Classification Techniques on Eastern Oregon Landsat Data

John Herbert Geog 482

Introduction

- This study looks at supervised and unsupervised classification techniques to classify a region of Eastern Oregon/ Washington and Western Idaho
- Mainly forest and agricultural areas exists in it

Purpose

- Test out how well different classification methods work on rural and forested lands
- Gain a better understanding of how Idrisi classifies images

Data

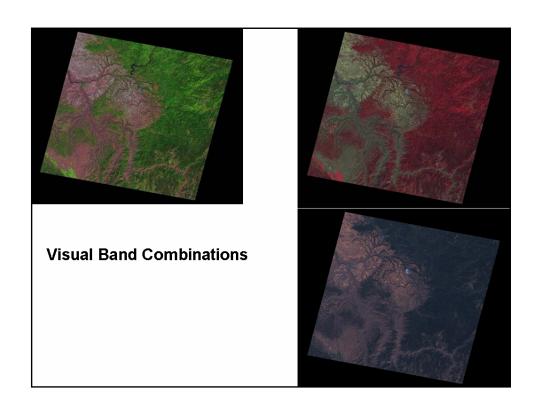
- Landsat 7 data
- Path 42 and Row 28
- 2000 fly over of the area
- Resolution 30 meter
- Bands
 - 1 Blue
 - 2 Green
 - 3 Red
 - 4 NIR
 - 5 FIR

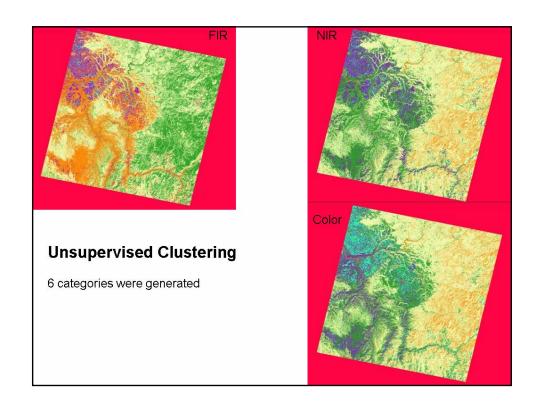
Methods

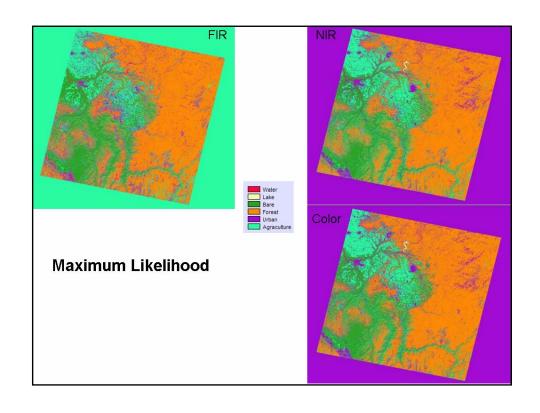
- Convert Landsat images to Idrisi image format
- Combine bands 1,2 and 3 together
 - Use this image for signature training
- Process signature file on bands:
 - Visible Color (1,2,3)
 - Near IR (2,3,4)
 - Fear IR (3,4,5)

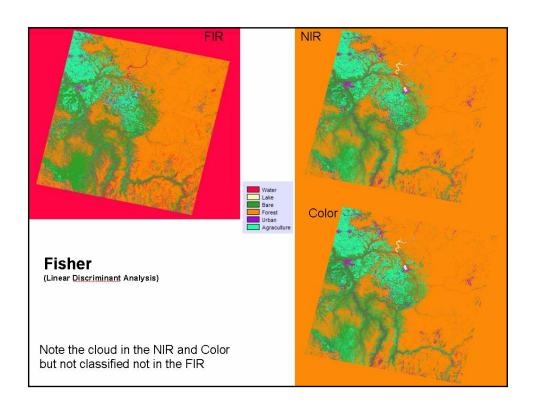
Test Preformed

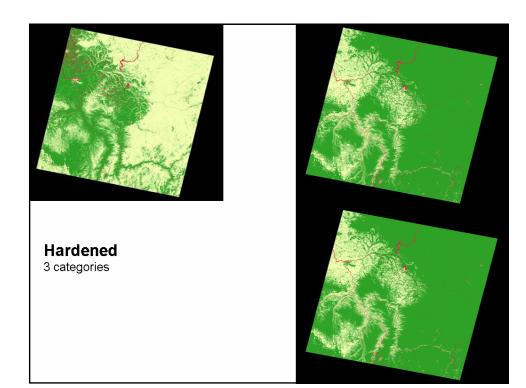
Supervised


Soft Hard


-Maximum Likelihood -Bayesian


-Fisher


Unsupervised


- -Clustering
- -Isoclustering

Results

- Accuracy assessments
 Error matrixes for the different test against each other
- The FIR image classified the forest/bare earth distinction the best for the supervised tests.
- The river was classified well in all the supervised methods
- The cloud messed up everything in the area classified some times as a lake, a river or even urban.

	1	2	3	4	5	6	Total	ErrorC
1 2 3 4 5 6	62078 5789 0 4752 0	22585 12637 0 649 399 4	6751018	4529	80 15301 173688 1256954 2898632 26927225	68 6006 777583 162777 710357 5335059	90518 44262 7702289 21638164 4799567 33683464	0.3142 0.7145 0.1235 0.0659 0.3961 0.8416
Total rror0	72619 0.1452	36274 0.6516	7769456 0.1311	21816184 0.0735	31271880 0.9073	6991850 0.2370		0.4810
rror Matr apped)	ix Analysis							
_	1	2	3	4	5	6	Total	ErrorC
1 2 3 4 5 6	62092 5835 0 5032 0	22586 12584 0 645 374 4	6253	5728 4242 0 20171363 1112986 326134	81 16246 212827 1257790 2485966 26798636	31 5355 666228 203333 1193988 5740579	44262 7702289 21638164	0.3140 0.7157 0.1141 0.0678 0.4820 0.8296
Total rror0	72959 0.1489	36193 0.6523	7647599 0.1078	21620452 0.0670	30771546 0.9192	7809514 0.2649		0.4806
rror Matr apped)	ix Analysis	of STUDY	AREANIR-MA	XLINE (col	umns : tru	th) against	STUDYAREAN	MAXLIKE (ro
	1	2	3	4	5	6	Total	ErrorC
1 2 3 4 5 6	72590 0 0 0 34 335	36152 0 0 40 1	0 0 7505211 0 1503 140885	0 0 0 21608601 9948 1904	24 116 3745 72210 30585088 110363	5 6 260500 135374 675267 6738362	72619 36274 7769456 21816184 31271880 6991850	0.0004 0.0034 0.0340 0.0095 0.0220 0.0363
	72959	36193	7647599 0.0186	21620452 0.0005	30771548 0.0061	7809514 0.1372		0.0208

Conclusion

- The lakes were hard to classify correctly in both methods
- The agriculture lands were often misclassified as forest or bare earth
- Urban environments are very difficult to classify. Maximum Likelihood test found urban the best.
- Unsupervised clustering works well for non-human touched lands (forests/bare)