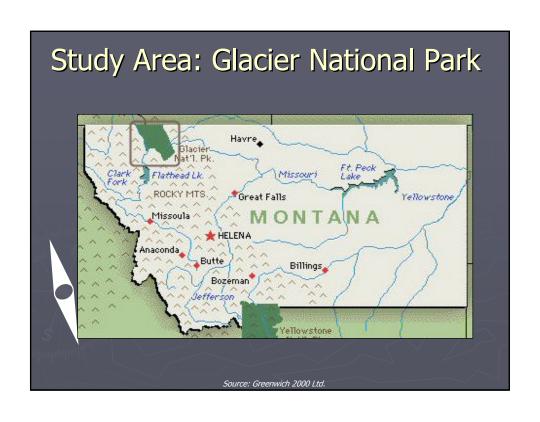
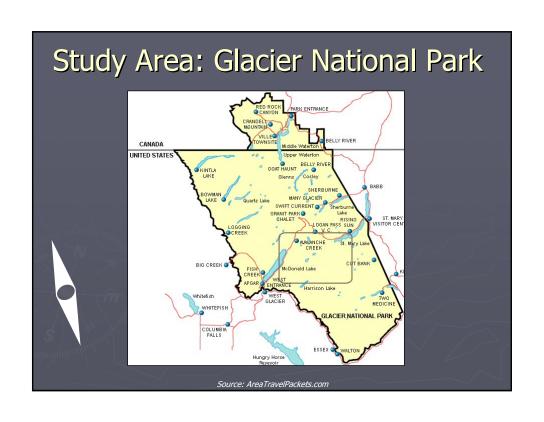


Table of Contents

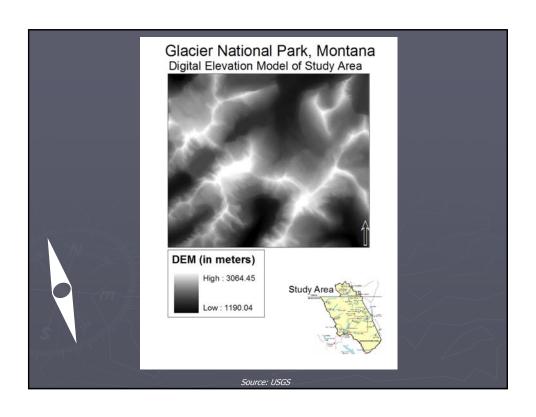
- ► Introduction
- ▶ Prior Research
- ▶ Methods
- ► Data Sources
- ▶ Problems
- Results
- Discussion
- Conclusion

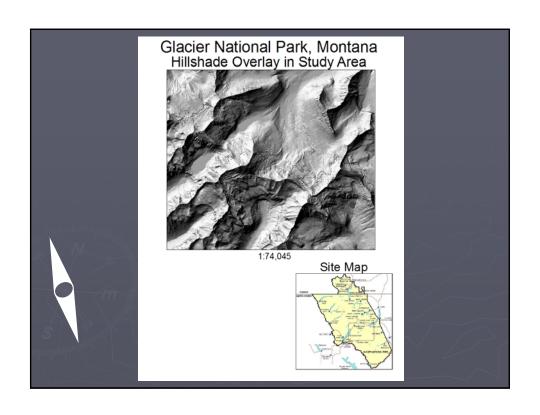
Introduction

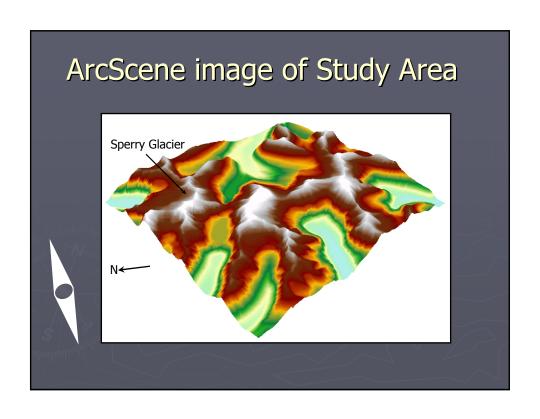

- ► Continued research of Mike's Stats project (correlations of weather and topography)
- ► Curvature of cirques
 - with and without ice
 - quantify findings

