CHAPTER

1

BASIC
CONCEPTS

1.1 STATISTICAL CONTROL
1.1.1 The Need for Control

If you have ever described a piece of research to a friend, it was probably not
very long before you were asked a question like, “‘But did the researchers :
control for this?"’ If the research found a difference between the average
salaries of men and women, did it control for differences in years of employ-
ment? If the research found differences among several ethnic groups in at-
titudes toward social welfare spending, did it control for income differences ]
among the groups? If the research found that high-status female wolves have
more pups on the average than low-status wolves, did it control for age :
differences among the wolves?

All these studies concern the relationship between an independent vari-
able and a dependent variable. The study on salary differences concerns the
relationship between the independent variable of gender and the dependent
variable of salary. The study on welfare spending concerns the relationship
between the independent variable of ethnicity and the dependent variable of
attitude. The study on wolves concerns the relationship between the indepen-
dent variable of status and the dependent variable of fertility. In each case there
is a need to control a third variable; this third variable is called a covariate. The
covariates for the three studies are, respectively, years of employment, in-
come, and age. :

Suppose you wanted to study these three relationships without worrying
about covariates. You may be familiar with three very different statistical
methods for analyzing these three problems. You may have studied the ¢ test
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for testing questions like the sex difference in salaries, analysis of variance for
questions like difference in average attitude among several ethnic groups, and
the Pearson or rank-order correlation for questions like the relationship be-
tween status and number of pups. But in this book we will regard the differ-
ences among these three problems as minor in comparison with their
similarities. The problems differ primarily in the type of independent variable.
Gender is dichotomous; that is, there are two categories-——male and female.
Ethnicity is multicategorical, since there are several categories—the various
ethnic groups in the study. Status is numerical, since there is a more or less
continuous dimension from high status to low status. For our purposes, the
differences among these three variable types are relatively minor. You should
begin thinking of problems like these as basically similar, since all concern the
relationship between an independent and a dependent variable. We shall return
to this point in Secs. 3.2 and 10.1.

1.1.2 Five Methods of Control

You may already be somewhat familiar with four ways of controlling covari-
ates: by random assignment on the independent variable, by exclusion of
cases, by manipulation of covariates, and by other types of randomization. For
instance, suppose you want to know whether driver training courses help
students pass driving tests. One problem is that the students who take driver
training courses may differ in various ways from those who do not. A second
problem is that in a particular town, some testers may be easier than others.
The driving schools may know which testers are easiest and encourage their
students to take their tests when they know those testers are on duty.

Y ou might control the first problem by using a list of applicants for driving
courses, randomly choosing which of the applicants are allowed to take the
course, and using the rejected applicants as the control group. This is random
assignment on the independent variable. Or, if you find that more women take
the courses than men, you might use a sample which is half female and half
male for both the trained and the untrained groups. This would require discard-
ing some available data, and is control by exclusion of cases. You might control
the second problem by training testers to make them apply more uniform
standards; that would be manipulation of covariates. Or you might control that
problem by randomly altering the schedule different testers work, so that
nobody would know which testers are on duty at a particular moment. That
would not be random assignment on the independent variable, since you have
not determined which applicants take the course; rather, it would be other
types of randomization. This includes randomly assigning forms of the depen-
dent variable (as in this example), choosing stimuli from a population of stimuli
(for example, all common English adjectives), and manipulating the order of
presentation of stimuli. v

All these methods except exclusion of cases are types of experimental

~“control, since they all require you to manipulate the situation in some way
rather than merely observe it. These methods are often impractical or even
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impossible. For instance, you might not be allowed to decide which students
take the driving course, or to train testers or alter their schedules. Or, if a
covariate is worker seniority, as in one of our earlier examples, you cannot
manipulate the covariate by telling workers how long to keep their jobs. In the
same example, the independent variable is sex, and you cannot randomly
decide that a particular worker will be male or female the way you can decide
whether the worker will be in the experimental or control condition of an
experiment. Even when experimental control is possible, the very exertion of
control often intrudes the investigator into the situation in a way that disturbs
subjects and alters results; ethologists and anthropologists are especially sen-
sitive to such issues. Experimental control may be difficult even in laboratory
studies on animals. Researchers may not be able to control how long a rat looks
at a stimulus, but they are able to measure looking time.

Control by exclusion of cases avoids these difficulties, because you are
manipulating data rather than subjects. But this method lowers sample size,
and thus lowers the precision of estimates and the power of hypothesis tests.

A fifth method of controlling covariates—statistical control—is the topic
of this book. It avoids the disadvantages of the previous four methods. No
manipulation of subjects or conditions is required, and no data are excluded.
Several terms mean the same thing: to control a covariate statistically means
the same as to adjust for it or to correct for it, or to hold constant or to partial
out the covariate. L

Statistical control has limitations. Scientists may disagree on what vari-
ables need to be controlled—an investigator who has controlled age, income,
and ethnicity may be criticized for failing to control education and family size.
And because covariates must be measured to be controlled, they will be
controlled inaccurately if they are measured inaccurately. We shall return to
these and other problems in Chaps. 4 and 8. But because control of some
covariates is almost always needed, and because the other four methods of
control are so limited, statistical control is widely recognized as one of the most
important statistical tools.

1.1.3 Examples of Statistical Control

The nature of statistical control can be illustrated by a simple fictitious exam-
ple, though the precise methods used in this example are not those we shall
emphasize later. In Holly City, 130 children attended a city-subsidized pre-
school program and 130 others did not. Later, all 260 children took a *‘school
readiness test” on entering first grade. Of the 130 preschool children, only 60
scored above the median on the test; of the other 130 children, 70 scored above
the median. In other words, the preschool children scored worse on the test
than the others. These results are shown in the ‘“Total’’ section of Table 1. I;A
and B refer to scoring above and below the test median.

