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Some Definitions and Useful Conversion Factors 

Stress (ML
-1

T
-2

): Force / Area. Common units are: Atmosphere, bar, Pascal, pounds/ft
2
, 

pounds/in
2
, inHg, dynes/cm

2
  

Force (MLT
-2

): Mass times acceleration. Common units are: Newton (SI) and dyne (cgs). 

Pascal. A measure of stress in SI units, defined as one Newton per meter-squared. 

Newton. A measure of force in SI units. Defined as mass times acceleration. 1 Newton is the force 

required to accelerate 1 kg of mass at 1 m/s
2
. 

Dyne. A measure of force in cgs units. The force required to accelerate 1 gram at 1 cm/s
2
. 

Acceleration due to gravity: 9.806650 m/s
2
, or 32.174048 ft/s

2
. 

Density of water (20°C):  0.99823 gm/ml (gm/cm
3
) or 998.23 kg/m

3
 

Unit weight of water (20°C):  9789.2922 kg m
-2

 s
-2

 or 9.789 kN/m
3
 

Specific gravity: The ratio of the mass of a body to the mass of an equal volume of water at 4°C. 

Unit conversions can be done using the CONVERT() function in Microsoft Excel, or the unit 

conversion functions in many calculators. You can also find numerous conversion factor sites on 

the World Wide Web. A nice book with all forms of conversion factors is:  

Cook, J.L., 1991. Conversion factors. Oxford Science Publications, Oxford University Press, 

Oxford. 160 p. 

From Multiply “from” by To 

Atmosphere (atm) 
1.01  10

5
 
Pa

atm
  

Pascal (Pa) 

Pascal (Pa) 
1 

N m
-2

Pa
  

N m
-2

 

Pascal (Pa) 
10

-1
 
dn cm

-2

Pa
  

dn cm
-2

  (dn = dyne) 

psf (lb ft
-2

) 
47.88 

Pa

psf
  

Pascal (Pa) 

psi (lb in
-2

) 
6.895  10

3
 
Pa

psi
  

Pascal (Pa) 

pcf (lb ft
-3

) 
157.0875 

N m
-3

 pcf
  

N m
-3

 

feet (ft) 
0.3048 

m

ft
  

meter (m) 

pound (lb) 
4.448221 

N

lb
  

Newton (N) 

pound (lb) 
0.453592 

kg

lb
  

Kilogram (kg) 
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Typical Material Values
1
 

Description Unit Weight 
(Saturated / Dry) 

Friction 
Angle 

Cohesion 

Type Material Lb / ft3 KN / m3 ° Lb / ft2 kPa 

C
o

h
e

s
io

n
le

s
s
 

S
a
n
d

 

Loose sand, uniform grain size 118/90 19/14 18-34   

Dense sand, uniform grain size 130/109 21/17 32-40   

Loose sand, mixed grain size 124/99 20/16 34-40   

Dense sand, mixed grain size 135/116 21/18 38-46   

G
ra

v
e

l Gravel, uniform grain size 140/130 22/20 34-37   

Sand and gravel, mixed grain size 120/110 19/17 30-45   

B
la

s
te

d
/b

ro
k
e

n
 r

o
c
k
 Basalt 140/110 22/17 40-50   

Chalk 80/62 13/10 30-40   

Granite 125/110 20/17 45-50   

Limestone 120/100 19/16 35-40   

Sandstone 110/80 17/13 35-45   

Shale 125/100 20/16 30-35   

C
o
h
e
s
iv

e
 

C
la

y
 

Soft bentonite 80/30 13/6 7-13 200 – 400 10 – 20 

Very soft organic clay 90/40 14/6 12-16 200 – 600 10 – 30 

Soft, slightly organic clay 100/60 16/10 22-27 400 – 1000 20 – 50 

Soft Glacial clay 110/76 17/12 27-32 600 – 1500 30 – 75 

Stiff glacial clay 130/105 20/17 30-32 1500 – 3000 75 – 150 

Glacial till, mixed grain size 145/130 23/20 32-35 3000 – 5000 150 – 250 

R
o
c
k
 

Hard igneous rocks 
Granite, basalt, porphyry 

160 to 190 25 to 30 34-45 720000-1150000 35000-55000 

Metamorphic rocks 
Quartzite, gneiss, slate 

160 to 180 25 to 28 30-40 400000-800000 20000-40000 

Hard sedimentary rocks 
Limestone, dolomite, sandstone 

150 to 180 23 to 28 35-45 200000-600000 10000-30000 

Soft sedimentary rocks 
Sandstone, coal, chalk, shale 

110 to 150 17 to 23 25-35 20000-400000 1000-20000 

Higher friction angles in cohesionless materials occur at low confining or normal stresses  

                                                 
1
 from Hall 1994, Table 4D.1, p. 435 
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Summary of useful equations 

Factor of Safety 

Dry Infinite Slope 

 









sin

tancos

t

tC
F   (2.2.5a) 

Submerged Infinite Slope 

 









sin

tancos(   

wt

wt

t

tC
F   (2.3.11b) 

Infinite Slope with Seepage parallel to slope 

 









sin

tancos(

t

wt

t

tC
F  (2.4.6a) 

Infinite Slope with Seepage and Tree Roots 

 F = 

–
C + 

1

A
 
i=1

n

 Fi + t (t – w) cos() tan(
–
) 

 t t sin()
  (2.5.4a) 

Fellenius method 

 F = 

   
i=1

n







b xi

cos(i)
{
–
C – ui tan(

–
)} + Wi cos(i) tan(

–
)

 
i=1

n

Wi sin(i)   

   (3.1.6) 

Modified Bishop method 

Use an initial guess for F in eq. (3.3.4) and use the resulting value for 
–
Ni  in eq. (3.3.5). This 

will give you a new value of F to use in eq. (3.3.4). Continue iterating between these equations 

until F does not change. 

 
–
Ni = 

Wi

cos(i)
 – Ui – b 

xi sin(i) 
–
C

F cos
2
(i)

l + 
tan(i) tan(

–
i)

F

  (3.3.4) 
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 F = 


i=1

n







b xi 

–
C

cos(i)
 + 

–
N tan(

–
i)

 
i=1

n

Wi sin(i)

  (3.3.5) 

Critical Thickness 

Dry Infinite Slope 

 tc = 
C

 cos() [tan() – tan()]
  ;  F = 1  (2.2.5f) 

Submerged Infinite Slope 

 tc = 

–
C

(t –w) cos() [tan() – tan(
–
)]

   ;  F = 1 (2.3.12) 

Infinite Slope with Seepage parallel to slope 

 tc = 

–
C 

t cos() [tan() – (1 – w / t) tan(
–
)]

  ; F = 1 (2.4.7) 

Infinite Slope with Seepage and Tree Roots 

 tc = 

–
C + 

1

A
 
i=1

n

 Fi  

 t cos() [tan() – (l – w / t) tan(
–
)]

  ; F = 1 (2.5.4b) 

Unit weight 

  = 
Volume of Solids

Total Volume
  

a is the unit weight of air (taken to be 0 in 2.3.15b) 

s is unit weight of solid particles 

w is the unit weight of water 

Dry soil 

 t = s  + a (1 – ) (2.3.15a) 

or 

 t =  s   ;   Dry Soil (2.3. 15b) 

Mixture of water and solids 

 t =  s + (1 – ) w   ;   Saturated Soil (2.3.15c) 



 

 

1. Theory of Slope Stability 

In the lecture part of this course we will discuss a variety of methods of analysis of slope 

stability and instability. It is essential that the engineering geologist be intimately familiar with all 

of these methods because they provide ways of determining, relatively unambiguously, whether a 

given slope is likely to slide or whether it will remain stable. Perhaps most important, though, is 

that fact that the mechanical analysis of slope stability provides us with knowledge of what 

parameters control landsliding; the guesswork is entirely removed. At one time it was considered 

acceptable practice for the engineering geologist to make general statements about the effect of 

the geology, vegetation, the effect of intense rainfalls, or the effect of the facing direction of a 

slope (e.g., north-facing slopes are less stable than south-facing slopes) on slope stability. No 

longer, though, is this acceptable. The engineering geologist is expected to know and understand 

theoretical and practical soil mechanics, better than the usual Civil Engineer, and nearly as well as 

the specialist, the Geotechnical Engineer. This course is designed to supplement the theory and 

practice of soil mechanics that you learn in courses taught in Civil Engineering. I assume that you 

have had at least one course in elementary soil mechanics. You certainly can complete this course 

without having had a course in soil mechanics, but I believe you will learn much more if you 

know some soil mechanics before you take this course. 

