

Potential Applications

- Explore demographic and socioeconomic data related to transportation ridership.
- Evaluate public transportation service available to different populations and locations.
- Evaluate potential demand at Trimet transit stops.

Objective

 Bring together transit ridership data, demographic data, combined with a multi-modal transit network to support data exploration and analysis.

Data Sources

RLIS Transit and Trimet Internal Usage Data

- Bus stops 2002 and 2008 (RLIS point)
- Bus routes 2002 and 2008 (RLIS polyline)
- TriMet service area 2002 and 2008 (RLIS polygon)
- Passenger census daily boarding and deboarding data (table)
- Streets (RLIS polyline)

Data Sources - continued

U.S. Census Data

- Geometry with topology implemented to ensure polygons do not overlap
 - Census blocks (polygon SF1)
 - Census block groups (polygon SF3)
 - Census tracts (polygon)
- Demographic data
 - Population (table SF1)
 - Income (table SF3)
 - Transportation usage (table SF3)
 - Housing (table SF3)

Data Sources - continued

- Addional RLIS Data
 - Taxlots (polygon)
 - Boundaries (polygon)

Geodatabase Structure

Boundary	Census Geometry	Taxlots	Transit	Tabular Data
City	Block	Taxlots 2000	Park Ride	SF1 – Census 2000
County	Block Group	Taxlots 2002	Streets	SF3 – Census 2000
Metro Region	Tract	Taxlots 2008	Transit Lines	Transit Ridership 2002
Neighborhood			Transit Stops	Transit Ridership 2008
TriMet Service Area				Taxlot Summary
Urban Growth Boundary				

Multimodal Transit Network

- Objective: Build a network that accurately models pedestrian and public transit travel.
- Steps:
 - Attribute features
 - Connect streets & transit
 - Build network: connectivity, restrictions & costs

Multimodal Transit Network

Weekday Time Point Level Run Time Report - Spring 2008 Route: 9-Powell - Inbound To Portland SE Powell & 82nd to SE Powell & 39th

1000 T 1000			Median				40.00	Avg.			200.00		Percent			Avg.	
Begin Time	Trip Number	Block	Scheduled Run Time	Median	Less Idle	20th %tile	80th %tile	Av			Avg. Speed	Avg. Stops		On Time	Percent Early	Percent Late	Min. Late
4:04 PM	1530	2069	11:00	10:24	10:05	9:10	11:14	1	6 1	21	30	9	J	82%	0%	18%	2.9
4:20 PM	1540	934	11:00	10:50	10:12	9:58	11:34	1 1	6	18	27	9	1	95%	2%	3%	0.9
4:32 PM	1550	967	10:00	10:02	9:58	8:32	11:28]]	7 13	17	27	9	1	69%	2%	29%	3.2
4:42 PM	1560	1204	10:00	9:22	9:01	8:10	10:22	1	9	10	29	6	1	95%	2%	4%	2.1
4:57 PM	1580	952	10:00	10:04	9:48	9:24	11:20	1 1	4	15	27	8	1	98%	2%	0%	1.0
5:08 PM	1570	940	10:00	9:36	9:28	8:34	10:18	1 1	2	21	28	8	1	67%	21%	11%	1.3
5:23 PM	1590	947	10:00	9:46	9:40	8:48	10:42	1 1	5	15	31	8	1	89%	2%	10%	2.2
5:39 PM	1600	442	10:00	9:54	9:52	8:48	11:02	1 1	6 13	20	30	9	1	46%	0%	54%	5.0
5:58 PM	1610	1202	10:00	9:50	9:14	8:54	10:46	1 1	2	13	27	7	1	85%	15%	0%	0.2
6:07 PM	1620	939	10:00	9:06	9:02	7:58	10:20] 1	0 '	14	29	7	1	88%	2%	10%	2.7
6:28 PM	1630	967	10:00	9:16	9:16	8:28	10:08] 1	5	16	27	8	1	83%	6%	11%	1.9
6:45 PM	1640	1243	10:00	9:30	8:47	8:26	10:06	1 1	2 1	18	29	8	1	86%	0%	14%	2.5
7:01 PM	1650	937	9:00	8:37	8:00	7:54	9:06	1 1	1	12	31	6	1	100%	0%	0%	0.9
7:16 PM	1660	955	9:00	9:03	8:59	8:04	10:10	1 1	1 :	17	28	7	I	82%	0%	18%	3.2
7:33 PM	1670	934	8:00	8:02	8:00	7:32	9:04	1	8	10	28	6	1	100%	0%	0%	0.9
7:48 PM	1680	8435	8:00	7:54	7:54	7:20	8:22	i	8	11	30	6	i	93%	0%	7%	1.2
8:03 PM	1690	952	8:00	8:30	8:28	7:30	9:22	i i	8	9	27	5	ĺ	97%	2%	2%	1.4
8:18 PM	1700	2068	8:00	8:06	8:00	7:22	8:52	i	8	12	30	6	î	76%	5%	19%	2.1
8:33 PM	1710	947	8:00	7:58	7:56	6:58	8:38	i	7	7	32	5	i	97%	2%	2%	0.8
8:48 PM	1720	939	8:00	8:16	8:12	7:16	9:04	i	7 :	8	28	4	i	93%	0%	7%	1.6