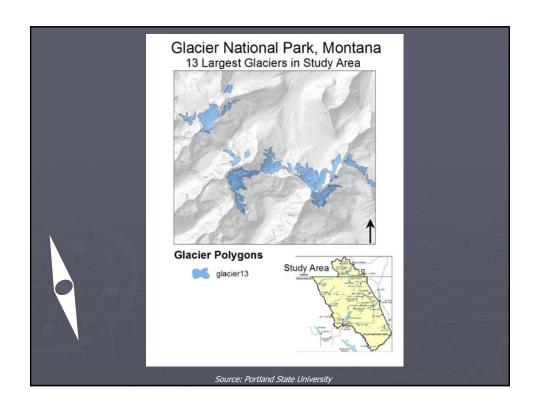

Tools Used

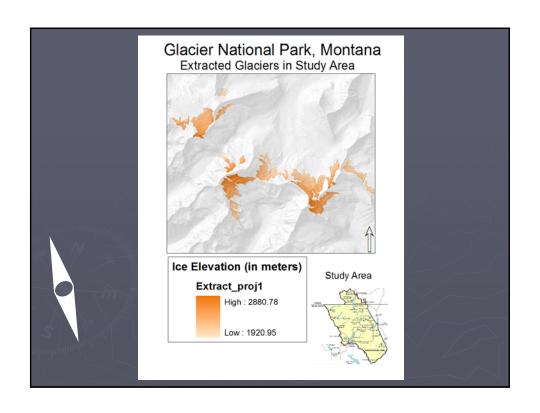
- ► ArcGIS
 - 3-D Analyst
 - Spatial Analyst
 - Raster Calculator
 - Conversion
- ArcScene
- > SPSS
 - Statistical Regression Analysis