With the availability of computers and slope analysis software there is now even less excuse 

for not doing the proper type of slope stability analysis. However, you cannot have computer 

programs do the thinking for you. The better you understand the mechanics of slope stability the 

more effective your use of these programs will be. In this class we will use some simple programs. 

The only difference between the programs we use and commercial programs is they are perhaps a 

little less user friendly, and do not produce a wide range of plots. Other than that, they are fully 

functional. You will get to see how little there is to slope stability! 

It is well known in soil mechanics that three general types of parameters determine the 

stability or instability of a slope. One group concerns the strength of the soil. The strength 

includes cohesion, friction, interlocking of grains, reinforcement, for example by roots, and 

perhaps other factors. Another group concerns the geometry of the soil. This includes the shape of 

the ground surface, the shapes of possible slide surfaces, the pattern of layering within the soil, 

and the forms of significant discontinuities such as joints or shear zones. The other group of 

parameters relates to the pore-water pressure. These include the pore-water pressure itself as well 

as the seepage forces set up by movement of water through the soil. Our approach is going to be to 

keep certain parameters constant and to investigate effects of the remaining parameters. In this 

way we can understand effects of the various parameters. Thus, we will perform a series of 

investigations in which we assume that the slope has simple geometry and is very long. These 

theoretical investigations allow us to assess effects of certain idealized pore-water pressure 

distributions and effects of tree roots on slope stability. Then we will assume that the failure 

surface is a segment of a circle, so that we can readily treat landslides where the thickness of the 

sliding debris is a significant fraction of the distance from the head to the toe of the landslide 

mass. Finally we will introduce rather complicated and accurate methods of stability analysis that 

require the use of a computer. These more complicate methods allow us to treat most problems of 

slope stability. 
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2. Infinite Slope 

2.1 Equilibrium equations 

The simplest problem of slope stability that we can analyze, and that we should understand 

in detail because it is so basic, is that of the stability of the so-called infinite slope. The infinite 

slope solution is also an exact solution, the methods of slices which we examine later are 

approximate solutions. In an infinite slope solution we determine the conditions under which a 

layer of soil of thickness t will slip along a surface, a-a', that is parallel to the ground surface, 

which has a slope angle of . The cross section of the infinite slope is shown in Figure 1. At this 

point you should study relevant pages in Lambe & Whitman (1969, §13.9, p. 191-193 & Chapter 

14, p. 352-373), Turner & Schuster (1996, Chapter 13, p. 337), Budhu  [, 2000 #5090, §11.6, p. 

592], or Abramson et al. (1996, §6.6, p. 352). We will use a somewhat different procedure from 

that presented by some of the texts above, but I hope that the two approaches will increase your 

understanding, rather than confuse you. Several of the texts above deal with a vertical distance, d, 

rather than with the thickness, t, of the sliding body, but one can readily convert from one to the 

other with the relation, 

 t = d cos() (2.1.1) 

Using the vertical distance makes the final equations look more complex. 

d

t



x

y

y

x

 

Figure 1. Definition diagram for infinite slope analysis 

The way we will approach this problem is to select a tiny element of soil, with dimensions 

x and y (in the plane of the figure), and unit weight
2
, , where the coordinates are selected to be 

parallel or normal to the ground surface. Let the element have a dimension z normal to the view 

in Figure 1. Then, for static equilibrium of forces, F, and moments, M, must sum to zero, 

 M = 0 ;   Fx = 0 ;   Fy = 0 (2.1.2) 

                                                 

2
 Unit weight, , is density times acceleration due to gravity (g), so that it has units of force per unit of volume (e.g., 

N/m
3
). Often you will see stresses reported in units of kg/cm

2
 in soil mechanics literature. This is nonsense. However, 

merely replace kg/cm
2
 by atmospheres and you will be dealing with a proper quantity (see conversion tables on p. iv). 
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The stresses acting on the tiny element are shown in Figure 2a, whereas the forces are shown 

in Figure 2b. The forces, of course, are the stresses multiplied by the areas on which the stresses 

act. The stresses vary across the width or depth of the element, and the different stresses on 

opposite sides are indicated by primed and un-primed values. For example, xx is the normal stress 

acting on the left-hand side of the element and  xx is the normal stress acting on the right-hand 

side: 

  xx = xx + 
xx

x
  x (2.1.3a) 

Similarly, 

  xy = xy + 
xy

x
  x (2.1.3b) 

  yx = yx + 
yx

y
  y (2.1.3c) 

 yy = yy + 
yy

y
  y (2.1.3d) 

Note that all the stresses shown in Figure 2A are shown in their positive directions, so that 

normal stresses are positive if compressive. 

As already stated, the forces, N and T, are equal to the corresponding stresses times the 

appropriate areas. Thus, 



yy

'yy

'xx

xx

yx

xy

'xy

'yx

x

y

Nyy

N'yy

N'xx

Nxx

Tyx

Txy

T'xy

T'yx

W

A

A B

Stresses Forces
 

Figure 2. Unit element in a slide mass. Note that all the stresses shown are in their 

positive directions, so that normal stresses are positive if compressive. 
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 Nxx = xx y z   ;    N xx = xx y z (2.1.4a) 

 Txy = xy y z   ;    T xy = xy y z (2.1.4b) 

 Tyx = yx x z   ;    T yx = yx x z (2.1.4c) 

 Nyy = yy x z   ;    N yy = yy x z (2.1.4d) 

So much for definitions. 

Now let us apply the equations of moment and force equilibrium, eqs. (2.1.2). Summing 

moments about the lower left-hand corner (point A) in the element shown in Figure 2B, with 

counter-clockwise being a positive moment, 

 T yx y – T xy x – (Nxx – N xx) 
y

2
  + (Nyy – N yy) 

x

2
  – (x y z) 







x

2
 cos() + 

y

2
 sin()  = 0 

  (2.1.5a) 

in which the weight of the element, W, is 

 W = (x y z) (2.1.5b) 

The lever arms for Tyx and Txy are zero. Substituting eqs. (2.1.3) into (2.1.4) and the resulting 

eqs. (2.1.4) into the result above, 

 (yx + 
yx

y
  y) (y x z)  – (xy + 

xy

x
  x) (y x z) 

 + 
xx

x
 
x

2
  (y x z)  – 

yy

y
 
y

2
  (y x z) 

 – (y x z) ( 
x

2
  cos() + 

y

2
  sin() ) = 0 (2.1.5c) 

Now, dividing each term in eq. (2.1.5c) by the volume of the element (x y z), and taking the 

limit of the resulting eq. (2.1.5c) as x  0 and y  0, we derive the result that the moments 

sum to zero if 

 yx – xy = 0 (2.1.6a) 

 yx = xy (2.1.6b)  

Summing forces in the x- and y-directions we derive the equilibrium equations in terms of 

stresses. Thus, summing forces in the x-direction 

 Fx = Nxx – N xx + Tyx – T yx + W sin() = 0 (2.1.7a) 

Substituting eqs. (2.1.3) into (2.1.4) and the resulting eqs. (2.1.4) into (2.1.7a) 

 xx yz – 








xx + 
xx

x
 x yz + yx xz – 









yx + 
yx

x
 y  xz +  (y x z) sin() = 0 

  (2.1.7b) 

and then dividing by the volume of the element, 
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
xx

x
 – 
xx

x
 – 
xx

x
 + 
yx

y
 – 
yx

y
 – 
yx

x
 +  sin() = 0, (2.1.7c) 

which leaves 

 
xx

x
 + 
yx

y
  =  sin() (2.1.7d) 

Similarly, summing forces in the y-direction, 

 Nyy – N yy – W cos() + Txy – T xy = 0 (2.1.8a) 

so that, proceeding as before, we derive 

  
yy

y
 + 
xy

x
  = –  cos () (2.1.8b) 

Equations (2.1.7d & 2.1.8b) are the equilibrium equations, in terms of stresses. 

