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ABSTRACT: Historic‐ and prehistoric‐tsunami sand deposits are used to independently establish runup records for tsunami hazard
mitigation and modeled runup verification in Crescent City, California, located in the southern Cascadia Subduction Zone.
Inundation from historic (1964) farfield tsunami (~5–6 m runup height) left sand sheet deposits (100–200 m width) in wetlands
located behind a low beach ridge [3–4 m elevation of the National Geodetic Vertical Datum of 1988 (NAVD88)]. The most
landward flooding lines (4·5–5 m elevation) in high‐gradient alluvial wetlands exceed the 1964 sand sheet records of inundation by
1–2 m in elevation. The most landward flooding in low‐gradient alluvial wetlands exceed the corresponding sand sheet record of
inundation distance by 1000 m. Nevertheless, the sand sheet record is an important proxy for high‐velocity inundation. Sand sheet
deposition from the 1964 historic tsunami closely corresponds to the landward extent of large debris transport and structural damage
in the Crescent City waterfront. The sand sheet deposits provide a proxy for maximum hazard or ‘kill zone’ in the study area.
Six paleotsunami sand sheets (0·3–3 ka) are recorded in the back‐ridge marshes in Crescent City, yielding a ~450 year mean

recurrence interval for nearfield Cascadia tsunami. Two paleotsunami sand deposit records, likely correlated to Cascadia ruptures
between 1·0 and 1·5 ka, are traced to 1·2 km distance and 9–10 m elevation, as adjusted for paleo‐sea level. The paleotsunami sand
deposits demonstrate at least twice the runup height, and four times the inundation distance of the farfield 1964 tsunami sand sheet in
the samemarsh system. The preserved paleotsunami deposits in Crescent City are compared to themost landwardflooding, asmodeled
by other investigators from a predicted Cascadia (~ Mw 9) rupture. The short geologic record (~1·5 ka) yields slightly lower runup
records than those predicted for the modeled Mw 9 rupture scenario in the same marsh, but it generally verifies predicted maximum
tsunami runup for use in the planning of emergency response and rapid evacuation. Copyright © 2011 John Wiley & Sons, Ltd.
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Introduction

Geologic records of tsunami inundation in Crescent City,
California (Figure 1) are presented here following recent
predictions of nearfield tsunami runup in the southern
Cascadia margin. There is widespread interest in using
geologic records of paleotsunami deposition to establish
inundation from prehistoric events. For example, paleotsunami
deposits are reported to record prehistoric inundation events in
Japan (Fujiwara et al., 1999), the North Sea Shetland Islands
(Bondevik et al., 2005) and Greece (Scheffers et al., 2008),
among others. These studies demonstrate anomalous strong
currents in coastal settings, but do not establish maximum
runup lines. There is uncertainty about the accuracy of using

geologic records to establish maximum tsunami runup and
flow conditions. Both criteria are important to tsunami
evacuation strategies (Dengler, 2006; Kelley et al., 2006).

In the absence of local historical tsunami events the
paleotsunami records take on a greater role in establishing
potential tsunami hazard. For example, portions of subduction
zones can vary in the distributions of coseismic‐ and aseismic‐
slip along the megathrust, as proposed for the Hikurangi
margin in New Zealand (Wallace et al., 2010). The frequency
and magnitude of coseismic ruptures, as predicted from
seismology and other fields, need to be directly tested by the
local record of prehistoric tsunami inundation, before large
expenditures are made for the mitigation of potential tsunami
hazard.
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In this study the preserved geologic records of tsunami flood
deposition in Crescent City are compared to (1) historic tsunami
inundations (Magoon, 1966; Dengler and Magoon, 1966), (2)
modeled inundations based on nearfield rupture scenarios
(Uslu et al., 2007), and (3) waterfront settings exposed to
mobilization of large debris by tsunami surges. The first sand
sheet deposits to be linked to paleotsunami in the southernmost
Cascadia margin were found in marshes and ponds located
behind low beach ridges in Crescent City. However, the focus
of paleotsunami investigations shifted 18 km south to Lagoon
Creek, California (Figure 1) due to superior preservation of
paleotsunami deposits in an elongate pond and pallustrine
marsh there (Abramson, 1998; Garrison‐Laney, 1998). The
return of tsunami deposit investigations to Crescent City is
motivated by recent recognition of paleotsunami hazard from
the mobilization of large debris (Peterson et al., 2006), and by
opportunities to compare the geologic records of tsunami
deposition against modeled runup lines for the locality (Uslu
et al., 2007).
The results presented here demonstrate overland inundation

records from tsunami that inundated stable shorelines of the
southern Cascadia margin (Figure 1). Such records have been
reported from the central Cascadia margin (Peterson et al.,

2008, 2010a, 2010b), but not from the southernmost Cascadia
margin. Comparisons of inundation frequency from tsunami
should help to direct mitigation strategies for vulnerable
communities throughout the region (Dengler, 1998). The
comparison of numerically‐modeled runup predictions with
geologic records of surge inundation should have broad
application in other coastlines that are susceptible to tsunami
or storm surge.

