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Abstract 

Cruikshank, KM., Neavel, K.E. and Guo Zho Zhao, 1989. Computer simulation of growth of duplex structures. 

Tectonophysics, 164: 1-12. 

The geometry of hinterland-dipping duplex structures, produced by deformation over several successive ramp 

faults, can be explored using composite kinematic and mechanical models which were developed to describe the 

deformation in the vicinity of an isolated ramp. The composite kinematic model permits the relationships between 

ramp height, angle, spacing, and displacement to be calculated. A special case of hinterland-dipping duplex structures, 

approximately flat-topped structures, require a specific amount of displacement that depends on ramp angle, height, 

and spacing. The requirement is very sensitive to final ramp spacing, and relatively insensitive to displacement. 

Introduction 

A common feature of many cross-sections of 
fold and thrust belts is a series of imbricate faults 
connecting either two thrust surfaces or two seg- 
ments of a single thrust surface that steps between 
two different stratigraphic levels (Fig. 1). This 
class of structures was termed duplex structures 
by Dahlstrom (1970) and by Boyer and Elliott 
(1982). Such structures have been interpreted to 
exist in fold and thrust belts in Scotland (e.g. 
Elliott and Johnson 1980; Fisher and Coward 
1982; Coward 1984), the Appalachians (e.g. Harris 
and Milici, 1977; Harris et al., 1981) (Fig. l), and 
the Canadian Rockies (e.g. Dahlstrom 1970; 
Fermor and Price 1976, Price 1981). 

Boyer and Elliott (1982, p. 1200) named three 
types of duplex structure based on geometrical 
form: hinterland-dipping duplex, stacked duplex 

and foreland-dipping duplex structure (Fig. 2). 
Hinterland-dipping and stacked duplex (antifor- 
mal stack) structures have been inferred to exist in 
fold and thrust belts (e.g. Charlesworth and 
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Gagnon 1985) and in accretionary prisms of sub- 
duction zones (e.g. Sample and Fisher 1986; Platt 
and Leggett, 1986). 

Although the notion of the duplex structure has 
gained wide acceptance, and multiple thrusts are 
commonly interpreted to be duplex structures, the 
geometry of duplex structures remains largely un- 
explored. Suppe and Namson (1979) and Suppe 
(1980a, 1980b) have constructed cross-sections of 
antiformal stacks using a geometrical technique 
developed for single ramp folds. Mitra and Boyer 
(1986) and Mitra (1986) used geometrical relation- 
ships to classify duplex structures; however, fore- 
land-dipping and hinterland-dipping duplex struc- 
tures have not been analyzed in detail. 

In this paper we concentrate on the geometry 
and kinematics of hinterland-dipping duplex 
structures (Fig. 2A). Special emphasis will be given 
to approximately flat-topped, hinterland-dipping 
duplexes (Fig. 2A), because the form of the flat- 
topped duplex strongly constrains the kinematic 
and mechanical models used to describe its devel- 
opment. The flat-topped duplex form also il- 
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Fig. 2. The three major forms of duplex structures envisioned 

by Boyer and Elliott (1982, p. 1200). The antiformal stack (B) 

can be generated by the same kinematics as the flat-topped, 

hinterland-dipping duplex structure (A) with larger displace- 

ments. or a smaller ramp spacing. 

lustrates the usefulness of a simple kinematic 

model in constructing duplex structures. A wide 

range of structures can be produced using the 

kinematic and mechanical models, from isolated 

ramp folds through approximately flat-topped 

forms to antiformal stacks, flat-topped foreland 

dipping structures and isolated horses on the up- 

per thrust. 

Boyer and Elliott (1982, p. 1208) presented a 

scenario for the formation of an idealized, flat- 

topped duplex structure (Fig. 3), which begins 

with an initial ramp fault (Fig. 3A), and involves 

the sequential accretion of thrust bounded 

packages (horses) to form a duplex structure (Fig. 