Now, for problems involving infinite slopes, the stresses cannot change in the x-direction. 

Therefore, eqs. (2.1.7d & 2.1.8b) can be written as total differential equations, 

 
dyx

dy
  = sin() (2.1.9a) 

 
dyy

dy
  = – cos() (2.1.9b) 

From equation 2.1.5b we should also note that 

 
dyx

dy
 = 

dxy

dy
  (2.1.10). 

Integrating eqs. (2.1.7), we derive, 

 xy =  y  sin() + C0 (2.1.11a) 

 yy = – y  cos() + C1 (2.1.11b) 

in which C0 and C1 are arbitrary constants. However, the shear stress and normal stress are 

necessarily zero at the ground surface, so that the constants are zero, 

 xy = y  sin() (2.1.12a) 

 yy = – y cos() (2.1.12b) 

We should note that we have made no assumption concerning the rheological properties 

of the material in the slope. Thus eqs. (2.1.12) are valid whether the material is soil, water, lava 

or some other material. However, to say anything about slope stability, we will need to introduce 

the rheological properties of the soil. 

The simple relationships in eqs. 2.1.12 represent the equilibrium conditions in any material. 

The material is out of equilibrium when these conditions are not satisfied. The question in slope 

stability is how far out of equilibrium is the slope, and in what direction is out of equilibrium – is 

it stable or unstable? 
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2.2 Dry Soil 

Let us first consider the stability of a slope underlain by dry soil, so that pore-water pressures 

are zero. For dry soil, one generally assumes that the soil shears when the shear stress is equal to 

the shear strength of the soil. A very simple model of shear strength, which works remarkably well 

for most soils, is Coulomb's law of friction
3
, 

 strength in shear = C + tan() (2.2.1) 

in which C is cohesion,  is normal stress acting across the surface of shearing, and  is the angle 

of internal friction (generally about 30° for sand and 15° to 25° for clay, see table on p. v). We 

generally state the strength in terms of a yield condition, which is 

  < C + tan() (2.2.2) 

in which  is the shear stress acting on the surface of failure in shear. The absolute value sign is 

required because the shear strength equally resists positive or negative shear stress. The "less-than-

or-equal", , symbol indicates that the shear stress applied to the soil must be less than or equal to 

the shear strength of the soil; this is by definition shear strength. 

Furthermore, we generally compute a factor of safety against sliding, F, where the factor of 

safety is a measure of the closeness to conditions of sliding that exist in a slope. The factor of 

safety is defined as the ratio of the shear strength to the actual shear stress, 

 


 )tan(


C
F  (2.2.3) 

The factor of safety is greater-than one if the shear strength is greater than the shear stress, 

so that the slope is stable, and it is equal to one if failure is impending. If you compute a factor of 

safety less-than one, get out of the way! 

Let us compute the factor of safety for an infinite slope. The shear stress is maximal at the 

bottom of the soil (2.1.12a, Figure 1), where y = – t, so that from eq. (2.12), 

 xy = – t  sin() (2.2.4a) 

 yy = t  cos() (2.2.4b) 

For stability we are interested in the shear stress on planes normal to the y-axes, so that 

  = xy = – t  sin() (2.2.4c) 

The normal stress acting on this plane is yy , so that 

  = yy = t  cos() (2.2.4d) 

Accordingly, the expression for the factor of safety against sliding, eq. (2.2.3), becomes, 

 F = 
C + t  cos() tan()

t  sin()
   ; dry soil (2.2.5a) 

                                                 
3
 Also called Mohr-Coulomb Law in some texts, such as Lamb & Whitman (1969, Chapter 11, p. 137) 
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If the cohesion, C, were zero, 

 F = 
tan()

tan()
    ; dry soil ;   C = 0 (2.2.5b)

4
 

Equation (2.2.5b) represents a common notion for the angle of internal friction. If we let the 

factor of safety be one then eq. (2.2.5b) becomes 

 tan() = tan()   or    =  (2.2.5c) 

Thus if a cohesionless material was piled into a cone, the angle of the cone will be the angle 

of internal friction for the material. This is not an accurate measure of .  is determined from 

triaxial tests and a Mohr diagram. 

Further, if the thickness of the potential slide is equal to the critical thickness for sliding, the 

factor of safety is one. In this case we can solve for the critical thickness by setting F = l in eq. 

(2.2.5a), 

 1 = 
C + t  cos() tan()

t  sin()
  (2.2.5d) 

 t  sin() = C + t  cos() tan() (2.2.5e) 

 tc = 
C

 cos() [tan() – tan()]
  ;  F = 1 ;   dry soil (2.2.5f) 

since tan() = sin()/cos(). The critical thickness, tc, is zero if the cohesion is zero. This may 

appear to be a surprising result. 

At this point you should complete exercise 1 (p. 39). 

2.3 Infinite slope in standing body of water 

t



x

y

y

x

t

Ui

U

A B C

 

Figure 3. Definition diagram for a submerged infinite slope. 

                                                 
4
 This is the equation at the top right-hand side of p. 193 of Lambe and Whitman (1969). 
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The next problem that we will consider is the infinite slope that is submerged by a standing 

body of water (Lambe & Whitman 1969, §24.1, p. 352). Now I realize that this is a physical 

impossibility, but it is possible for a very long slope to be submerged and our analysis will be 

approximately valid for such a slope, and will be very accurate as long as the length of the slope 

is, say, ten or more times the thickness of the sliding debris. The water and soil is a two-phase 

system, which must be considered explicitly in our analysis. Also, we should follow Terzaghi and 

use "effective stress" concept of soil strength. This is one of the most important concepts in soil 

mechanics (see Lambe 1969, chapter 10, p. 241). According to the concept of effective stress, the 

strength of the soil is 

 strength in shear = 
–
C + ( – u) tan(

–
) (2.3.1) 

where 
–
C and 

–
 are material properties of the saturated soil, and u is pore-water pressure. As 

before,  is the normal stress on a potential surface of failure. 

The body of water is not moving, so we can compute the water pressure everywhere within 

the system: 

 
u

x
  = w sin() (2.3.2a)

 5
 

 
u

y
  = – w cos() (2.3.2b) 

Where w is the unit weight of water. Integrating  eq. (2.3.2b), 

 u = – y w cos() + f(x) (2.3.3a) 

where f(x) is a function of x. Substituting (2.3.3a) into eq. (2.3.2a) we derive 

 


x
 { – y w cos() + f(x)} = 

d f(x)

dx
  = w sin() (2.3.3b) 

(because y, of course, is independent of x), so that 

 f(x) = x w sin() + Co (2.3.3c) 

in which Co is a constant. Thus eq. (2.3.3a) becomes, 

 u = w (x sin() – y cos()) + Co (2.3.3d) 

Now, let the water pressure at the surface of the soil mass, at y = 0, be ui. 

 ui = w  x sin() + Co (2.3.4a) 

 Co = ui – w  x sin() (2.3.4b) 

Then we can write eq. (2.3.3d) in the final form, 

 u = w (x sin() – y cos()) + ui – w  x sin() (2.3.5a) 

 u = – y w cos() + ui. (2.3.5b) 

                                                 
5
 Note that we derived eqs. (2.3.2), another form of equilibrium equations, by inspection of eqs.( 2.1.7d, 2.1.8b). Water 

will not support shear if it is stationary.  
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Thus we have derived an expression for the pore-water pressure within the soil mass, as well 

as the water pressure within the standing body of water overlying the soil mass. 