Multimodal Transit Network

- Connect streets & transit network
 - Add XY Coordinates
 - Near
 - Add XY Line Data (Hawth's Tools)
 - Merge
 - Planarize
 - Integrate

Multimodal Transit Network Build network: connectivity, restrictions & costs ? × Connectivity € Numbe C String Restrictions C Date Costs Walk = 3.3/2.6 mg Bus = 14.1 mph ■ MAX = 18.4 mph Streetcar = 7.5 mr ■ Tram = 22 mph ■ Wait time = 7.5 mirr

Analysis

- Determine area of large residential growth (from 2000 – 2008)
- Estimate population of area
- Evaluate change in Trimet ridership for the area
- Evaluate level of service to the area

Weekday Daily Usage for the 13 stops in the area in 2002

Bus Route	Stop ID	Location	Daily ONs	Daily OFFs	
4	5862	Trenton & Dana	35	34	
4	6430	Woolsey & Woolsey Ct	34	85	
4	6431	9010 Woolsey Ct	23	45	
4	6434	9126 Woolsey Ct	5	21	
4	6436	9226 Woolsey Ct	29	34	
4	1724	Fessenden & Woolsey	66	73	
4	1725	Fessenden & Woolsey Ct	91	70	
4	6435	9226 Woolsey Ct	26	25	
4	10702	9135 Woolsey Ct	31	12	
4	6432	9037 Woolsey Ct	42	26	
4	6437	Woolsey Ct & Woolsey	16	12	
4	6429	Woolsey & Trenton	82	26	
4	40	Alaska & Dana	52	29	

Weekday Daily Usage for the 6 stops in the New Columbia Housing Project (2008, 232 tax lots, 852 units)

Bus Route	Stop ID	Location	Daily ONs	Daily OFFs
4	5862	N Trenton & Dana	35	106
4	40	N Trenton & Dana	102	24
4	12750	N Trenton & Dwight	296	91
4	12725	N Fessenden & Haven	78	148
4	12726	N Fessenden & Haven	162	74
4	12727	N Trenton & Newman	87	262

Limitations and Problems

- Network imperfections
 - Trimet route speeds
 - Elevation evaluations
- Inaccuracy of census geometry

- Age of census data
- Size of study area

References

- Maantay, Juliana Astrud; Maroko, Andrew R.; Herrmann, Christopher. "Mapping population distribution in the urban environment: the Cadastral-based Expert Dasymetric System (CEDS)" Cartography and Geographic Information Science
- Willis, A.; Gjersoe, C.; Havard, J.; Kerridge, Kukla R. Human movement behaviour in urban spaces: implications for the design and modelling of effective pedestrian environments. Environment and Planning B: Planning and Design. 2004,31, 805 – 828
- http://www.hapdx.org/newcolumbia/
- Special thanks to TriMet's Joseph Recker for generously providing ridership data.