3D). The geometry at stage two (Fig. 3B) resem- 

bles the geometry of the “fault-bend fold” of 

A 
THRUST SHEET 

INCIPIENT RAMP 
RAMP 

INCIkENT DETACHMENT I 

Fig. 3. Scenario for the development of a flat-topped, hinter- 

land dipping duplex structure (after Boyer and Elliott, 1982, 

fig. 19, p. 1208). 



Suppe (1983). Johnson and Berger (in press; 

Berger, 1986) have developed a kinematic model 

that reproduces the form of that simple fold. We 

will use their kinematic model, as well as the 

mechanical model of Berger and Johnson (1980) 

to investigate the geometry of approximately flat- 

topped hinterland-dipping duplex structures. 

A kinematic model for duplex structures 

An essential tool for our analysis of duplex 

structures is the kinematic model of a single ramp 

fold (Berger, 1986). We will apply the model 

sequentially to a series of ramps in order to gener- 

ate a duplex structure. 

The elements of the kinematic model for a 

single ramp are shown in Fig. 4. Two detachment 

surfaces at different levels are connected by a 

ramp inclined at an angle 0 to the detachments. 

The thrust sheet above the detachments is divided 

into three velocity domains, I, II, and III, sep- 

arated by two steeply-dipping velocity discontinui- 

ties. The velocity discontinuities are oriented such 

that originally horizontal beds experience no 

change in thickness or length as the thrust sheet 

moves over the ramp. The velocity discontinuity 

originating at the base of the ramp slopes at an 

angle of O/2 + 90 O, where 0 is the ramp angle. 

The velocity discontinuity originating at the top of 

the ramp slopes at an angle of y where: 

tan y = cot 0 f [ (cot20) - 31 1’2; 0530” 

(1) 

The velocity vectors are shown in Fig. 4. In 

each velocity domain, the velocity vector is paral- 

VELOCITY 

!;: 

Velocity zone I \ 

DlSCONTlNUlTY \:’ 

Velocity zone II Velocity zone IU 

Fig. 4. Elements of the single ramp kinematic model of Berger 

and Johnson (1986). The thrust sheet above the ramp is di- 

vided into three velocity domains, separated by two velocity 

discontinuities. 

I I 

Fig. 5. Stages in a single folding event showing the accretion of 

a single horse. In each stage there has been further displace- 

ment to the right, the leading limb of the old horse is reori- 

ented until it is almost horizontal. Several such events will 

build up a duplex structure. 

lel to the thrust surface at the base of the domain. 

As a result, in zone II there are both vertical and 

horizontal velocity components, whereas in zones 

I and III there are only horizontal components. 

The magnitude of the velocity, Vi, is the same in 

zones I and II, and is lower in zone III: 

Details of the development of the kinematic 

model and properties of the discontinuities are 

presented by Berger (1986). 

We model the formation of a duplex structure 

by representing each event of ramp formation and 

folding with the kinematic model described above. 

Stages, like snapshots, in a single folding event, 

according to the kinematic model, are shown in 

Fig. 5. In each stage, the thrust sheet is pushed 

farther to the right. 

In stage one, Fig. 5A, two ramp folds have 

already developed and a third is initiating, produc- 
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ing two horses that are completely bounded by 

thrust surfaces. The leading fold limb of the old 

horse dips in the transport direction. In order for 

the old horse to become an element of the 

flat-topped duplex structure envisioned by Boyer 

and Elliott (Fig. 3), its leading limb must become 

horizontal. 

In stage two there has been further thrusting 

over the new detachment surface and ramp. Part 

of the leading limb of the old horse shown in stage 

one has become reoriented to a more nearly hori- 

zontal attitude. According to the kinematic model 

used to construct Fig. 5, the reorientation is a 

result of part of the leading limb passing through 

the first velocity discontinuity. As the leading limb 

passes through the discontinuity, it rotates up- 

ward. A trough has formed between the leading 

limb of the old horse and the trailing limb of the 

new horse. 