At this point we return to the equations for the stresses within the soil mass, eqs. (2.1.7d, 

2.1.8b). Those equations are for the total stresses, and are a result of the combined density of the 

soil and the water contained in the soil. Thus, instead of using dry unit weight, , we use total unit 

weight, t
6
 of the soil, and eqs. (2.1.7d, 2.1.8b) become 

 
xx

x
 + 
yx

y
  = t sin() (2.3.6a) 

 
yy

y
 + 
xy

x
  = – t cos() (2.3.6b) 

However, the shear stress is independent of x, so that the second term in eq. (2.3.6b) is zero. The 

normal stress xx varies with x only because the pore-water pressure, u, varies with x in the 

manner indicated in eq. (2.3.3d). 

 
xx

x
 + 
yx

y
  = t sin() (2.3.7a) 

  xx/x varies according to equation (2.3.3d). The reason for this is as you move in the x-

direction you are moving deeper, thus the pressure (xx) is increasing. This can be seen by 

examining Figure 3. The pore-water pressure change can be written 

 
xx

x
 =  

lim

x  0 
ux+x – ux

x
 (2.3.7b) 

or 

 
xx

x
 = 
w [(x + x) sin() – y cos()] + Co – w [x sin() – y cos()] – Co

 x
  (2.3.7c) 

 
xx

x
   = w sin() (2.3.7d) 

Thus, using eq. (2.3.7d), eqs. (2.3.6a); become, 

  w sin() + 
dyx

dy
  = t sin() (2.3.8a) 

or 

 
dyx

dy
 = (t – w) sin() (2.3.8b) 

 
yy

y
  = – t cos() (2.3.8c) 

                                                 
6
 The total specific weight is not simply the addition of the unit weight of solids plus the unit weight of water. We have 

to allow for the porosity of the material. See equations 2.3.15 at the end of this section. 
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The component of xx that comes from the soil will be a constant (as with the dry soil 

derivation). yy/y is left as a partial derivative since yy varies with both x and y (again, this can 

be seen from examining Figure 3). You should compare these equations with eq. (2.1.9).  

We should note two features of eqs. (2.3.8b,c). The normal stress depends upon the unit 

weight of the mixture of solids and water, whereas the shear stress depends upon the buoyant unit 

weight, (t – w), of the mixture. Further, we have made no special assumptions in deriving eqs. 

(2.3.8b,c). A special assumption is introduced only in a following step, when we assume that eq. 

(2.3.1) describes adequately the strength of the soil. 

Integrating eqs. (2.3.8b,c), 

 yx = xy = y (t – w) sin() (2.3.9a) 

in which the arbitrary constant was set equal to zero, because the shear stress is zero for y = 0. 

Further, 

 yy = – y t cos() + g(x) (2.3.9b) 

Where g(x) is an arbitrary function of x. However, at y = 0, yy = ui, eq. (2.3.5), so that 

 yy = – y t cos() + ui (2.3.9c) 

in which 

 ui = w x sin() + Ci (2.3.9d) 

where Ci is a constant, which we need not determine, as we will show below. 

Next we consider the possibility of sliding of a soil mass of thickness t (Fig. 3A). The shear 

stress parallel to the base is 

  = xy = – t (t – w) sin() (2.3.10a) 

and the effective normal stress at the base, y = –t, is (eq. (2.3.9b) minus (2.3.5b)), 

  – u = yy – u = t (t –w) cos() (2.3.10b) 

The factor of safety against sliding is 

 F  = 

–
C +( – u) tan(

–
)


  (2.3.11a) 

so that, 

 F = 

–
C + t (t – w) cos() tan(

–
)

t (t –w) sin()
  ; Submerged slope (2.3.11b) 

The critical thickness, tc, derived for a factor of safety of one, is 

 tc = 

–
C

(t –w) cos() [tan() – tan(
–
)]

   ;  F = 1 (2.3.12) 
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If the cohesion is negligible, the factor of safety reduces to that of a dry slope, 

 F = 
tan(

–
)

tan()
  ; 
–
C = 0 (2.3.13) 

as noted by Lambe and Whitman (1969). We would note, further, that the critical thickness for 

sliding (as well as the factor of safety) is increased for the submerged slope relative to a dry slope, 

if the strengths are unchanged
7
. This somewhat surprising result can be explained as follows: 

Let  be the volume fraction of solids in a soil.  

  = 
Volume of Solids

Total Volume
  (2.3.14) 

For the dry soil, therefore, the total unit weight, t, which we called  in previous paragraphs, is 

 t = s  + a (1 – ) (2.3.15a) 

in which a is the unit weight of air and s is unit weight of solid particles. Let the unit weight of 

air be effectively zero, so that eq. (2.3.15a) simplifies to 

 t =  s   ;   Dry Soil (2.3.15b) 

On the other hand, the total unit weight of the mixture of water and solids is, 

 t =  s + (1 – ) w   ;   Saturated Soil (2.3.15c) 

Therefore, the effective unit weight of saturated soil is 

 
–
  = t – w =  (s – w) (2.3.15d) 

Clearly the effective unit weight, eq. (2.3.15d), used in the computation of factor of safety 

and critical thickness, eqs. (2.3.11b) and (2.3.12), is always less than the unit weight for dry soil, 

eq. (2.3.15b). Thus the statement by Lambe & Whitman (1969), that the factor of safety is 

unchanged by submergence, is correct for the special case of C = 0. The factor of safety is 

increased, however, if C  0, and C = 
–
C, 

–
 = . 

Time for another exercise! This time do exercise 2 (p. 40). 

2.4 Infinite slope with seepage parallel to the slope 

Thus far we have considered a slope underlain by dry soil, so that the pore-water pressure 

was zero, and a slope completely submerged in a standing body of water. Water is one of the most 

important factors in landsliding. It is usually an increase in water content that will initiate and 

maintain landslide movement. The importance of water, especially infiltration has been discussed 

at some length in the literature (e.g., Baum & Reid 1995). 

Now we will consider the stability of a slope where the water table is at the ground surface 

and where equipotential lines are normal to the ground surface (see Lambe1969, p. 354). It is 

beyond the scope of this course to compute the pore-water pressure distribution within the soil 

                                                 
7
 We will expect some changes in strength parameters when the material is saturated (See Progress of consolidation in 

delta front and prodelta clays of the Mississippi River, by B. McClelland in Marine Géotechnique). 
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under these conditions, so we will use results presented by Lambe & Whitman (1969, p. 354, fig. 

24.3): 

 u = – y w cos() (2.4.1) 

Perhaps you find it interesting that this is the same as eq. (2.3.5b) with ui, the pore-water 

pressure at the ground surface, equal to zero. If so, maybe you should try to figure it out. It really 

is relatively simple. The pore-water pressure is independent of x, so that eqs. (2.3.6) reduce to 

 
dyx

dy
  = t sin() (2.4.2a) 

 
dyy

dy
  = – t cos() (2.4.2b) 

Integrating, and using the boundary conditions that the normal and shear stresses are zero at 

the ground surface, y = 0, we derive, 

 yx = y t sin() (2.4.3a) 

 yy = – y t cos() (2.4.3b) 

As before, we assume that failure is occurring or potentially could occur at a depth y = – t, 

so that the shear and normal stresses there are, 

  = – t t sin() (2.4.4a) 

  = t t cos() (2.4.4b) 

The factor of safety against sliding is 

 F = 

–
C + (– u) tan(

–
)


  (2.4.5) 

so that, using eq. (2.4.1), 

 F = 

–
C + t (t – w) cos() tan(

–
)

t t sin()
  ; Seepage parallel to slope (2.4.6a) 

and if the cohesion is zero, 

 F = 
[1 – (w/t) ] tan(

–
)

tan()
  ; 
–
C = 0 (2.4.6b) 

This is the same as writing 

 F = 
tan(

–
)

tan()
  – 

w

t
  
tan(

–
)

tan()
  

Thus the factor of safety is reduced by w/t compared with the equivalent dry slope. 

The critical thickness, corresponding to a factor of safety of one, is 
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 tc = 

–
C 

t cos() {tan() – (1 – w / t) tan(
–
)}

  ; F = 1 (2.4.7) 

Therefore, the condition of seepage parallel to the surface is the least stable condition of the 

slope; the factor of safety against sliding and the critical thickness are least for this condition. 

Time for yet another exercise! Now complete exercise 3 (p. 40). 

2.5 Incorporation of strength controlled by tree roots 

Mary Riestenberg (Riestenberg & Sovonick-Dunford 1983) has done research into the effect 

of roots of woody vegetation on the stability of colluvium on steep slopes. Independently, the 

same results had been derived by Waldron (1977), Wu et al. (1979) and Wu & Swanston (1989).  