In this paper several procedures are demonstrated for
extending proximal paleotsunami records from back‐beach
lagoons and marshes to alluvial floodplain wetlands. Such
alluvial floodplain settings provide the (1) mud hosting
deposits, (2) landward distance, and (3) vertical gradient that
are needed to record the limits of paleotsunami runup, as
established from preserved paleotsunami sand sheets. The
alluvial wetland records of paleotsunami sand deposition are
briefly contrasted with paleotsunami records from other
settings including, headland erosion features (Bryant et al.,
1992), anomalous gravel deposits (Nichol et al., 2007), and
displaced marine shell deposits (Fujiwara et al., 2003).
Paleotsunami sand deposits in alluvial floodplain settings
provide unique opportunities for establishing long‐term records
of tsunami runup hazard in exposed communities.
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Figure 1. Map of Crescent City study area (boxed and inset) near the south end of the Cascadia subduction zone, West Coast of North America. The
surface exposure of the megathrust fault (bold line) is shown between the subducting Juan De Fuca Oceanic Plate (JDF) and the North American
Continental Plate (NAP). Map coordinates are in latitude and longitude (degrees) and in UTM northing and easting (meters).
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Records of Paleotsunami in Lagoon Creek

Paleotsunami records are well preserved in Lagoon Creek,
California (Figure 2) located 18 km south of the Crescent City
study locality. Six distinct sand sheets are hosted in peaty mud
that date back to ~3 ka (Abramson, 1998). Several of the sand
sheets are traced ~1 km inland from the ocean shoreline in the
narrow freshwater pond and submerged marsh. Brackish and/
or marine diatoms are associated with the sand sheet deposits
(Garrison‐Laney, 1998). The catastrophic inundations (#1–6) of
Lagoon Creek are thought to have originated from ruptures of
the Cascadia megathrust (Figure 1) (Abramson, 1998).
The most recent paleotsunami inundation in Lagoon Creek

(event #1) is tentatively correlated to the last Cascadia rupture at
AD 1700 (Garrison‐Laney, 1998). It is neither robust in terms of
sand sheet thickness (0·5–3 cm thick) nor in terms of inland
extent of the sand sheet (~750 m distance to site 9) (Figure 2).
However, a corresponding tsunami debris layer consisting of
organic detritus and marine diatoms is traced an additional
350 m landward to site 2. Three older paleotsunami sand sheets
(events #2, 3, and 5) are tracked to the full length (1·1 km) of the

submerged marsh. The older sand sheets were not traced further
landward due to dense shrubby vegetation and associated
bioturbation in the flood plains that extend landward of the
submerged marsh. Distinct layers of peaty mud separate the
paleotsunami sand sheets in Lagoon Creek, permitting optimal
conditions for preservation and radiocarbon dating of the
inundation events. Descending roots, bioturbation, and abun-
dant tsunami rip‐up debris in the alluvial marshes in Crescent
City pose more challenging conditions for dating the inundation
events there. The well‐preserved inundation records in Lagoon
Creek are used to help constrain the ages of paleotsunami sand
sheet deposits in the Crescent City wetlands. Comparisons
between the sequences of dated sand sheets in Lagoon Creek
and Crescent City are presented later in the Discussion section.

Methods

Marshes in three back‐barrier marshes located south of Crescent
City, California, were investigated (1991–1995) for evidence of
paleotsunami inundation on the basis of preserved beach sand
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Figure 2. Longitudinal profile, core‐site map, and cross‐section of key core logs and radiocarbon dates from Lagoon Creek, California (Figure 1), as
redrafted from Abramson (1998) and Garrison‐Laney (1998). The Lagoon Creek core sites establish the age and relative inundation distance of
paleotsunami in the Crescent City study area. Anomalous brackish/marine diatom abundances in the freshwater lagoon are associated with event
sand layers #1, 2, 3, 4, 5, and 6 in site 16, layers #1, 2, 3, and 4 in site 20, and layers #1, 2 and 3 in site 2 (Garrison‐Laney, 1998). Reversed dates
(marked with an asterisk) in site 16 and 3 demonstrate the difficulties of dating overland paleotsunami inundations in settings with descending roots,
bioturbation, and tsunami rip‐up debris.
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layers that are hosted in accumulated peat deposits (Figure 3).
The prehistoric deposits are compared to near surface deposits
that were left in the same three marshes by a historic farfield
tsunami that inundated the Crescent City lowlands in 1964.
Tsunami debris, including large drift logs and wood frame

structures, and small flotsam, that were transported by the
historic 1964 tsunami are mapped from field surveys and
airphoto mosaics (10 sheets at 1:1200 scale) (Crescent City,
1969). Site elevation data for the strandline debris are taken
from photogrammetric topographic maps at 1:1200 scale and
0·6 m contour interval (Davis, 1977). The 0 m datum [National
Geodetic Vertical Datum of 1988 (NAVD88)] used in this paper
approximates the NGVD29 datum and the Mean Lower Low
Water (MLLW) datum (NOAA‐COOPS, 2008), as used for
measurements of historic (1964) tsunami runup (Magoon,
1966; US Army Corps of Engineers, 1968).
Sand sheet deposits from the 1964 tsunami were mapped

using shallow trenches (10–20 cm depth) and shallow cores.
Subsequent coring (1–3 m depth) with gouge cores (2·5 cm
diameter) and ram cores (7·5 cm diameter) in the back‐ridge
marshes was used to reach deeper paleotsunami deposits,
which are hosted in peat bog deposits. Radiocarbon dating
included standard radiometric analysis of bulk peat from below
the tsunami sand contacts.
The reconnaissance work was followed by vibracoring in the