But when the children were divided into “‘middle class’* and “‘working
class,” the results were as shown on the left and center of Table 1.1. We see
that of the 40 middle-class children attending preschool, 30, or 75%, scored
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TABLE 1.1
Holly City

Raw frequencies

Working

B Tot. A B . A B Tot.

Preschool 10 40 30 60 60 70 130
Other 60 30 9% 10 70 60 130

above the median. There were 90 middle-class children not attending pre-
school, and 60, or 67%, of them scored above the median. These values of 75%
and 67% are shown on the left in Table 1.2. Similar calculations based on the
working-class and total tables yield the other figures in Table 1.2. This table
shows clearly that within each level of socioeconomic status (SES), the pre-
school children outperform the other children, even though they appear to do
worse than the other children in the “total” table. We have held constant or
controlled or partialed out the covariate of SES.

When we perform a similar analysis for nearby Ivy City, we find the
results in Table 1.3. When we inspect the total percentages, preschool appears
to have a positive effect. But when we look within each SES group, no effect is
found. Thus the ““total’” tables overstate the effect of preschool in Ivy City and
understate it in Holly City. In these examples the independent variable is
preschool attendance and the dependent variable is test score. In Holly City,
we found a negative simple relationship between these two variables (those
attending preschool scored lower on the test) but a positive partial relationship
when SES was controlled. In Ivy City, we found a positive simple relationship

but no partial relationship.
By examining the data more carefully, we can see what caused these

paradoxical results. In Holly City, the 130 children attending preschool in-
cluded 90 working-class children and 40 middle-class children, so 69% of the
preschool attenders were working-class. But the 130 nonpreschool children
included 90 middle-class children and 40 working-class children, so this group
was only 31% working-class. Thus the test scores of the preschool group were
lowered by the disproportionate number of working-class children in that
group. This might have occurred if city-subsidized preschool programs had

TABLE 1.2
Holly City

Percentage scoring above the median
Middie Working Total

Preschool 75 33 . 46
Other 67 25 54
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TABLE 1.3
Ivy City
Raw frequencies
Middle Working Total

A B Tot. A B Tot. A B Tot.
Preschool 90 30 . 120 10 30 40 100 60 160
Other 30 10 40 30 90 120 60 100 160

Percentage scoring above the median
Middle . Working Total

Preschool 75 25 62
Other 75 25 38

been established primarily in poorer neighborhoods. But in Ivy City this dif-
ference was in the opposite direction: the preschool group was 75% middle-
class, while the nonpreschool group was only 25% middle-class; thus the test
scores of the preschool group were raised by the disproportionate number of
middle-class children. This might have occurred if parents had to pay for their
children to attend preschool. In both cities the effects of preschool were seen
more clearly by controlling for SES.

All three variables in this example were dichotomous—they had just two
levels each. The independent variable of preschool attendance had two levels
we called “‘preschool” and “‘other.”’ The dependent variable of test score was
dichotomized into those above and below the median. The covariate of so-
cioeconomic status was also dichotomized. But any or all of the variables in
this problem might have been numerical variables. Test scores might have
ranged from 0 to 100, and SES might have been measured on a scale with many
points. Even preschool attendance might have been numerical, if we scored the

- exact number of days each child had attended preschool. Changing some or all

variables from dichotomous to numerical would change the details of analysis,
but in its underlying logic the problem would remain the same. The use of
numerical variables may be more complex, but it usually raises statistical
power. Thus by dichotomizing SES and test scores in our examples above, we
sacrificed power for simplicity.

Consider now a problem in which the dependent variable is numerical. At
Swamp College, the dean calculated that among professors and instructors
under 30 years of age, the average salary among males was $27,000 and the
average salary among females was only $23,000. To see whether this difference
might be attributed to different proportions of men and women who had
completed the Ph.D., the dean made up the table given as Table 1.4.

If the dean had hoped that different rates of completion of the Ph.D.
would explain the $4000 difference between men and women in average salary,
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TABLE 1.4
Average salaries at Swamp College, by sex and
completion of Ph.D.

Ph.D. completed

No

$26,000
n =30

$21,000
n =15

that hope was frustrated. We see that men had completed the Ph.D. less often
than women: 10 of 40 men, versus 15 of 30 women. The first column of the table
shows that among instructors with a Ph.D., the difference in mean salaries
between men and women is $5000. The second column shows the same dif-
ference of $5000 among instructors with no Ph.D. Therefore, in this artificial
example, controlling for completion of the Ph.D. does not lower the difference
between the mean salaries of men and women, but rather raises it from $4000 to
$5000.

This example differs from the preschool example in its mechanical details;
we are dealing with means rather than frequencies and proportions. But the
underlying logic is the same. In the present case the independent variable is
sex, the dependent variable is salary, and the covariate is educational level.
Again, the partial relationship differs from the simple relationship, though this
time both relationships have the same sign, since men always have higher
salaries than women.

These examples are so simple that you may be wondering why a whole
book is needed to discuss statistical control. But when the covariate is numer-
ical, it may be that no two subjects have the same score on the covariate and so
we cannot construct tables like those in the examples above. And we may want
to control many covariates at once; the college dean might want to simul-
taneously control teaching ratings and other covariates as well as completion of
the Ph.D. Also, we need methods for testing the significance of partial rela-
tionships. Other complexities are introduced later.

1.1.4 What You Should Know Already

This book assumes a working familiarity with the concepts of means and
standard deviations, score distributions, samples and populations, random
sampling, sampling distributions, null hypotheses, standard errors, statistical
significance, power, confidence bands, one-tailed and two-tailed tests, summa-
tion, subscripts, and similar basic statistical terms and concepts. It refers