During stage three there has been further 

thrusting, and more of the leading limb of the old 

horse has been reoriented. 

Thrusting has stopped at the end of stage four, 

Fig. 5D. The leading limb of the old horse has 

passed through the discontinuity and is now ap- 

proximately horizontal. The trough, which ha& 

nearly vanished, is represented by a shallow. highlv 

asymmetric groove. 

The concept of Boyer and Elliott (1982) for the 

formation of a duplex structure (Fig. 3) is mod- 

eled kinematically by a sequence of folding events 

such as the one shown in Fig. 5. Each succeeding 

event generates a new horse and reorients the 

leading limb of the horse formed during the previ- 

ous event. 

The sequence of folding events, according to 

the kinematic model, produces the structures 

shown in Fig. 6. The structure created with the 

kinematic model (Fig. 6) clearly is essentially the 

same as that envisioned by Boyer and Elliott (Fig. 

3). One of the objectives of our research has thus 

been reached. 

Geometry of duplex structures 

A specific combination of thrust displacsment, 

ramp angle, and ramp spacing is required to pro- 

duce an approximately flat-topped duplex struc- 

ture such as that shown in Fig. 6. In this section 

we will investigate the geometry of the approxi- 

1 A. 

8. 

C. 

! 

D. 

Fig. 6. A flat-topped, hinterland-dipping duplex structure generated by the composite kinematic model. The ramp angle is fifteen 

degrees, with a displacement of two ramp heights, and a pre-displacement ramp spacing of approximately six ramp heights. This 
figure should be compared with Fig. 2. 
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Fig. 7. Definition diagram for the critical ramp spacing required to form a duplex. Only the position of the first velocity discontinuity 

on ramp 2 is shown. This is at an equivalent stage to that shown in Fig. 6B. 

mately flat-topped duplex structure produced by 
the kinematic model in order to determine rela- 
tions among these factors. We have elected to 
solve for the final critical spacing of ramps, S,, 
required to form the flat-topped duplex structure. 

Critical spacing of ramps 

The geometries of a horse, and of a block that 
will become a horse, are shown in Fig. 7. The 
situation is equivalent to that shown in Fig. 6B, 
just before displacement occurred on a new ramp 
(ramp 2, Fig. 7). The heavy lines represents seg- 
ments of the thrust fault. Line segment FG repre- 
sents the leading fold limb, which will become 
reoriented until it is parallel to the top of the 
structure. As indicated above, the line segment 
must pass through the velocity discontinuity, DZ 
(Fig. 7). 

To form a flat top, point F must reach, but not 
pass through, the velocity discontinuity at point I, 
as displacement occurs on ramp 2. Figure 8A 
shows the form of duplex produced if point F 
does not reach point I, and Fig. 8C shows the 
form if point F passes beyond point I. Figure 8B 
shows that, if point F reaches point I, the almost 
flat-topped form of duplex is produced. 

The fixed starting and ending positions for 
point F (Fig. 7) required for a flat-topped duplex 
structure allows the calculation of a relation among 
ramp spacing, angle, and height, and displace- 
ment, U,, responsible for each horse. An expres- 

sion for the final ramp spacing, S,, is derived in 
the appendix. The initial ramp spacing is: 

si = s, + u, (3a) 

in which U, is displacement of the thrust sheet, 
and the final ramp spacing is, 

SJH = cosec 0 + U, { ( sin 0) [l/A + tan( O/2)] } 

(3b) 

where: 

A = tan y = cot 0 f [(cot2 0) - 3]t’* (34 

Fig. 8. The effect of displacement on the flat-topped duplex 

form. A. Insufficient displacement. B. The correct combination 

of ramp spacing and displacement. C. Displacement is too 

great. 