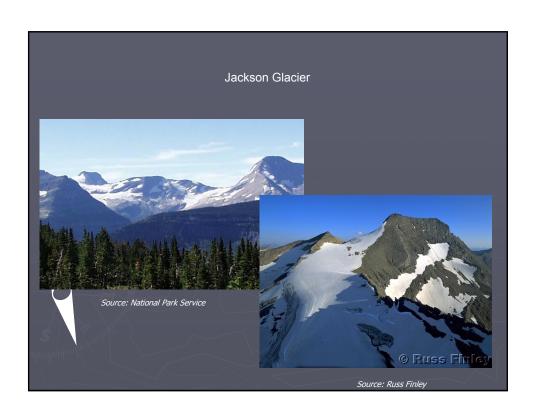

Excel

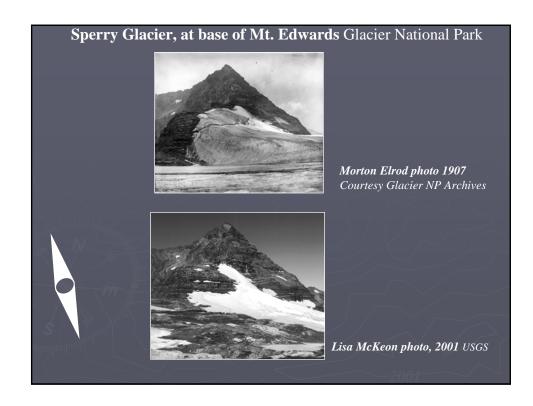

Graphing

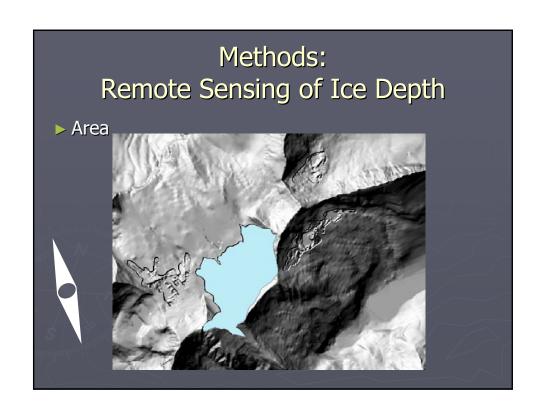


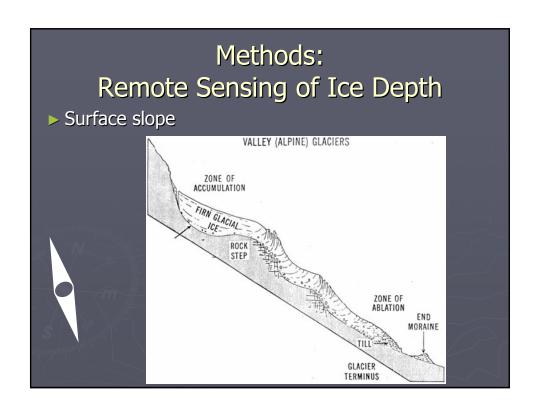












Prior Cirque Research

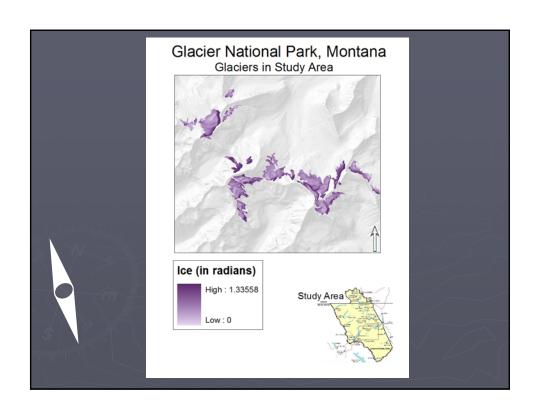
- ► Cirque width, high steep walls, facing northeast determine glacier locations¹
- ► Eastward cirque aspect caused by leeward slopes²
- Morphometric analysis using GIS, C++, and R was useful in delineating landforms³
- Correlations between cirque morphology and solar radiation and glacier area⁴

¹Graf, 1976; ²Evans, 1977; ³Bonk 2002; ⁴Chueca and Julian, 2004

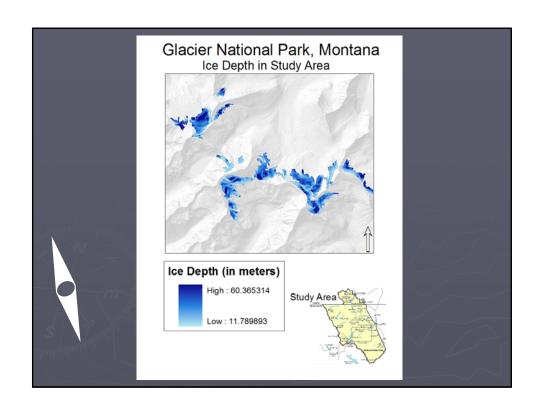
Methods: Slope-derived Ice Depth

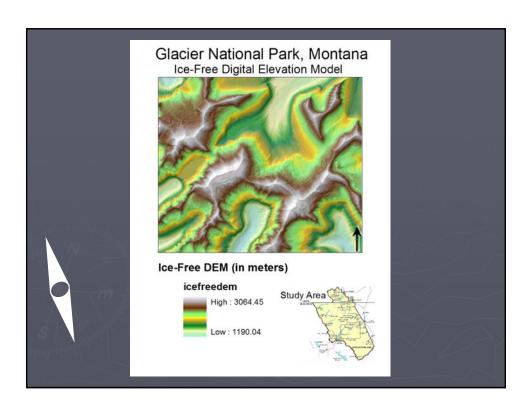
```
where Tb = 1 bar=100,000N/m²= kgm/s²/m²* and \rho = 890 kg/m³* and g = 9.8 m/s²

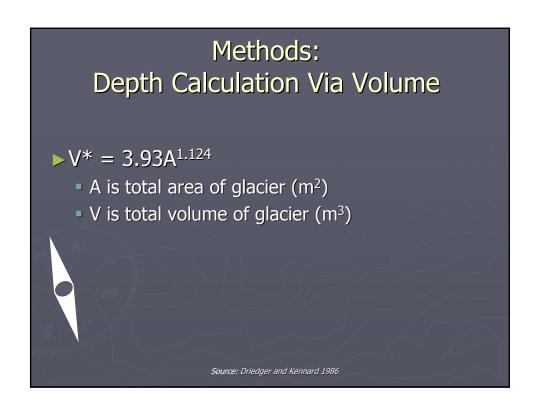
11.46526m³ / sin \alpha = h

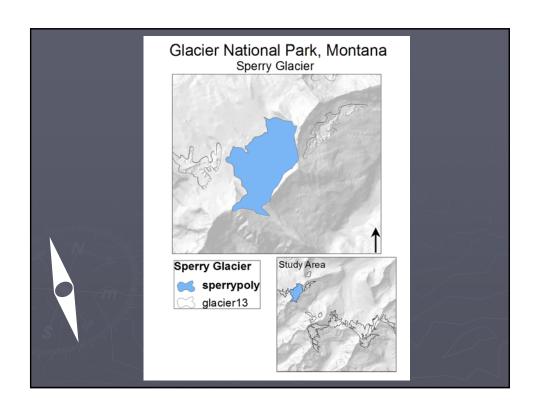

*Assumption based on data from Paterson
```