Sand Mine marsh (1996–1998) to establish the recurrence

interval of paleotsunami inundation in the Crescent City
locality. Vibracores (7·5 cm diameter) were taken to 2–3 m
depth using a floating platform in the Sand Mine marsh lagoon.
Subsamples were collected for radiocarbon dating, grain‐size
analysis, and diatom microfossil analysis (Abramson, 1998;
Garrison‐Laney, 1998). Selected cores from the Sand Mine
marsh were cut to 1·0 cm thickness for X‐ray radiography with
low‐density high‐contrast film at 35 kV. Digitized radiographs
reveal subtle sand lamiae in the tsunami sand sheets that are
not visible to the naked eye.

Gouge cores taken in the upland flood plains of the Crescent
City marshes (2005–2008) extend the landwardmost record of
paleotsunami deposits in Sand Mine, Anchor Way, and Elk
River valleys (Figure 3). Core site positions (wassGPS 5 m EPE)
were compared to high‐resolution topography (Davis, 1977) to
establish core top elevations (0·5 m accuracy). Cores were
photographed (10 mp dSLR) and logged for evidence of basal
contacts (sharp or gradational), sand fining‐upward sequences,
and interbedded mud or organic rip‐ups.

Sand mineralogy was used to establish beach sand sources of
the tsunami sand layers and debris layers from the upland
alluvial wetlands in the Sand Mine and Anchor Way valleys.
Heavy mineral grain separates were examined under petro-
graphic microscope at 250× for rounded mono‐mineralic
amphibole grains. These heavy mineral grains are diagnostic
of beach sand at the Crescent City locality. Creek sand
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composition is dominated by angular lithic fragments in the
heavy mineral fraction. Radiocarbon dating of the paleotsunami
deposits is based on accelerator mass spectrometry (AMS)
analysis of small leaf, twig, or organic rip‐up fragments from
within the tsunami sand layer or standard radiometric analysis of
bulk peat deposits from below the tsunami sand contacts. About
75 core sites were occupied in the Crescent City marshes over
the duration of field investigations from 1991 to 2008.

Results

1964 Tsunami debris and sand sheets in
Crescent City

The 1964 farfield tsunami that reached Crescent City from the
Gulf of Alaska rupture (Mw 9·2) inundated the City's south
waterfront, the adjacent harbor, low beach ridges, and multiple
back‐ridge marshes in the Crescent Beach embayment
(Figure 3). Large drift logs (0·5–1·5 m diameter) and littoral
sand were transported up the low beach ridges. The ridge
crests are 3–4 m elevation (NAVD88). Four successively larger
surges were observed with the last surge locally reaching 6·5 m
elevation (Landers et al., 1993). A slightly‐earlier farfield
tsunami from the 1960 Chile rupture reached only 4 m
elevation in the Crescent City waterfront (Landers et al., 1993).
Storm surge deposition reaches 3–4 m elevation in the
protected Crescent City beach embayment (Peterson et al.,
1994). The 1964 tsunami runup exceeded the maximum reach
of both historic storm surge and the farfield 1960 tsunami
runup by 2–3 m in elevation.
A direct correspondence exists between the maximum

landward extents of the large drift logs and the preserved sand
sheet deposits from the 1964 inundations (Figure 4). The
landward extents of these features (100–200 m from the
Redwood Highway on the paleo‐beach ridge) also correspond
to structural damage at Front Street in Crescent City, and along
the Redwood Highway on the beach ridge (3–4 m elevation)
fronting the Anchor Way and Sand Mine marshes (Griffin et al.,
1984; Dengler and Magoon, 2006). Large debris transported by
the tsunami surges damaged buildings along the length of the
Crescent City waterfront at 3–5 m elevation (Magoon, 1966;
Landers et al., 1993).

Further landward extents of the 1964 tsunami flooding in the
back‐ridge marshes are recorded by strandlines of small
driftwood fragments, including cedar shingles, wood siding,
and tar paper. The small debris strandlines, 4·0–4·5 m elevation
in the Anchor Way and Sand Mine marshes respectively, were
partially entombed in muddy peat by the time of the initial field
study in 1991–1993. Comparisons between small debris, large
drift logs, and sand sheet deposits are shown in Figure 3.