For a small slide that she studied in detail, Mary found that the average shear strength 

contributed by the roots was about 5.7 kN/m
2
 of the shear surface, whereas the average strength 

contributed by residual friction, alone, was about 0.7 kN/m. The tree roots, therefore, increased 

the factor of safety against sliding 9-fold, in this case. Based on observations of many landslides of 

various thicknesses in the Cincinnati area, Mary has tentatively concluded that tree roots can 

significantly increase the resistance to sliding for soil masses up to about two meters thick. Here 

we will briefly review her theoretical analysis, in order to determine the effect of tree roots on 

resistance to sliding for very long slopes. Further data on root strength is given by Turner (in 

Turner & Schuster 1996, p. 538, tables 20-1 & 20-2) and Hall et al. (1994, p. 543). 

 Figure 4 shows normal, Fn, and tangential, Fs, forces contributed at the failure surface at the 

instant a tree root is ready to break in tension. The force required to break the tree root is F. Thus, 

 Fs = F sin() (2.5.1a) 

 Fn = F cos() (2.5.1b) 

where  is the angle of inclination of the tree root (Figure 4). 

Slip surface

Shear zone





Fs

Fn
F 

A B

 

Figure 4. Role of tree roots in reinforcing a soil mass. 
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Now the average normal stress applied to the surface of failure by the tree roots is 

  = 
1

A
  

i=1

n

 Fi cos(i) (2.5.2a) 

in which A is the area of the part of the slip surface penetrated by a total of n roots, Fi  is the force 

required to break each root, and i is angle of inclination of each root. Similarly, the average 

tangential stress for the same unit of area, A, is 

  = 
1

A
  

i=1

n

 Fi sin(i)  (2.5.2b) 

where, again, the sum is taken over all the roots that penetrate that certain area of the slip surface. 

The average strength contributed by tree roots is to the shear resistance of the material 

 r =  tan(
–
) +  2.5.3a) 

 r = 
1

A
  

i=1

n

 Fi [cos(i) tan (
–
) + sin(i)]   (2.5.3b) 

In order to perform a stability analysis, we add this strength, eq. (2.4.3b), to that contributed 

by the soil without roots, eq. (2.3.1). Mary noted, however, the roots that penetrated the slip 

surface in the small landslide complex that she studied had become distorted from a nearly 

vertical orientation to an orientation nearly parallel to the slip surface. In this case, i  90° and 

eq. (2.4.3b) simplifies to 

 r = 
1

A
  

i=1

n

 Fi   (2.5.3c) 

since cos(90°) = 0, and sin(90°) = 1. 

A further justification for using the form (2.5.3c) is that the quantity in brackets in eq. 

(2.5.3b) maximizes where  

 Cot() = tan 
–
 (2.5.3d) 

that is, 

 (i)max resistance = 90° – 
–
. (2.5.3e) 

Therefore, if the angle of internal friction is 10°,  is 80°, and in this case (2.5.3b) is a close 

approximation to eq 2.5.3c. 

Adding the strength contributed by the tree roots, eq. (2.5.2c), to that contributed by the soil 

without roots, eq. (2.3.1), we derive 

 F = 

–
C + 

1

A
 
i=1

n

 Fi + t (t – w) cos() tan(
–
) 

 tt sin()
   (2.5.4a) 
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for the factor of safety, and 

 tc = 

–
C + 

1

A
 
i=1

n

 Fi  

 t cos() [tan() – (l – w / t) tan(
–
)]

  ; F = 1 (2.5.4b) 

for the critical thickness. 

Mary determined tensile strengths of roots sampled from the base of the landslide that she 

studied, and the results are presented in fig. 12 of her M.S. thesis (Riestenberg 1981), in terms of 

force (in Newtons) required to break a root of a certain diameter (in mm). For example, for woody 

roots about 2 mm in diameter, the force required to break the roots in tension ranges from about 

100 to 200 Newtons. The table below summarizes some of her measurements. 

Table 1. Summary of root strength data for live sugar maples. From Riestenberg (1981, 

fig. 12). 

* Indicates best estimates of strengths. 

In order to use eqs. (2.5.4) for stability analysis, of course, you must be able to measure or 

estimate the number of roots of various sizes that penetrate a given area of the slip surface. This, 

unfortunately, is difficult to do in practice. 

Now complete exercise 4 (p. 41). 

Root Diameter (mm) Breaking Force (F, Newtons)  

2 100 – 200 100* 

5 250 – 450 450* 

10 900 – 1500 1,500* 

30 7,000 – 2,0000 10,000* 
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3. Method of slices 

3.1 Introduction 

In following paragraphs we will derive the equations essential for understanding two 

methods of slope-stability analysis, the Fellenius and the modified-Bishop methods. We will not 

discuss how one computes pore-water pressures along slip surfaces, nor will be discuss how one 

determines relevant soil properties to use in the analyses. For discussions of these subjects, please 

see Lambe & Whitman (1969). In particular, you should learn something about the construction of 

flow nets in analysis of flow of ground water (e.g., Fetter 1994, Freeze & Cherry 1979), and you 

should be familiar with residual and peak strengths of clayey soils (e.g., Skempton 1964). 

Both the Fellenius and the modified-Bishop methods are examples of a group of methods 

called method of slices. In these methods, a possible slip surface, with the form of a segment of a 

circular cylinder, is assumed, and the driving and resisting moments are computed in order to 

determine the factor of safety against sliding. The factor of safety is defined as 

 







 n

i

d

n

i

r

M

M

F

1

1  (3.1.1) 

that is, it is the ratio of the sum of the resisting moments to the sum of the driving moments. In 

cross section the circular cylinder projects as a segment of a circle (Figure 5). The mass of soil 

contained between the circular arc (ABC) and the ground surface is divided into a series of slices, 

the sides of which are vertical (Figure 5A). The number of slices is somewhat arbitrary, but 

different numbers should be selected and factors of safety computed in order to find the number 

above which the factor of safety is changed insignificantly by increasing the number of slices. In 

Figure 5A we have arbitrarily selected nine slices of various widths. 
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After selecting the slices, we compute resisting and driving moments. One slice, the sixth 

shown in Figure 5A, is shown in Figure 5B as a free-body diagram of a typical slice. The free-body 

diagram shows all relevant forces and moments acting on the element. One force shown is W, the 

weight of the slice. It is determined by multiplying the area of the slice times the unit of breadth in 

the direction normal to the page, times the unit weight of the soil. However, in this example we 

must use the unit weight for unsaturated soil above the water table, and the saturated unit weight 

for the part of the slice below the water table. Another force is the shear force, Ti, which, in both 

the Fellenius and the modified-Bishop methods, is given by the Terzaghi-Coulomb failure 

criterion, 

 i = 
–
C + ( – u) tan(

–
) (3.1.2a) 

or 

 Ti = 

–
Ci b xi

cos(i)
 + 








Ni  – 
ui b xi

cos(i)
  tan(

–
i) (3.1.2b) 

in which b is unit breadth (one meter or one foot, depending upon the system of units for the 

constants), xi is the width of the slice measured horizontally (Figure 5B), is the slope angle of 

the tangent to the bottom of the slice, N is the total force normal to the slip surface, and u is the 

A B

R

R

1

98
7

6
5

4
3

2

Water Table

xi

Wi

i

C

A

B

D

R sin(i)

i

i

i

T

N + u

Ti

Niui

Central

angle

 

Figure 5. Definition diagram for Fellenius and Bishop methods. A simple slip surface is 

assumed, and the total moments are determined by summing moments for each slice. 

The factor of safety is defined as the ratio of the sum of the resisting moments divided by 

the sum of the driving moments. 
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pore-water pressure at the base of the slice. Thus the quantity {b xi / cos(i)} is the area over 

which a stress is acting. 

The normal force, N, acts through the center of the circle, so that its lever arm is zero, and it 

exerts a zero moment with respect to the center. The shear force, T has a lever arm equal to the 

radius of the circle, so that the moment resisting sliding for that slice simply is, 

 R Ti (3.1.3a) 

Therefore, the total resisting moment is 

 
i=1

n

 Mr  =  R Ti (3.1.3b) 

where Ti is given by eq. (3.1.2b). 