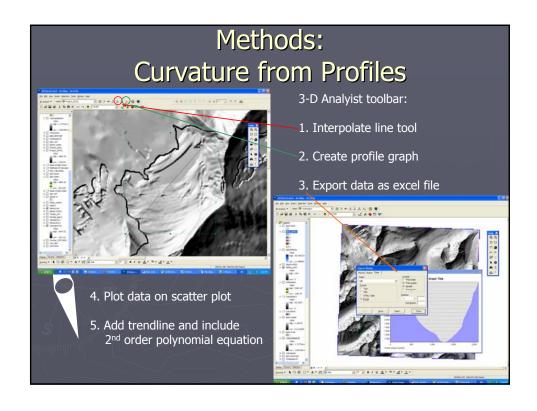

Methods:

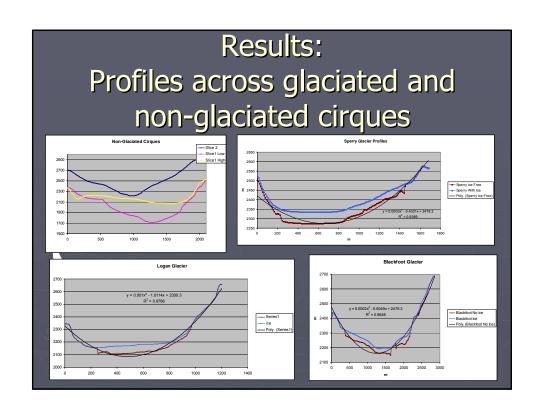

Source: Paterson 1994

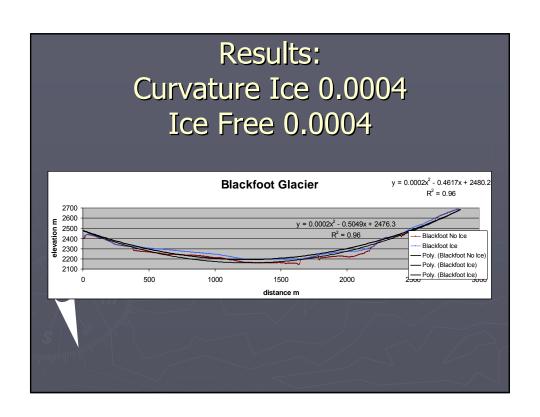

Ice Depth Calculations

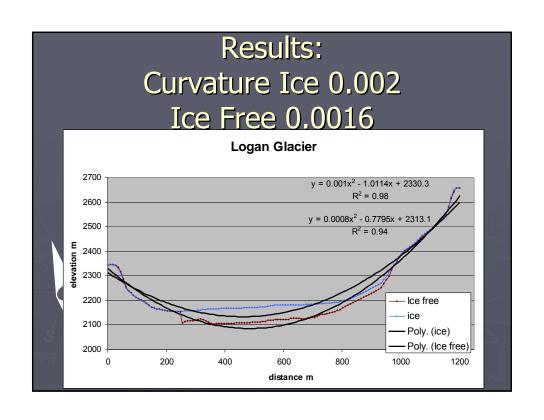

- ▶ Reproject in UTM bilinear resampling
- ► Slope tool calculated in degrees
- Convert degrees to radians
- Use derived ice depth formula using radians value