The preserved deposit records of the 1964 tsunami are
compared to historic accounts of flooding, as reported by
Magoon (1966) and compiled by the US Army Corps of
Engineers (1968). The elevations of the most landward flooding
line, as observed by Magoon (1966) are conservatively
established from high‐resolution topographic maps (Davis,
1977). The most landward flooding lines are 4·5 m and 5·0 m
elevation in the Anchor Way and Sand Mine marshes,
respectively, but only 3·5 m elevation in the lower‐gradient
Elk River Valley (Figures 3 and 5). Artificial fill constriction at
the mouth of the Elk River Valley might have attenuated
tsunami flooding relative to the corresponding shoreline runup
of 5·9 m elevation near the creek mouth in the harbor (US
Army Corps of Engineers, 1968).

There is relatively little difference in separation distance
(~200 m) between the maximum landward extents of the 1964
tsunami sand sheets and the landward flooding lines in the
high‐gradient Anchor Way and Sand Mine alluvial wetlands
(Figure 5). The separation distance between the mapped sand
sheet extent and the most landward flooding line in the low‐
gradient Elk River Valley reaches 1000 m. In low‐gradient
wetlands the sand sheet extent can underestimate tsunami
inundation distance.

Paleotsunami deposits in Sand Mine marsh

Shallow coring (1–3 m depth) was performed in the back‐ridge
marshes and small tributary flood plains in Crescent City to
establish the landward extent of paleotsunami sand sheets
(Figure 6). Representative core logs are shown in Figures 7
and 8. Beach sand identified in the tsunami sand layers is
based on rounded amphibole grains, greater than 30% by
volume, in the heavy mineral fraction. The Sand Mine marsh
lacks through‐running creeks, dunes, or eroding marine terrace
deposits that could supply the rounded beach sand to the peaty
mud deposits. Marine diatoms are also associated with the
tsunami sand layers, as recorded in continuous vibracores from
the Sand Mine marsh/lagoon (Figure 8) (Carver et al., 1998).
The diatom record is variable between core sites and within
individual tsunami deposit layers, as might be expected from
the chaotic nature of multiple marine surges and backwash
events (Garrison‐Laney, 1998). Such taxa complexity is
demonstrated in recent (2004) Indian Ocean tsunami deposits
containing mixed diatom assemblages (Sawai et al., 2009).
Primary sedimentary structures in the tsunami sand layers
include (1) sharp basal contacts, (2) sand fining‐upwards
sequences, and (3) interbedded‐mud or peat rip‐ups (Figures 7).

The youngest tsunami sand layer, at 5–10 cm depth,
corresponds to the historic (1964) tsunami (Figures 7 and 8).
An adjusted radiometric date of 260+50 yr BP for bulk peat
(58–61 cm depth) under the second tsunami sand layer (23 cm
thick) in cc18 confirms this layer as the last Cascadia nearfield
tsunami. The calibrated date range of 0 to 467 cal BP is
acceptable for the youngest paleotsunami event #1 (Atwater
et al., 1995), which is correlated to calendar year AD 1700
(Satake et al., 1996). Five additional paleotsunami sand sheets
are recorded below the AD 1700 tsunami, in core sites VB5,
cc41/42b, and ccWL. A muddy peat at ~2·5 m depth separates

Figure 4. The 1964 tsunami drift logs and thin sand sheet
(foreground) in front of Crescent City Motel beach cabin (see Redwood
Highway at Sand Mine Marsh in Figure 3). Large drift logs and
associated sand sheet deposits are documented in both historic
photographs and in trench sites occupied in 1991–1993. Geologically
preserved sand sheets should serve as proxy data for large debris
transport in paleotsunami inundations of the Crescent City shorelines.
Photograph (1964) supplied by motel owner, Mr Brown.
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the two oldest paleotsunami sand layers in core sites VB5,
ccWL, and cc42b. The peat is dated at 2488–2920 cal BP in
cc42b (Table I), yielding a long‐term sedimentation rate
of ~1 m/1000 year in the marsh/lagoon at site cc41/42b. Net
peat accumulation in the back‐ridge marsh is attributed to
rising groundwater level, presumably tracking relative sea level
rise in the Crescent City locality.
Fewer preserved sand sheets in some of the proximal marsh

sites might reflect tsunami erosion of pre‐existing tsunami sand
layers. Abundant peat rip‐ups in the tsunami sand layers attest
to tsunami scour in the back‐ridge marshes. Several sandy‐silt
laminae (<1 cm thickness) are observed between the paleotsu-

nami sand sheets in proximal cores sites in the Sand Mine
marsh (Figure 8). The origin(s) of these sandy‐silt laminae are
not established (see further discussion later). They fail to meet
the criteria of contiguous sand sheets that can be traced
between adjacent core sites.