Equations (3) indicate that, if the ramp angle, 
0, displacement, ZJ,, and ramp height, H, are 
specified, the critical ramp spacing, either S, or &. 
required for a flat-topped duplex structure. can be 
computed. 

Relationship among ramp angle, ramp spacing and 

displacement 

Figure 9 shows the relation between initial, 
critical ramp spacing normalized with ramp height, 
S/H, and ramp angle 0, for displacement equal 
to twice the ramp height, U,/H = 2. Any combi- 
nation of spacing and angle that plots close to the 
curve will result in a nearly flat-topped duplex 
structure. Any combination that plots above the 
curve will have a spacing that is too large, and the 
leading point of each horse will be at a lower level 
than the top of the most recent horse (Fig. 9A). 
Any combination that plots below the curve will 
have a displacement that is too small, and the top 
of the horse will be at a higher level than the top 
of the most recent horse (Fig. 9B). 

An antiformal stack (Fig. 1B) is produced for a 
ramp spacing much smaller than critical. Solitary 
horses are produced for a ramp spacing much 
larger than critical. 

Figure 10A shows the same relations as Fig. 9, 
but for several different displacement ratios, U,/H 

ranging from 0.25 to 2.00. The spread of the 
curves reflects the sensitivity of the flat-topped 
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Ramp angle (9) 

Fig. 9. Plot of ramp spacing ratio against ramp angle. The 

curve is for a displacement of two ramp heights. The curve 

separates two major geometrical domains. Stacked duplex 

structures plot in the lower half of the graph. 

14 16 16 20 22 24 

Ramp Angle (e) 

Fig. 10. Plot of the critical ramp spacing ratio against ramp 

angle needed to form a duplex. Curves are given for several 

different displacements. A. Pre-displacement ramp spacing. 

B. Post-displacement ramp spacing 

form to the amount of displacement. The spread is 
small for low ramp angles and large for high ramp 
angles. At low ramp angles the duplex will be 
essentially flat-topped over a larger range of dis- 
placement than at high ramp angles. 

The graphs shown in Fig. 10 can be used to 
estimate an unknown parameter of a duplex struc- 
ture. Figure 10A is for initial and Fig. 10B is for 
final ramp spacing. For example, knowing the 
final ramp spacing, S,, height, H, and angle, 0, 
one can use Fig. 10B to determine the amount of 
displacement, U,, responsible for each horse in an 
approximately flat-topped duplex structure. 

Structural relief of a duplex structure 

The structural relief (r, Fig. 7) of an approxi- 
mately flat-topped duplex structure is: 

r = U, sin 0 (4) 



Equation (4) indicates that, knowing the struc- 
tural relief and the ramp angle, the displacement 
can be determined for a flat-topped duplex struc- 
ture. The maximum possible structural relief of a 
flat-topped duplex is equal to the ramp height. 

Discussion 

We have demonstrated that a composite kine- 
matic model for multiple ramps can reproduce the 
essential features of a flat-topped duplex structure 
and determine the geometric constraints of such 
structures. However, two assumptions of the basic 
kinematic model for a single ramp have been 
violated in the composite model. Application of 
the kinematic model derived for a single ramp to 
multiple ramps in duplex structures causes slight 
changes in bed thickness and length within the 
thrust sheet. This is because inclined beds pass 
through the velocity discontinuities. However, the 
composite model maintains the area of the cross- 
section; thus it always produces a balanced cross- 
section, even though the bed lengths and thick- 
nesses change slightly. 

Next we will determine whether the essential 
features of the flat-topped duplex can be repro- 
duced by a composite mechanical model for bed- 
duplication folding in the vicinity of an isolated 
ramp, introduced by Berger and Johnson (1980). 
The mechanical model allows bed thickness and 
length to change, but does not allow volume to 
change. Thus, we violate none of the conditions 
used to derive the single ramp model when it is 
applied to multiple ramps. 