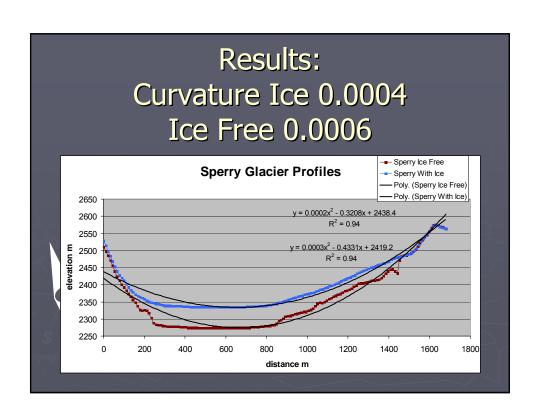


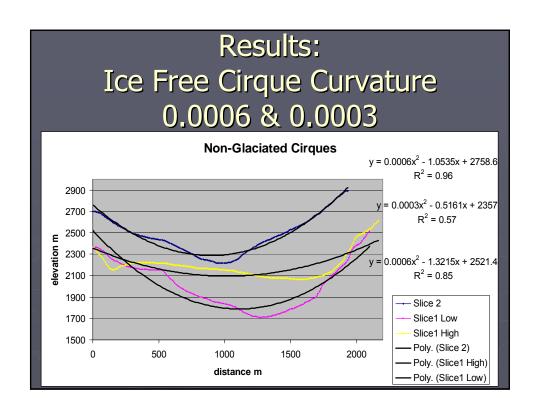


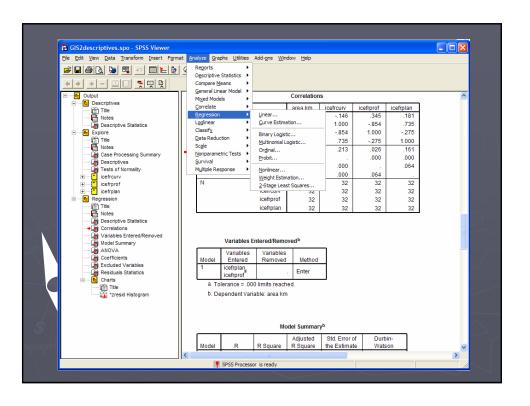


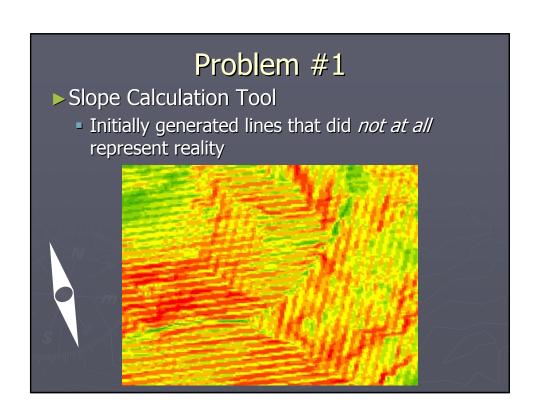





Analyzing Polynomial Equations

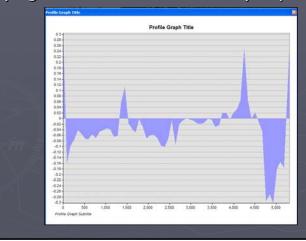

- ► The trendline of each profile generated a polynomial equation
- The second derivative of the coefficients of said polynomials are essentially the curvature value (acceleration)





Curvature with Ice															
	Correlations														
		area km	precip	sol rad	plan curvature	profile	curvature	aspect	low temp mean						
Pearson Correlation	area km	1.000	.048	.586	.043	.287	161	289	.091						
	precip	.048	1.000	.160	.767	435	.620	.319	972						
	sol rad	.586	.160	1.000	132	.416	321	.101	070						
	plan curvature	.043	.767	132	1.000	706	.896	125	804						
	profile	.287	435	.416	706	1.000	947	033	.490						
	curvature	161	.620	321	.896	947	1.000	037	672						
	aspect	289	.319	.101	125	033	037	1.000	229						
	low temp mean	.091	972	070	804	.490	672	229	1.000						
Sig. (1-tailed)	area km		.398	.000	.407	.056	.190	.055	.309						
	precip	.398		.191	.000	.006	.000	.038	.000						
	sol rad	.000	.191		.237	.009	.036	.291	.353						
	plan curvature	.407	.000	.237		.000	.000	.247	.000						
	profile	.056	.006	.009	.000		.000	.430	.002						
	curvature	.190	.000	.036	.000	.000		.421	.000						
	aspect	.055	.038	.291	.247	.430	.421		.104						
	low temp mean	.309	.000	.353	.000	.002	.000	.104							
N	area km	32	32	32	32	32	32	32	32						
	precip	32	32	32	32	32	32	32	32						
	sol rad	32	32	32	32	32	32	32	32						
	plan curvature	32	32	32	32	32	32	32	32						
	profile	32	32	32	32	32	32	32	32						
	curvature	32	32	32	32	32	32	32	32						
	aspect	32	32	32	32	32	32	32	32						
	low temp mean	32	32	32	32	32	32	32	32						