The driving moment arises entirely from the weight of the slice. The lever arm for a slice is 

R sin(i). You can verify this by examining Figure 5A, where the lever arm for slice 6 is 

illustrated. You should verify that the angle between the vertical and the radius for slice i is equal 

to i and that the slope to the tangent to the base of slice i is equal to i, the same angle. Thus the 

driving moment for slice i is 

 R Wi sin(i) (3.1.4) 

and the sum of the driving moments is 

 
i=1

n

Md = R 
i=1

n

Wi sin(i)  (3.1.5) 

Substituting eq. (3.1.2b) into (3.1.3b), and the resulting eq. (3.1.3b) as well as (3.1.5) into 

(3.1.1), we derive the expression for the factor of safety, 

 F = 

   
i=1

n







b xi

cos(i)
 {

–
C – ui tan(

–
)} + Ni tan(

–
)

 
i=1

n

Wi sin(i)   

  (3.1.6) 

in which the sums are to be taken over all the slices. 

Equation (3.1.6) is used for both the Fellenius and the modified-Bishop methods of stability 

analysis. The differences in the two methods are entirely a result of the way the normal force, Ni, 

is defined. It is important to recognize that neither method of analysis satisfies force equilibrium. 

This is an approximation to the true solution. There was no such approximation made in the 

infinite slope analysis. 
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3.2 Fellenius Method 

Perhaps the most widely used method of stability analysis is the Fellenius, method, 

sometimes called the Swedish Circle Method. In this method, the normal force on each slice is 

assumed to be equal to the vertical component of the weight of that slice, 

 Ni = Wi cos(i) (3.2.1) 

Thus we merely substitute eq. (3.2.1) into (3.1.6) and proceed to solve problems. 

Whitman & Bailey (1967, p. 486) point out that the fundamental assumption in the Fellenius 

method is that the resultant of all forces acting on the sides of an element (these forces are not 

even shown in Figure 5B) act parallel to the force Ti. Thus, these side forces do not enter into the 

expression for N, given in eq. (3.2.1). In general, these side forces will contribute to N, in which 

case eq. (3.2.1) will be in error. According to Whitman & Bailey (1967), factors of safety 

computed by the Fellenius method can be seriously in error. One source of error, they indicate, is 

the manner in which pore-water pressures generally are introduced into the analysis. Another 

source of error is a result of error in the computed values of N. They state that the error increases 

with an increase in the central angle (Figure 5A) of the failure arc; the error results from 

underestimating the value of N along steeply sloping parts of the failure arc. In order to minimize 

errors due to pore-water pressures, Whitman suggests using the buoyant unit weight of the slices if 

the pore-water is static  (for details, see 1967, p. 491). 

3.3 Modified Bishop Method 

In the modified Bishop method of stability analysis, the method of computing N is different. 

In this method we sum forces in the vertical direction, so that, for each slice, 

 Wi = Ni cos(i) + Ti sin(i) (3.3.1) 

in which Ti is the shear force that is mobilized, the shear strength of the soil, divided by the factor 

of safety, F: 

 Ti = 

 
b xi

cos(i)
 
–
C + (Ni – Ui) tan(

–
)

F
 (3.3.2a) 

in which 

 Ui = 
ui b xi

cos(i)
  (3.3.2b) 

is the normal force exerted by the pore-water on the base of the slice, as in eq. (3.1.2b). 

Let 

 
–
Ni = Ni – Ui (3.3.2c) 

then eq. (3.3.1) becomes 

 Wi = (
–
Ni + Ui) cos(i) + Ti sin(i) (3.3.3) 

Substituting eq. (3.3.2a) into (3.3.3) and solving for 
–
Ni 
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–
Ni = 

Wi

cos(i)
 – Ui – b 

xi sin(i) 
–
C

F cos
2
(i)

l + 
tan(i) tan(

–
i)

F

  (3.3.4) 

Rewriting eq. (3.1.7) using eq. (3.3.2c), 

 F = 


i=1

n







b xi 

–
C

cos(i)
 + 

–
Ni tan(

–
i)

 
i=1

n

Wi sin(i)

  (3.3.5) 

In order to compute the factor of safety, we substitute eq. (3.3.4) into eq. (3.3.5). The factor 

of safety occurs on both sides of the equal sign, and cannot be explicitly solved for, so we solve 

eqs. (3.3.4) and (3.3.5) by iteration. That is, we guess F and then compute Ni. Then we use those 

values to obtain an improved estimate of F with eq. (3.3.5). We then use this new estimate of F to 

compute Ni and then again solve for F using eq. (3.3.5). We repeat this procedure until the factor 

of safety changes by insignificant amounts. 

Whitman & Bailey  (1967) indicate that a fundamental assumption in the modified Bishop 

method is that the resultant of forces acting on the sides of elements (such forces are not even 

shown in Figure 5B) are horizontal; that is, on each slice the shear forces on each side of the slice 

are equal and opposite, so they cancel-when forces are summed in the vertical direction. In 

general this is not true, so in general the factor of safety will be in error. 

Whitman has compared factors of safety computed with the modified Bishop method with 

those computed with an accurate method. He indicates that, in general, the error is less than 7% 

and commonly is less than 2%. He indicates that more serious errors can develop if the factor of 

safety is less than one. 

You should now complete exercise 5 (p. 42). This exercise only has a few slices, but it will 

give you a better understanding of how the procedure works. 
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3.4 Janbu and Morgenstern-Price methods of stability analysis 

A

B

Ea

Eb

x

y

z

yt

y - yt

T

E

E + dE/dx x

T + dT/dx x

(y + dy/dx dx) - (yt + dyt/dx dx) 

S

N



x

W

t

Width normal to x-y axes assumed to be unity

 = S / l

 = N / l

l

y z h

 

Figure 6. Definition diagram for Janbu and Morgenstern-Price methods of stability. 

Janbu (1973) and Morgenstern & Price (1965) have developed similar methods of stability 

analysis based on a method of slices that are more accurate than the Fellenius or the modified-

Bishop methods. They are more accurate because the forces between slices are specifically 

incorporated in the differential equations. The only significant difference between the Janbu and 

the Morgenstern-Price methods are the special assumptions introduced in order to make the 

equilibrium equations determinate. The Morgenstern-Price method assumes a relation between 

normal and shear forces acting on the sides of the slices. Thus, using the notation shown in Figure 

6, they assume, 

 T = f(x) E (3.4.1) 

in which  is a constant and, in general, 

 f(x) = k x + m (3.4.2) 
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in which k and m are constants. We will not follow the derivation presented by Morgenstern-Price 

(1965) rather we will use Janbu's method of solution. 

In the Janbu analysis, one assumes the height of thrust, E, above the base of the side of a 

slice. One selects a value of (eta), which is the ratio between the height of thrust and the total 

height of the side of the slice. For passive conditions, where the soil is being compressed,  should 

be somewhat greater than 0.33, and for active conditions, where the soil is being extended,  

should be somewhat less than 0.33. In general we first work a problem with  of 0.33 everywhere, 

and then adjust  for the sides of each slice according to whether active or passive conditions 

occur there. What is the logic of choosing 0.33?
8
 

The coordinate system is shown in Figure 6. This same coordinate system is used for the 

Morgenstern-Price and the Janbu analyses (and in our computer program), but it is different from 

that presented by Janbu. It is important that you use the coordinate system shown in Figure 6 when 

you use our computer program or Excel workbook; otherwise, you will get nonsense. Note that 

positions of surfaces are measured with positive distances downward from your reference, x-axis. 

You use negative distances if the point is above your reference, x-axis. For the problem shown in 

Figure 6, all the vertical distances are positive. 