Paleotsunami deposits in Anchor Way marsh

The 1964 tsunami sand sheet is well recorded in the most
proximal sites of the Anchor Way marsh, including adjacent
sites cc3 and cc4 (Figures 6 and 9). Four paelotsunami sand
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layers are recorded in core site cc34, located about 250 m
landward of the beach. The paleotsunami sand layers range
from 7 to 10 cm in thickness. Sand layer #2 has a distinctively
thick debris layer, both in the Anchor Way and Sand Mine
marsh (Figures 6, 7 and 9). The Anchor Way marsh transitions
to a shrubby flood plain with increasing landward distance and
elevation gain (Figure 6). Site gc13 contains two distinct
paleotsunami sand layers at elevations of 6 to 7 m. A third
possible paleotsunami sand layer occurs above the basal

Pleistocene terrace surface. The two distinct tsunami sand
layers, #2 and #3, are traced to sandy‐organic debris layers in
site gc11, at an elevation of 8 to 9 m and at a distance of
1·2 km from the beach ridge (Figure 10). Rounded amphibole
mineral grains in both of the sandy detrital‐organic layers
confirm beach sand sources in the tsunami debris layers from
events #2 and #3. Thinning peaty‐mud deposits at the head of
the Anchor Way Valley limit the paleotsunami record to only
2–3 distinct inundation events in a total of 13 core sites.

Table I. Radiocarbon dates from Crescent City core sites

Site Sample Depth (cm) Adjacent C14 (yr BP) cal 1 – σ (cal BP) cal 2 – σ (cal BP) Laboratory beta #

cc18 Bulk peat 61 260±50 152–429 0–467 73 245
cc18 Bulk peat 130 1000±60 798–967 778–1005 73 246
cc41 Bulk peat 100 650±60 559–667 539–683 89 153
cc42 Bulk peat 240 2630±70 2621–2847 2488–2920 89 156
cc39 Bulk peat 25 150±70 0–282 0–292 67 436
cc7 Bulk peat 75 780±80 662–785 562–909 67 435
VB12 Bulk wood 50 720±60 568–724 553–762 101 550
VB2 AMS wood 75 920±40 791–908 743–923 101 542
VB3 AMS peat 170 3080±40 3262–3358 3171–3383 101 546
VB5 AMS wood 85 960±40 798–927 784–954 101 540
RC3 AMS wood 180 2460±40 2368–2700 2361–2707 101 541
CD4 Bulk wood 40 960±60 795–929 737–965 101 553
kc9 AMS peat 88 980±40 830–930 790–960 252 508

Calibrated ages for radiometric (bulk) and AMS dates are based on the Calib 5.0 program by Stuiver et al. (2008).
Bulk peat samples are taken from the peat contact underlying the tsunami sand.
AMS samples are from organics (wood fragment or peat rip‐up) in the tsunami sand layer.
Calibration parameters are provided in Reimer et al. (2004).
Dates from the VB2, VB3, VB5, VB12, CD4 and RC3 are from Carver et al. (1998).
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Paleotsunami deposits in Elk River Valley

The paleotsunami inundations of the Elk River Valley are
limited in record by a short period of peaty mud accumulation
above basal lagoon and/or creek sand (Figures 6 and 9). The
1964 historic tsunami sand layer is present at site kc1, located
about 0·5 km distance from the beach, but it pinches out to a
sandy‐silt debris layer at kc3. The shallowest prehistoric sand
sheet (event #1) is traced to kc5 at a distance of 1·5 km from the
beach in the low‐gradient flood plain of the Elk River Valley. At
least one older paleotsunami sand sheet is preserved in peaty
mud deposits along the valley margins. The distal sand sheet is
dated 790–960 cal BP at site kc9 (Figure 9; Table I). The sand
sheet is traced to kc10 at a distance of 2·5 km, which
corresponds to an elevation of 4 m (Davis, 1977). The
corresponding tsunami debris layer likely continues landward
in the low‐gradient Elk River Valley marsh, but root bioturbation
limits preservation of the landward‐thinning tsunami deposit.

X‐ray radiographs of core site cc41

X‐ray radiographs of core cc41 from the Sand Mine marsh
(Figures 6 and 7) are shown in Figure 11. The radiographs
document sand layers from the historic 1964 tsunami and four
additional paleotsunami (events #1–4). A deeper extension to
the cc41 section is provided from the adjacent core cc42b, but
the deeper section was not included in the X‐ray imaging. The
tsunami deposits include (1) sharp bases, (2) multiple sand
layers, (3) many sand laminae, (4) interbedded mud laminae
and peat rip‐ups, and (5) gradational tops that fine upwards
into sandy or silty detrital organics.
A particularly thick tsunami debris layer (19 cm thick), with

at least 10 sandy‐silt/organic laminae, occurs in tsunami
deposit #2. A thick peat rip‐up layer (7·5 cm thick) occurs
between two sand layers from deposit #4. The sedimentary
structures shown in the radiographs are infrequently described
in modern tsunami sand sheets. Such variable lithology occurs
in high‐preservation potential environments, such as marshes

and lagoons, which are susceptible to tsunami scour. The
complex interbedding of the sand sheets likely represents the
chaotic nature of multiple wave trains, interacting surges, and
backwash flows that are associated with tsunami inundation in
proximal marsh settings.