3, 33	,	. 0001		nalysi							
Correlations											
		area km	icefrcurv	icefrprof	icefrplan						
Pearson Correlation	area km	1.000	146	.345	.181						
	icefrcurv	146	1.000	854	.735						
	icefrprof	.345	854	1.000	275						
	icefrplan	.181	.735	275	1.000						
Sig. (1-tailed)	area km		.213	.026	.161						
	icefrcurv	.213		.000	.000						
	icefrprof	.026	.000		.064						
	icefrplan	.161	.000	.064							
N	area km	32	32	32	32						
	icefrcurv	32	32	32	32						
	icefrprof	32	32	32	32						
	icefrplan	32	32	32	32						


Results of Analysis

- ▶ 0.345 = Pearson's correlation of curvature with area
- Based on the means at 32 elevation classes on all glaciers

Problem #2

- ➤ Curvature tool in 3-D and Spatial analyst was too refined for our scale
- ▶ Varying the cell size did not really improve results

Future Work

► Advanced GIS analysis in GRASS

$$\omega_{p} = -\frac{f_{xx}f_{x}^{2} + 2f_{xy}f_{x}f_{y} + f_{yy}f_{y}^{2}}{p\sqrt{q^{3}}}$$

Collect the curvature value at numerous elevations along glaciers & tabulate the data update aerial photography/DEM's

Source: Bonk, 2002

Conclusions

- Remote Sensing is a useful tool for depth calculations especially with repeat aerial photography
 - Glaciological methods are limiting
 - Ground-truthing still required

Curvature analysis requires advanced calculations or tool modifications

Profile slice good manual technique

Data Sources

- "Glacier National Park Pass Trail and Feather Plume Falls." National Park Service Experience Your America. 25 Aug. 2001. National Park Service. 27 May 2007 http://www.nps.gov/archive/glac/gallery/082501.htm.
- http://www.nps.gov/archive/glac/gallery/082501.htm.
 "Glacier National Park Plan Your Visit." *National Park Service Experience Your America*. 20 Mar. 2007. National Park Service. 6 Jun. 2007
 http://www.nps.gov/glac/planyourvisit/index.htm.
- Glaciers Online. 2006. Portland State University. 17 May 2007 http://glaciers.research.pdx.edu/index.php.
- "Map of Glacier NP." Area Travel Packets. 2002. AreaTravelPackets.com. 27 May 2007
 - ">.
 - "Montana Map." GMT: Greenwich Mean Time World Time / Time in every Time Zone. 31 Jan. 2007. Greenwich 2000 Ltd. 27 May 2007
 - http://wwp.greenwichmeantime.com/time-zone/usa/montana/map.htm. National Elevation Dataset. Aug. 2006. US Geological Survey. 17 May 2007http://ned.usgs.gov/.
 - Glacier side view <http://www.mrsciguy.com/sciimages/alpineglacier.jpg>

References

- Bonk, Radoslav. "Scale-dependent Geomorphometric Analysis for Glacier Mapping at Nanga Parbat: GRASS GIS Approach." Proceedings of the Open source GIS GRASS users conference 2002. Trento, Italy. 11-13 Sep. 2002.
- Chueca, J. and A. Julian. 2004. Relationship between solar radiation and the development and morphology of small cirque glaciers (Maladeta Mountain Massif, Central Pyrenees, Spain). *Geografiska Annaler* 86 A (1): 81-89.
 Driedger, C.L. and Kennard, P.M. "Glacier Volume Estimation on Cascade Volcanoes: An Analysis and Comparison with Other Methods." *Annals of Glaciology* 8 (1986): 59-64.
- - Evans, I.S. 1977. World-wide variations in the direction and concentration of cirque and glacier aspects. *Geografiska Annaler* 59 A (3-4): 151-175. Graf, W.L. 1976. Cirques as glaicer locations. *Arctic and Alpine Research* 8 (1): 79-90.
 - Paterson, W.S.B. *The Physics of Glaciers 3rd Ed.* Trowbridge, UK: Redwood Books, 1994.