GEOG 488/588: GIS I Introduction

Instructor: Geoffrey Duh
TA: David Graves

What is GIS?

- G: Geographic, Geospatial, Geo
 - Alternatives: Spatial Information Systems, Land Information Systems
- Geography
 - diverse discipline that both contributes to and uses GIS developments
 - concerned with (a) description and understand of places and (b) analysis of patterns and relationships in space
 - focuses on planet Earth
- Geographic Information
 - Information about places, objects and events on Earth and the relationships between them

Components

- geographically referenced locations (where?)
- descriptions/attributes (what?)
- time (when?)

What is GIS? (cont.)

Information Systems

- The hardware, software, and people needed to collect, manage, analyze, and report data for the purpose of decision making or scientific investigation
- we wish to achieve ever higher levels of understanding (volumes of higher level understanding are smaller than lower levels)

 $\begin{array}{cccc} \text{data} & \Rightarrow & \text{information} \Rightarrow & \text{knowledge} \Rightarrow & \textit{wisdom} \\ \text{(oceans)} & \text{(rivers)} & \text{(puddles)} & \textit{(drops)} \end{array}$

data are facts and figures; information is data organized in way that makes it
useful to somebody; knowledge is the accumulated and integrated
information on a topic over some period of time and across a broad range of
situations

Information Science

 the study of information processing methodologies, technologies and organizations and their role in science and society.

Information Technology

 specific technological developments that facilitate information processing (e.g., DBMS, computer graphics and visualization)

The 'S' in GIS

- the 'S' often means **systems**, to refer to the software and hardware used in GIS.
- but the 1990s saw increasing use of GI **Science** to refer to a burgeoning field of study.
 - GIScience deals with the fundamental theories and techniques that underlie GIS development and application, e.g., computational geometry, error and uncertainty assessment, and scale questions.
- increasingly important is the availability of GI services.
 - GIServices, or location-based services, provide geographically specific information and can be linked to global positioning systems, wireless networks, and mobile computers.

GIS, then

- can refer to the systems, science, and technology associated with processing geographically referenced data to provide meaningful information to decision makers and other users (e.g., scientists).
- is a technology with links to other geospatial technologies: global positioning systems (GPS), remote sensing, computer cartography.
- can be defined by the processes it provides: data input, data storage and retrieval, data manipulation and analysis, and reporting.

Fields Contributing to GIS Developments

- Cartography
- Cognitive Science
- Computer Science
- Geodesy
- Geography
- Geometry
- Remote Sensing
- Information Science

- Landscape Architecture
- Operations Research
- Statistics
- Surveying

Historical Roots

- 1960s and early 1970s
 - Map measuring: Canada GIS, Roger Tomlinson, 1964
 - Canadian Dept. of Forestry & Rural Development
 - Planning: Census Bureau, DIME files for 1970 census
 - pre-cursor to TIGER files
 - Harvard Graphics Lab., Howard Fisher
 - Jack Dangermond, Nick Chrisman, others
 - ESRI, Jack Dangermond, est 1969
 - makers of Arc/Info, ArcView, etc.

GIS Roots (cont.)

- 1960s and early 1970s (conts.)
 - "Design with Nature", Ian McHarg, 1969
 - map-based overlays for environmental design
 - Quantitative Revolution in Geography
 - developments in quantitative spatial analysis
 - ERTS-1, NASA, 1972
 - launch of first Landsat satellite
 - Computer science developments
 - First of 27 GPS satellites launched
 - Landsat Commercialization, 1984
 - increased cost, hindered application development

GIS Roots (Cont.)

- 1970s and 1980s
 - improvements in cost & capability of computer tech.
 - NCGIA, NSF, Mike Goodchild, 1988
 - · National GIS scientific research center
 - GPS, US Govt., 1989
- 1990s
 - widespread commercialization and market growth
 - IT developments continue to affect GIS
 - · Network, internet-based mapping
 - Open GIS Consortium
 - · establishing standards for interoperability

Trends

- 2003 global GIS business of \$multi-billion, growing 10%/year, > 2 mil users
- GIS is just one of many different integrated applications on the desktop
- Mobile and distributed computing get data and software out into the field and in any number of smart appliances (e.g., cars with GPS)
- · Flood of data
 - terabytes (109 bytes) per day from NASA satellites

Graduate Certificate in GIS @ PSU

• Visit

 $\underline{http://www.geog.pdx.edu/GIS/grad_certificate.html}$