Discussion

Discrimination of paleotsunami deposits

In this paper the geologic records of tsunami sand deposition are
used to establish paleotsunami inundation. We briefly address
the question of paleotsunami deposit recognition in contrasting
study areas. The Crescent City barrage marshes back low‐
gradient sandy beaches in a protected embayment (Figures 3
and 6). This locality differs from several southeast Australia sites
where headland erosion and cobble deposits onmarine terraces
might have been produced by very‐large paleotsunami (Bryant
et al., 1992; Bryant and Knott, 2001). Headlands and marine
terraces are located several kilometers to the south and north of
the back‐barrier marshes in Crescent City. However, the scale of
paleotsunami runup estimated for the Crescent City locality
(~10 m as discussed later) would probably be insufficient to
significantly modify the resistant headlands in the study area
(Liew et al., 2009).

Unlike some New Zealand sites that record gravel sheet
deposition by paleotsunami (Nichol et al., 2007) the sandy
beaches in the Crescent City embayment do not provide
significant gravel sources for tsunami transport and deposition
in the back‐ridge marshes. Gravel beaches are located several
kilometers north and south of the Crescent City embayment
(Peterson et al., 1994). Preliminary searches for paleotsunami
gravels have been undertaken in those sites, but conclusive
results on the origin(s) of terrace top pebbles and small cobbles
from those areas have yet to be established.

Remobilized molluscan shells in layers that fine upwards in
bay mud deposits have been used to identify catastrophic
tsunami inundation in Japan (Fujiwara et al., 2003). Carbonate
shell fragments were observed but not routinely logged in
proximal sand sheet deposits from the Crescent City freshwater
lagoons (Figure 7). Shell fragments from paleotsunami sand
sheet deposits are now being used to confirmmarine inundation
in other proximal runup localities in the central Cascadiamargin
(Peterson et al., 2010b), where windblown ocean spray could
import marine diatoms by non‐surge mechanisms.

The tsunami sand sheet deposits documented in this study
provide particularly useful combinations of transport and
deposition under wide ranges of tsunami flow competence.
For example, sand deposits from the 1964 farfield tsunami
inundation in Crescent City extend from the most proximal
back‐ridge ponds to the upland marshes. Whereas sand sheet
deposition likely corresponds to high‐velocity sheet flow
conditions (Figure 5) the disseminated beach sand that floated
in with detrital organics probably represents the near terminal
extent of tsunami inundation (Figure 10). Several other
attributes of the tsunami sand sheets are (1) widespread
source sand in the nearshore and beaches, (2) macroscopic
identification of target sand layers in reconnaissance cores,
and (3) several marine surge tracers including sand grain
mineralogy.

Early in the Crescent City investigations the possibilities of
storm surge origins for the prehistoric sand sheets were raised.
Morton et al. (2007) provide some guidelines for discriminating
between paleotsunami and storm surge origins for inundation
sand sheets. The sand sheets recorded in the Crescent City
barrage marshes generally reflect paleotsunami characteristics

Figure 10. Bioturbated sand laminae (63–65 cm depth) in site gc12
from the Anchor Way marsh flood plain, at an elevation of 7 to 8 m
(Figures 6 and 9). The rounded quartz grains (125–175 microns in
diameter) are distinctive in the dark peaty mud. Rounded amphibole
grains in the heavy‐mineral fraction confirm a beach sand source for
the sand layer, which corresponds to paleotsunami event #3 (Figure 9).
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in that they (1) are thin (less than 50 cm thickness), (2) mantle,
but do not fill, pre‐existing lagoon topography, and (3) extend
inland for substantial distances (greater than 1·0 km). However,
differentiating between small inundation events (sustained
runups less than 5 m) of either paleotsunami or storm surge
origins could prove difficult. In Crescent City the distinct sand
sheets are directly correlated to nearfield Cascadia paleotsu-
nami based on the number and ages of dated inundation
events (see further discussion later).

Tsunami sedimentary structures

Two important aspects of paleotsunami sand deposition in the
Crescent City marshes are (1) the local variability of sand sheet
thickness, and (2) the wide range in sedimentary structures.
Dense sampling of the last Cascadia tsunami (event #1 at AD

1700) in the Sand Mine marsh (Figures 3 and 6) demonstrates a
wide range of thickness (1–35 cm thickness) over a 500 m
distance (Figures 7 and 8). The mean and standard deviation
for this layer in the Sand Mine marsh are 10·6 ±9·6 cm for
N=11 sites. Though there is a general thinning with landward
distance, some adjacent sites yield substantial differences
(100%) in corresponding event sand layers. Caution is advised
in relating local deposit thickness to runup magnitude.
The variability of tsunami deposit internal bedding is well

documented in the sequence of sand sheets recorded at site
cc41 in the Sand Mine marsh (Figures 6 and 7). Fine details
of the tsunami deposit sedimentary structures are revealed in
X‐ray radiographs of the successive sand layers (Figure 11).
The historic sand sheet (AD 1964) contains two sand layers,
each composed of multiple sand laminae. The deposit from
event #2 is dominated by layers of sandy‐mud and organic
detritus, which overly a thin basal sand (2–3 cm thick). The
event #3 deposit is dominated by sand (15 cm thick),

containing tens of thin sand laminae. The event #4 deposit
contains (1) multiple sand layers, (2) thick organic debris
layers, and (3) many thin sand laminae. This variability in the
sedimentological record of successive paleotsunami at the
same site denotes the complicated mechanisms of varied
wave trains, surge interactions, and reversing backflow
deposition.