A mechanical model for duplex structures 

The mechanical model of Berger and Johnson 
(1980; Berger, 1986) for bed-duplication folding 
over a single ramp will be expanded to model 
displacement over several successively-formed 
ramps. The same sequence of events will be used 
as in the kinematic model (Fig. 6). 

The mechanical model traces the positions of 
passive markers in a linear-viscous block being 
displaced over a stepped thrust surface (Fig. 11). 
The thrust surface is represented by a Fourier 
series. The use of a large length (D, Fig. 11) allows 

Fig. 11. Definition diagram for the fourier series used in the 

analytical model. D is the wavelength, h the step height, W 

the step width and 3 is the height of the interface- from the x’ 

axis. V,, is the velocity of the viscous block moving over the 

ramp. 

the deformation around a single ramp to be mod- 
eled. The final forms of the equations (to first- 
order), as given in Berger and Johnson (1980) and 
Johnson and Berger (1986) are: 

V,/ = V,, + V,( E (A,Z,)( Inz’) 
n=l 

Xexp(-Z,z’) sin(I,x’) (54 

by= v,r f (A,Z,)(Z,z’+ 1) 
n=l 

X exp( - lnz’) cos( Inx’) (5b) 

where: 

A,, = [ h/(nr)*](D/w)[D/(D - w)l 
x sin(n?r w/D) 

I,=na/D 

(6a) 

(6b) 

V,, and V,, are the velocity components of any 
material particle at point (x, z), W,T and V,, are 
the mean velocities, w is the step width, measured 
parallel to the x-axis, D is the ramp spacing, S is 
the step height, and n is the number of terms in 
the Fourier series. The displacements of points on 
bedding planes are calculated by performing a 
fourth-order, Runge-Kutta integration of eqn. (5) 
(Gerald and Wheatley, 1985). 

The composite mechanical model also can pro- 
duce an approximately flat-topped duplex struc- 
ture. The structures formed by the composite 
kinematic and mechanical models are fundamen- 
tally the same, as shown in Figs. 12A and 12B. 
The folds in the mechanical model are rounded, 
whereas those in the kinematic model are angular. 
Beds in the mechanical model thicken and thin 
more than those in the kinematic model. The 
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Fig. 12. Comparison between the kinematic and mechanical models. A and B show the duplex form produced by each model; C and 
D show the development of a stacked duplex with increasing displacement; E shows a form similar to Fig. 4C; F is the stacked 

duplex form. 

composite mechanical model also produces a com- 
plete range of structures, from the flat-topped 
duplex (Fig. 12B) to the stacked duplex (Fig. 12F). 

An inappropriate result of the composite 
~nematic model is folding of bedding in the thrust 

sheet high above the roof fault of the duplex 
structure. The small folds are particularly obvious 
in the bedding overlying the duplex structures 
shown in Figs. 12A and 12C. According to the 
mechanical model, small folds will occur im- 
mediately only over the duplex st~cture because 
localized disturbances must die out exponentially 
(eqn. 5). 

Discussion 

Our composite kinematic model cannot form a 
duplex structure with a perfectly horizontal roof 
fault. The kinematic model for a single ramp 
produces a fold form in which the leading limb is 
steeper than the trailing limb (Suppe, 1983; Berger, 
1986), and the steepening of the leading limb 
increases with ramp angle. The composite kine- 
matic model is unable to reorient the leading limb 
to horizontal by passing the limb through a veioc- 
ity di~on~u~ty (as shown in the Appendix). 

The composite mechanical model cannot form 
a perfectly horizontal roof fault in a duplex struc- 

ture (Fig. 12B) for essentially the same reason. 
The leading limb is too steep to be reoriented to 
horizontal. However, at low ramp angles the roof 
fault is essentially horizontal in both the kinematic 
and rn~~a~~al models (Figs. 12A and 12B). 