As in our exact analyses of stability of an infinite slope, we satisfy conditions of moment 

and force equilibrium. Referring to Figure 6, summation of moments requires that [M = 0] 

(about the center of the slice at it’s base); 

 T 
x

2
 + 








T + 
dT

dx
x  

x

2
 + [E + 

dE

dx
 x] [y + 

dy

dx
 
x

2
 – yt + 

dyt

dx
 x] – E [y + 

dy

dx
 
x

2
 – yt] = 0 

  (3.4.3) 

where E is the lateral force acting on a slice 

Here yt is the position of the thrust. Rearranging and dividing by x, and eliminating the 

second term in eq. (3.4.3) because it contains the negligible quantity x
2
 

 T = E tan(t) – 
dE

dx
  (y – yt); (3.4.4) 

 
dyt

dx
  = – tan(t) (3.4.5) 

In the Janbu analysis we define  such that 

 (y – yt) = (y – z)  (3.4.6) 

so that 

 T = E tan(t) – 
dE

dx
 (y – z)  (3.4.7) 

This is one of the basic equations. 

Summing vertical forces, [Fy = 0]; 

                                                 
8
 See Lambe & Whitman (1969, p. 167-168). 
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 dW – 
dT

dx
  x – N cos() – S sin() = 0 (3.4.8) 

Using the identities, 

 N = 
x

cos()
  (3.4.9a) 

 S = 
x

cos()
 , (3.4.9b) 

  = 
dW

dx
 – 

dT

dx
  –  tan() (3.4.10) 

We will use eq. (3.4.10) to eliminate  in other equations. 

Summing forces in the x-direction, [Fx = 0];  

 E – [E + 
dE

dx
 x] + S cos() – N sin() = 0 (3.4.11a) 

Eliminating S and N with eqs. (3.4.9), 

 
dE

dx
  =  – tan() (3.4.11b) 

Using eq. (3.4.10), 

 
dE

dx
 = {l + tan

2
()} – 







dW

dx
 – 

dT

dx
 tan()  (3.4.12) 

Equation (3.4.12) will be another basic equation. 

Now let us compute the factor of safety. We imagine integrating eq. (3.4.12) over the entire 

length of the slide block. The thrust at the left-hand end is Ea and that at the right-hand end is Eb 

Both of these may be zero, or Ea may be the thrust against a retaining wall. Thus, integrating eq. 

(3.4.12), 

 Eb – Ea = 




a

 b

 {l + tan
2
()} – 







dW

dx
 – 

dT

dx
  tan() dx (3.4.13) 

At this point we introduce the shear strength of the soil, that is, the shear stress at failure, 

 f = 
–
C + (– u) tan(

–
) (3.4.14) 

The shear stress along the sliding surface is assumed to be so the fraction of the failure 

strength of the soil, 

  = 
f 

F
  (3.4.15) 

where F is the factor of safety. 
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Substituting eq. (3.4.15) into (3.4.13), and solving for F, 

 F = 


a

 b

{l + tan
2
()} dx

Eb – Ea + 




a

 b

 






dW

dx
 – 

dT

dx
 tan() dx

  (3.4.16) 

This is the same as eq. 90 in Janbu (1973, p 66). Finally, substituting eq. (3.4.15) into eq. 

(3.4.10) and the resulting (3.4.10) into (3.4.14), we derive, 

 f = 

–
C +  







dW

dx
 – 

dT

dx
 – u  tan(

–
)

1 + 
tan() tan(

–
)

F

  (3.4.17) 

This is the same as equation 91 in Janbu (1973, p. 66). Equations (3.4.16) and (3.4.17) are to 

be solved iteratively in order to compute the factor of safety against sliding. The other equations 

we need in deriving the solution are eqs. (3.4.7), and (3.4.12) and (3.4.15). Combining equations 

(3.4.12) and (3.4.15) we get 

 
dE

dx
 = 
f

F
 [l + tan

2
()] – 







dW

dx
 – 

dT

dx
  tan() (3.4.18a) 

and here we simply repeat equation (3.4.7, or eq. 88 in Janbu (1973, p. 65)) 

 T = E tan(t) – 
dE

dx
  (y – z)  (3.4.18b) 

 The following quantities are known: Eb, Ea, 
–
C, 

–
 

 For each slice we know: dW, dx, u, , , y, z 

 The following quantities are to be determined: F, T, E, f 

We have the complete set of equations that must be solved in order to compute the factor of 

safety against sliding. The computer quickly solves the equations. The method of solution can be 

illustrated by considering two iterations: 

1st iteration: For the first iteration we assume that dT/dx = 0. In this case it is clear that eqs. 

(3.4.16) and (3.4.17) can be solved iteratively to determine the first estimate of the 

factor of safety. In order to prepare for the second iteration, we solve eq. (3.4.18a), 

with dT/dx = 0. Then we solve eq. (3.4.18b) for T. Now we are ready for the second 

iteration. 

2nd iteration: For the second and higher iterations, we use the values of T and E computed during 

the previous iteration to once more solve eqs. (3.4.16) and (3.4.17) iteratively for 

the factor of safety. Then we solve eq. (3.4.18a), iterations but this time we use 
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values of dt/dx computed during the previous iteration. Then we again solve eq. 

(3.4.18b) for T. 

This iterative process is repeated until the factor of safety no longer changes appreciably. 

Thus far we have used the value of  of 0.33 for the computation scheme. The next step is to 

examine values of thrust, E, and determine where active and passive zones exist, and adjust values 

of  accordingly. We can specify a different value of  for each boundary between slices. At the 

same time we examine the values of thrust to determine where E is tensile. If we judge that the 

soil cannot withstand tension, we insert a tension crack in the slide block at the appropriate place 

and redo the computations. If the crack is filled with water, the force the water exerts on the soil 

should be added as a thrust, Eb. 

Our computer program (or Excel workbook) prints out values of stresses on the sides and 

bottom of each element that you have selected for the analysis of a landslide. By studying these 

stresses, as well as Janbu's paper, you can learn quite a bit more about the stability problem that I 

have mentioned above. If you are going to do stability analyses of real landslides, you should 

become quite familiar with Janbu's paper and use the results the computer gives you in order to 

make fine adjustments in estimates of  as well as of the shape of potential slide surfaces. The 

method is very powerful and therefore warrants some considerable effort on your part. You can, of 

course, program the analysis for any computer, perhaps even a programmable calculator. 

Now redo exercise 5 using a Janbu analysis. You should use either of the attached programs 

(BASIC or C/C++) or the supplied Excel spreadsheet. It is important that you use the correct 

coordinate system! 
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Appendix A. Mohr’s Circle 

Here we will consider stress boundary conditions and how these can be represented by the 

Mohr circle. Mohr’s circle has found extensive used in mechanics, and is commonly encountered 

in structural geology, rock mechanics and engineering geology. Mohr’s circle provides a graphical 

way of relating stresses on arbitrarily-oriented surfaces to the principle stresses. It is also used in 

defining parameters such as cohesion and angle of internal friction. 

In order to see where Mohr’s circle comes from, below we pose two questions and proceed 

to answer them. The first question (Figure 7) we will pose is given a surface inclined at an angle  

to two known perpendicular stresses what is the magnitude of the stresses parallel to, and normal 

to this surface? 

The second question (Figure 8) is given a surface inclined at an angle  to the principle 

stress directions, what is the magnitude of the stresses parallel to, and normal to this surface? As 

you can see the questions are very similar. The key in the second question is that we are using 

principle stress directions, so that the planes to which our surface is inclined have no shear 

stresses acting on them. In the first question there are shear stresses acting on all of the planes. 

The answer to the second question will lead us to the equations that when graphed give Mohr’s 

circle. We will then see how to use the Mohr’s circle to graphically solve the equations we derive. 

Problem 1 is a more general problem. 

The equations we will derive will also allow us to calculate the orientation and magnitude of 

principle stresses given the stress state on two arbitrarily oriented surfaces. Thus we can get a lot 

of mileage from the following derivation. After completing the derivation we will go on to explore 

the properties of the Mohr circle. 

Stresses on an inclined plane  

Given a surface inclined at an angle  to two known perpendicular stresses what is the 

magnitude of the stresses parallel to, and normal to this surface? 

nn

ns

xx

zx

zz



xz

A

B

C

 

Figure 7. Definition diagram for (a) forces 

and (b) stresses. nn is normal to some 

inclined plane, ns are parallel to the 

inclined plane. 

 

It is assumed that the element shown in Figure 7 is in equilibrium — that is, it is not 

accelerating — so all forces will sum to zero. Using force equilibrium we will be able to derive 
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relationships between all the forces in the problem. This is a very routine and standard procedure 

in mechanics. Almost all equations in mechanics start with summing forces (see for example, 

Johnson 1970, Malvern 1969). 