Historic tsunami runup records

The runups of the 1960 and 1964 historic tsunami, measured for
height above predicted tide level in Crescent City, are 1·7 m and
4·9 m, respectively (Landers et al., 1993). The 1960 tsunami
might have left a silty‐debris layer at cc18, VB12, and cc41,
located near a drainage creek in the SandMinemarsh (Figures 7
and 11). However, the 1960 tsunami (4 m elevation) (Figure 12)
did not yield sand sheet deposits landward of the low beach
ridge (3–4 m elevation) fronting the Anchor Way marsh. By
comparison, the 1964 tsunami (~5–6 m elevation) widely
overtopped the low beach ridges, inundating the low marshes
(3–5 m elevation). The 1–2 m deep surges from the 1964
tsunami deposited narrow sand sheets (100–200 m width)
landward of the Sand Mine and Anchor Way beach ridges, and
also along the Elk River Valley drainage channel to a distance
of ~500 m from the beach (Figure 5). These events demonstrate
a sustained surge threshold of at least 5 m elevation to produce a
preserved sand sheet in the back‐ridgemarshes of Crescent City.

The preserved 1964 sand sheet deposits in the Crescent City
marshes (3–4 m elevation) under‐predict the 1964 runup
mapped in the back‐ridge wetlands by 1·5 to 2·0 m elevation
(Figure 5). The sand sheets under‐predict the historic tsunami
runup distances by 100 to 300 m in the high‐gradient wetlands.
The small‐debris strandlines provide a better measure of the
1964 tsunami runup, approaching to within 100 m of the
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published landward flooding line in the Anchor Way and Sand
Mine wetlands. The 1964 sand sheet extent in the low‐gradient
flood plain of the lower Elk River Valley substantially under‐
predicts the published most landward flooding line, by 500 to
1000 m in inundation distance.
The sand sheets do serve as important geologic records for

high‐impact inundation zones (Figure 4). Those zones corre-
spond to potential structural damage from large debris trans-
ported by tsunami surges inCrescent City (Figures 3 and 5). Of the
10 drowning deaths from the 1964 tsunami in Crescent City
(Landers et al., 1993) all occurred within the landward extent of
the 1964 tsunami sand sheet.

Paleotsunami recurrence interval

Based on the apparent runup necessary to produce sand sheets
in the Crescent City marshes (see earlier) the six paleotsunami
sand layers in the Sand Mine marsh (Figures 7 and 8) all
exceeded 5 m runup elevation at the shoreline. The same
sequences of tsunami inundations are recorded in the nearby
Lagoon Creek locality (Figure 13) (Abramson, 1998). The six
paleotsunami recorded in these two southern Cascadia
localities can be all accounted for by known ruptures of the
central Cascadia margin (Darienzo et al., 1994; Atwater et al.,
2004). The results presented here suggest that the six ruptures
could have propagated to, or from, the southern Cascadia
margin. One farfield tsunami deposit recorded in some central
Cascadia estuaries at ~800 yr BP (Peterson et al., 2008) is not
observed at Crescent City.
A total of six paleotsunami inundations in 2700 years in

Crescent City yield a mean recurrence interval of 450 years.
Two recorded paleotsunami events, #2 and #3, demonstrate a
recurrence interval of only 200 years. The Crescent City locality
contains only one farfield tsunami sand sheet (1964 tsunami)
during the ~3000 year period of record. Discontinuous sandy‐
silt laminae (less than 1 cm thickness) do occur in several of the
proximal cores sites in the Sand Mine marsh (Figures 8 and 11).
The origin(s) of these sandy‐silt laminae are not known, but

could possibly include minor tsunami inundations (Carver et al.,
1998), strong wind‐storm events, and/or storm‐surge inunda-
tions. In any case, they fall below the runup threshold (5 m
elevation) for catastrophic flooding hazard in Crescent City.

Comparison of paleotsunami inundation
distance and height

Two or three paleotsunami sand sheets are traced to their
landward limits in each of the three Crescent City wetland
localities. In terms of maximum‐recorded paleotsunami inun-
dation the Anchor Way wetlands offer the best combination of
(1) number of sand sheets, (2) length of wetland setting, and (3)
wetland elevation gradient ((Figures 7 and 9). The maximum‐
recorded inundations for two latest‐Holocene paleotsunami, #2
and #3, in the Anchor Way wetlands reach 8–9 m elevation at a
distance of 1·2 km from the paleo‐beach ridge that fronts the
Anchor Way marsh (Figure 14). The beach‐ridge, which locally
underlies the Redwood Highway (Figure 3), is located about
150 m landward of the MLLWor 0 m NAVD88 beach shoreline.