For example, for a ramp angle of 30 O, which is 
the upper limit of the kinematic model (eqn. .l), 
the dip of the first velocity discontinuity is 75’ 
(90 - Q/2) O, and the dip of the leading limb (cu, 
Fig, 7) is 60 O. After the leading limb passes 
trout the first discontinuity on the new ramp 
(ramp 2, Fig. 7) its dip, 8, is 57-58”. The final 
dip of the leading limb would have to be O* to 
produce a flat-topped duplex structure. The rea- 
son the final dip is so large in this example is that 
the upper part of the limb reaches the velocity 
discontinuity shortly after the lower part of the 
limb. This does not allow the limb angle to change 
significantly. 

With the exception of the minor irregularities 
in the roof fault explained above, the composite 
kinematic model can reproduce a range of duplex 
forms previously drafted using geometrical tech- 
niques. The composite kinematic model is based 
on the kinematic model of Johnson and Berger, 
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which reproduces the fold form of the geometrical 

method introduced by Suppe (1983). The com- 

posite mechanical model is based on the single 

ramp model of Berger and Johnson (1980). 

Both composite models reproduce the essential 

features of the flat-topped, hinterland-dipping 

duplex structure of Boyer and Elliott (1982) (Figs. 

1A and 2D), consisting of a series of sigmoidal 

horses bounded above and below by roughly 

parallel detachment surfaces (Figs. 3D, 6, 8B, 

12A, 12B). The kinematic model is particularly 

useful for determining the geometric constraints of 

flat-topped duplex structures. Figure 10 shows 

how the ramp spacing, required for a flat-topped 

duplex structure, is constrained by displacement, 

ramp angle and height. The kinematic and mech- 

anical models can be used to construct the full 

range of duplex structures, from isolated horses, 

through approximately flat-topped duplex struc- 

tures, to antiformal stacks. 
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Appendix A 

Introduction 

Here we present a brief description of the single 

ramp kinematic model developed by Johnson and 

Berger (in press). The interested reader is referred 

to Berger (1986) and Johnson and Berger (in press) 

for a complete discussion of the model. 

Assumptions 

In the form proposed by Rich (1934), bed-du- 

plication folding requires: (1) translation of hang- 

ing-wall rocks subparallel to the thrust surface; (2) 

steps or curves in the thrust surface; (3) continu- 

ous contact between hanging-wall and footwall 

across the detachment surface; (4) stiff (or rigid) 

footwall. Three requirements to constrain the 

geometry were added by Suppe (1983): (5) con- 

stant length of beds; (6) planer fold limbs; (7) 

constant thickness of beds with planer fold limbs. 

Suppe assumed that the folds obey most of the 

rules identified by Patterson and Weiss (1966) for 

ideal kink bands. 

Velocity zones 

In the model (Fig. 4) the area above the thrust 

surface is divided into three velocity zones (I, II, 

and III), separated by two velocity discontinuities 

that form zone boundaries. Within each domain 

the velocities are constant. One velocity discon- 

tinuity forms a zone boundary at the base of the 

thrust ramp and is inclined at a clockwise angle of 

(90 + O/2) O. This domain boundary is fixed in all 

the kinematic models. The other discontinuity 

forms the domain boundary at the top of the 

thrust ramp and is initially inclined at a coun- 

terclockwise angle, y, of somewhat less than 90 ‘. 

Johnson and Berger show that this angle changes 

in orientation to (90 + O/2)” as the bed-duplica- 

tion fold stops growing. 

In each domain, the velocity vector is parallel 

to the detachment surface. Thus, in domain I, the 

velocity (VI) is parallel to the lower detachment; 

in domain II, the velocity is redirected parallel to 

the ramp; and in domain III, it is redirected 

parallel to the upper detachment. The velocity 

vector changes abruptly at domain boundaries. 

The magnitudes of the velocity vectors are equal 

to V, within domains I and II because the vectors 

and bedding domains both parallel the detach- 

ment surface near the domain boundary, and bed 

length is assumed to be conserved. In domain III, 

the magnitude if the velocity vector is slightly less 

than VO cos 0, as shown below. 

Each velocity vector in domains I and II can be 

decomposed into a component normal to the do- 

main boundary (V,, and Vsl,) and component 

tangential to the domain boundary ( Vs,, T/J. The 

normal components match at the domain 

boundary. The tangential components, however, 

are mismatched, and there is a change in magni- 

tude of the tangential velocity equal to: 

I& - V& = 2V0 sin(0/2) (Ala) 



which is approximately proportional to the slope 

of the ramp for small slopes: 

V& ‘- l$ = VQ tan 0; small 0 (Alhj 

For small slopes therefore, the magnitude of 

the vertical velocity over the ramp is merely equal 

to the velocity required to lift the material up as it 

is transported over the ramp. 

Within domain III, the velocity vector is paraf- 

Iel to the upper detachment, so at the boundary 

between zones II and III there is a change from a 

field of horizontal and vertical velocities to a field 

of horizontal velocity. The eli~nation of the 

vertical veiocity component as beds cross the zone 

boundary causes tilting of the beds and the forma- 

tion of the distal limb of a fold. 

The magnitude of the velocity discontinuity at 

the boundary between domains II and III is de- 

termined in the same way as described above. 

Each vector is decomposed into normal and 

tangential velocity components. As a consequence, 

there is a discontinuity of the tangential velocity 

equal to: 

‘/\,!, - K,, = v,,, cos Y - v, =4Y - @> (A2aj 

for small slope angles: 

V&,,, - &,, = - V;, tan 0; small 0 (A2bj 

Comparison of eqn. (Alb) and (A2b) shows 

that, for low ramp slopes, the first velocity discon- 

tinuity introduces and the second velocity discon- 

tinuity cancels the upward velocity component in 

the segments of material riding over the ramp 

fault. 

Relations between velocities and slopes of velocity 
discontinuities 

The kinematic model provides enough informa- 

tion to trace marker lines as they are translated 

across the domains of the velocity field and 

through the velocity d&continuities. For example, 

a horizontal line segment that begins in zone I will 

deform into a dipping line segment as it enters 

zone II, with a dip equal to that of the thrust 

ramp. Similarly, a horizontal line segment that 

begins in zone II and enters zone III deforms into 

j A VELOCITY ’ 
, DISCONTINUITY .-L ! 

Velocity ; 
: J ‘! 

zone m j 

Fig. 13. Reorientation of a Line, L, passing through the second 

velocity discontinuity in the single-ramp kinematic model (after 

Johnson and Berger, in press). 

a line segment with a dip opposite to that of the 

thrust ramp. 

This process is illustrated in Fig. 13A, where a 

single line segment, L, moves with the flow, in 

five time steps, from zone II across the domain 

boundary into zone III. The two dashed lines in 

Fig. 13A show displacement paths of points that 

mark the ends of the line. 

Figure I3B shows the initial and final positions 

of the line segment, L, as it begins (line AB) and 

completes (line CL)), its passage through the 

veiocity discontinuity (line SC). Points A, B, C, 
and D are shown for reference in Fig. 13A. Note 

that point A, at the left-hand end of the line 

segment, remains in domain II and point B, at the 

right-hand end of the line segment, remains in 

domain III during the entire time period. t, re- 

quired for the line segment to pass through the 

discontinuity. As a result the length of the dashed 

line, AC, is: 

AC= Vnt = &t (A3aj 

similarly, the length of the dashed line BD is: 

BD = V,& (A3b) 
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The value of V,,, will be determined below in 

terms of the velocity V, and the slope angle, 0, of 

the ramp. 

We first determine the angle, y, the slope angle 

of the velocity discontinuity between zones II and 

III. Following Suppe (1983), we assume that the 

line element L does not change length as it passes 

through the zone boundary, thus: 

AB=CD (Ada) 

Following Patterson and Weiss (1966), we as- 

sume that beds are the same thickness on either 

side of the zone boundaries, or as shown in Fig. 