Figure 12. Photograph of 1960 tsunami flooding at Citizens dock in
Crescent City (south end of boat harbor in Figure 3). The small runup
(1·7 m) occurred during high tide, causing the flooding of Citizens
dock and the adjacent beach ridge in the foreground (4 m elevation).
This small tsunami locally overtopped low beach ridges (3–4 m
elevation) possibly leaving a silty debris layer (Figure 11) but no sand
layers in the Anchor Way marsh (Figure 8). Image modified from
photograph by Wallace Griffin in Landers et al. (1993).
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The #2 and #3 tsunami events are correlated to Cascadia
margin ruptures that occurred between 1000 and 1500 cal BP
(Figure 13). Using the measured core depths (0·25–0·50 m
depth) of tsunami debris layers #2 and #3, and an assumed net
sea level rise of 1 m per 1000 years, the paleo‐sea level
adjusted runups for the two inundations are 9–10 m at 1·2 km
landward distance in the Anchor Way marsh. The tsunami
debris layers are expected to reflect the maximum recorded
inundation in the upland wetland setting.
The #2 and #3 paleotsunami sand sheets approach, but do

not reach, the runup lines modeled for a predicted full margin
Mw 9 rupture scenario CSZ‐L (Figure 6) (Uslu et al., 2007).
Uslu et al. (2007) modeled the runups from predicted Cascadia
subduction zone (CSZ) rupture scenarios using the numerical
model MOST (Titov and Synolakis, 1998), as benchmarked
against historic 1964 tsunami runup in Crescent City (Magoon,
1966). The scenario (CSZ‐L) used to generate the runup line
shown in Figure 6 is based on full margin rupture (Mw~9)
using fault dimensions, and average slip from Satake et al.
(2003). Partial northern margin ruptures, and slip limited to
local faults in the deformation front yield much smaller
modeled runups (Uslu et al., 2007). Coincidentally, the AD

1700 tsunami, used, in part, to justify full margin rupture
parameters in the Cascadia subduction zone (Satake et al.,
1996; Satake et al., 2003) produced only modest runups in
Crescent City, as has been reported for some central Cascadia
localities (Peterson et al., 2008).

Conclusions

Crescent City, California, suffered damaging floods from a
historic (1964) farfield tsunami, leading to heightened tsunami
awareness in the US West Coast. Sand sheets from the 1964
tsunami in Crescent City provide minimum estimates of
tsunami inundation, but they do correspond to the most
dangerous inundation zones. The sand sheets were deposited
in waterfront beach ridges and back‐ridge mashes, which

contain large drift logs and structural debris that floated in with
the historical tsunami flooding.

Some 25 years later the same Crescent City marshes were
examined for nearfield paleotsunami deposits that could
demonstrate coseismic ruptures of the southern Cascadia
subduction zone. The potential for megathrust seismicity in
the south end of the subduction zone was widely debated.
Multiple sand sheets, up to several decimeters in thickness,
recorded catastrophic inundation from nearfield Cascadia
paleotsunami in the Crescent City marshes. The paleotsunami
deposits helped confirm late‐Holocene seismicity of the
subduction zone, and initiated searches for other paleotsunami
records in the study region. Six paleotsunami sand layers
deposited in the last 3000 years in the Crescent City marshes
match the same dated sequence in nearby Lagoon Creek,
California, permitting the estimation of a mean recurrence
interval for large nearfield tsunami in the southernmost
Cascadia margin. These results confirm that oblique conver-
gent strain is accumulated in the southernmost Cascadia
margin, and that episodic megathrust ruptures result in ‘fast’
tsunamigenic sea floor displacements. The paleoseismic
record, including paleotsunami deposits, plays a key role in
promoting seismic hazard awareness in the Cascadia subduc-
tion zone, which has not ruptured in historic time.

Recently two of these authors returned to the Crescent City
marshes to establish the maximum‐recorded paleotsunami
runup, based on the landward extent of preserved paleotsunami
sand layers. The paleotsunami sand sheets were traced in
alluvial floodplain wetlands that extend landward from beach‐
ridge marshes and freshwater ponds. The floodplain settings
suffer from relatively short geologic age and bioturbation that
obscures thin paleotsunami sand layers. However, continuity
and gradual elevation rise of the alluvial wetlands provide ideal
conditions for establishing paleotsunami runup. Nearfield
Cascadia paleotsunamis have exceeded twice the runup height
and four times the inundation distance of the historic (1964)
farfield tsunami in Crescent City.
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Most paleotsunami studies worldwide have focused on
paleotsunami event recognition and dating. In this study we
show that the selection of appropriate depositional settings and
sufficient core sampling in those settings can yield additional
information on paleotsunami inundation distance and runup
height. These measures are needed to independently verify
predicted runup from numerical models where fault rupture
mechanics are uncertain or unknown. Credible predictions of
potential inundation distance and runup height from future
tsunami are necessary for effective emergency response
planning in communities with limited financial resources.
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