13B. 

LDBC=LDCB (Ad’4 

The two assumptions stated above, (A4a) and 

(A4b), complete the definition of the geometry 

shown in Fig. 13B, and from the geometry, we can 

eliminate the unknowns: 

Considering triangle BCD, and using the law of 

sines : 

sin(180 - 2y)/BC = (sin y)/L (A5a) 

Considering triangle ABC: 

(sin O)/BC = sin( y - 0)/l (A5b) 

The unknown length BC can be eliminated 

between eqn. (A5), using trigonometric identities, 

and then the side length of a hypothetical right- 

triangle continuing y in order to derive the follow- 

ing resuk: 

tan y = cot 0 + [(cot%) - 31 1’2; OI30” 

(A-6) 

This is eqn. (1) in the main text. Equation (A6) 

generally has two real roots. For 0 = 30 o how- 

ever, it has only one: 

tany=cot O-tan(90-0) 

y=60°; 0=30°, 

For ramp angles greater than 30 O, the roots of 

eqn. (A6) are imaginary, so there is no orientation 

of discontinuity that will satisfy the conditions of 

zero lengthening and thickening of beds. 

The relation between the velocities in domains 

I and II on the one hand and zone III on the other 

can be derived with the law of sines, using angles 

ABC and BCA shown in fig. 13B. 

sin( y - 0)/L = sin(180 - @)/AC ( fw 
which according to eqn. (3b), can be written: 

sin(y - @)/V,,,t = sin(180 - y)/&t (A7b) 

because BD = L. Thus: 

V,,, = V, [ sin( y - @)/sin y] 

or: 

(A8a) 

V,,, = V,(cos 0 - sin 0 cot y) (A8b) 

Thus eqns. (A6) and (A8) provide the necessary 

relations for determining the slope angle of the 

second discontinuity and the magnitude of the 

velocity vector within domain III. 

Appendix B 

Here we present derivations of the equation for 

the critical ramp spacing required to approximate 

a flat-topped duplex structure (eqn. 3, in text) and 

the equation for the final orientation of a line 

passing through the first velocity discontinuity. 

Critical ramp spacing 

According to Fig. 7, the critical final ramp 

spacing (S,) is: 

S,=AB+EM+JK+CD (Bl) 

Using right triangle ABE: 

AB= Hcot 0 032) 

where H is the ramp height and R is ramp angle. 

Considering right triangle EFM: 

FM= U,sin 0 (B3) 

thus: 

EM = U, sin 0 cot y (B4) 

Using the right triangle IJK and the relationship 

IJ = FM: 

JK = U, sin 0 tan( O/2) CBS) 

Finally, from right triangle KCD: 

CD = H tan( O/2) (B6) 



Substituting eqns. (B2)-(B6) into eyn. (Blf and 
combining terms: 

SJN = cot 0 + tan( O/2) 

+ ( U,/H sin 0) [cot y + tan( (3/Z)] 

037) 

This is equivalent to eqns. (3) in the text. 

Re~rie~tut~~~ of a tine passing through the first 

oelocity discontinuity 

The dip, 1y, of the leading limb of the most 
recent horse will have a new dip, j3, after passing 
through the velocity discontinuity. By considering 
the geometry before and after the leading limb 
passes through the discontinuity (allowing the 
length of the limb to change), we derive the fol- 
lowing relationship between ty, /3. and 0: 

cos( o/2 + ff ) = cost@/2 + PI 
sin a sin(8 + j3) 

Solving for p in terms of the ramp angle, 0, 
and the original dip of the limb, CX, gives: 

cot(O+p)=cot cP2tan(0/2) Wa) 

or: 

j3 = - 0 -t cot-’ [cot cz - 2 tan( O/2)] (B9b) 
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