To sum forces me must convert stresses (Force/Area) to forces by multiplying each stress by 

the area over which it is acting. We will use “depth” of the surface normal to the page of 1 unit.  

From Figure 7 we see that nn is acting in the positive x-direction, and it is acting over an 

area of A  B  1 (where 1 is the unit depth). Thus the force in the n-direction is simply 

 nn AB. (A.1.1) 

Now we consider the xx stress. It is acting over an area of B  C  1. Thus the force acting on 

this surface is  

 xx BC (A.1.2) 

The force is acting at an angle  to the n-direction, so only part of this force is acting in the 

n-direction. Using vector algebra we see that the component of the force acting in the n-direction 

is  

 –xx BC sin() (A.1.3) 

since the force is acting in the negative n-direction. 

Proceeding as above for each of the stresses in Figure 7. Summing forces in the direction 

normal to the inclined surface (the n-direction) gives 

 nn AB + xz BC cos() + xz AC sin() – xx BC sin() – zz AC cos() = 0 (A.1.4) 

Dividing through by AB and recognizing that
9
 

 sin() = 
BC

AB
  (A.1.5a) 

 cos() = 
AC

AB
  (A.1.5b) 

we get 

 nn + 2 xz sin() cos() – xx sin
2
() – zz cos

2
() = 0 (A.1.6) 

solving for nn 

 nn = xx sin
2
() + zz cos

2
() – 2 xz sin() cos() (A.1.7) 

This completes the first step. We have a relationship between the normal stress and the 

stresses on the other surfaces. Now we continue to find an expression for the shear stress on the 

inclined surface, ns, by summing forces in the s-direction 

 ns AB + zx BC sin() + zx AC cos() + xx BC cos() + zz AC sin() (A.1.8) 

Again, dividing through by AB and substituting in trigonometric identities given above 

 ns + xz sin
2
() + zx cos

2
() + xx sin() cos() + zz sin() cos() = 0 (A.1.9) 

                                                 

9
 From the equations for a right-triangle: sin() = opposite / hypotenuse  ;  cos() = adjacent / hypotenuse  ;  tan() = 

opposite / adjacent  
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solving for ns 

 ns = (zz – xx) sin() cos() + xz(cos
2
() – sin

2
()) (A.1.10) 

Thus our results are: 

 nn = xx sin
2
() + zz cos

2
() – 2 xz sin() cos() (A.1.11a) 

 ns = (zz – xx) sin() cos() + xz(cos
2
() – sin

2
()) (A.1.11b) 

Mohr's Circle 

We now consider a slightly more specialized form of the equations that will yield Mohr’s 

circle. The question posed here is: given a surface inclined at an angle  to the principle stress 

directions, what is the magnitude of the stresses parallel to, and normal to this surface? 

Figure 8. Definition diagram for 

the derivation of Mohr’s circle. 

 

xx

xy

2

1



A

C
B

 

This is a very similar case to that considered above only in this case we know the principal 

stresses, 1 and 2, so there are no shear stresses acting on those planes. We have defined a 

positive x- and y-coordinate system as shown in Figure 8.  We assume that the body is in 

equilibrium, so we start by summing forces in the x-direction  

[Fx = 0] 

 xx AB – 1 BC cos() – 2 AC sin() = 0 (A.2.1a) 

 xx – 1 BC/AB cos() – 2 AC/AB sin() = 0 (A.2.1b) 

recognizing that 

 BC/AB = cos() and AC/AB = sin() (A.2.2) 

We get 

 xx = 1 cos
2
() + 2 sin

2
() (A.2.3a) 

Now we sum forces in the y-direction. Following the same procedure as above, you can 

show that you will get (the reader should perform the operations) 
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 xy = 1 – 2 (cos() sin()) (A.2.3b) 

Using the following trigonometric identities 

 cos
2
() = ½(1+cos(2)) (A.2.4a) 

 sin
2
() = ½ (1- cos(2)) (A.2.4b) 

 sin()cos() = ½ (sin(2)) (A.2.4c) 

We end up with the following relationships 

 xx = (1 + 2)/2  + (1 - 2)/2 cos(2) (A.2.5a) 

 xy = (1 – 2) sin(2) (A.2.5b) 

These equations have the form of a circle. These are the equations for Mohrs circle, they 

relate the stress on any plane to the orientation of the plane with respect to the principle stresses. 



xy

xx2 1(1+1 / 2)

 

Figure 9. Mohr’s circle showing the parameters in the equations derived above. 
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Appendix B. Exercises 

Exercise 1 – Dry Soil 

Assume the following properties for the dry soil: 

 Cohesion, C = 4800 Pa 

 Internal friction angle = 20° 

 Unit weight,  = 20,000 N m
-3

 

I suggest you do all these calculations in a spreadsheet. The spreadsheet will be more useful if you 

have single cells where you enter values for C, , ,and later the void ratio, . All calculations 

should link back to these cells. Changing the values of these cells will cause the spreadsheet to 

recalculate and re-plot your results allowing you to easily generate plots for different cases. We 

will be adding to this worksheet as time goes on so try to make the worksheet as general as 

possible, it will become a useful tool for future calculations, even outside this class. 

1. Plot the critical thickness, tc, as a function of the slope angle, where the slope angle ranges 

from 0° to 90°. You will also want to construct a second plot showing the range of slope 

angles where the critical thickness changes rapidly. 

2. What general conclusions can you reach from the plots you generated in part 1. For example, 

you will want to use the critical thickness equation to explain why the curve has this shape. Is 

this shape limited to this set of numbers, or do all possible curves have this shape? What 

controls the critical parts of this curve – that is what is the major control on the critical 

thickness. Part of the curve makes no sense physically, dash that part and explain why it is 

invalid. 

3. Suppose that we expect failure at the soil-rock interface, and that the soil is 3 m thick and the 

slope angle is 25°. What is the factor of safety against sliding? How does the factor of safety 

change if you only vary the soil thickness, for example, what is the factor of safety against 

sliding at half the thickness of the soil? 

4. Many landslides in colluvium in Cincinnati are about one meter thick and occur on slopes with 

slope angles of about 25°. Plot the relation between cohesion (C) and angle of internal friction 

() that would provide a factor of safety of one under such conditions. Using a range of 

internal friction angles (say 5° to 45°), what is the difference in the plots? The maximum value 

of angle of internal friction that you should use is 25° – why?  



 40 

Exercise 2 – Standing water 

For this exercise we have a submerged slope. Assume that the porosity of the soil is 20% and 

that the soil is saturated with water (no air in pore spaces). The dry unit weight, the cohesion and 

the angle of internal friction are assumed to be the same as those given above. In this problem,  in 

exercise 1 is t in equation (2.3.15a). In section 2.2 we used for simplicity. For landslides we 

always use total unit weight, t, which is more precisely defined in equations 2.3.15. 

1. Plot the critical thickness, tc, as a function of the slope angle, where the slope angle ranges 

from 0° to 90°. You will also want to construct a second plot where the slope angle ranges 

from 0° to about 35°. Plot the relation between critical thickness and slope angle on the same 

graph as in exercise 1. 

2. Suppose that we expect failure at the soil-rock interface, and that the soil is 3 m thick and the 

slope angle is 25°. What is the factor of safety against sliding? How does the factor of safety 

change if you only vary the soil thickness, for example, what is the factor of safety against 

sliding at half the thickness of the soil? 

3. Compare the results from part 1 and 2 in this exercise with the results from parts 1 and 3 in 

Exercise 1. 

4. How do you expect the angle of internal friction and cohesion of a dry soil to change when it 

is saturated? How large is the change in each? How do you think this will affect the results of 

your calculations? 
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Exercise 3 – Seepage 

 Plot a third curve for critical thickness as a function of slope angle on the graph constructed 

for exercises 1 & 2. Use the same parameters as the previous exercises. 

t



y

x

w

Water Table

 

Figure 10. Definition diagram for exercise 3. 

 Solve the problem analogous to that treated above, but this time for a water table that is a 

distance w (measured normal to the slope) below the ground surface, where 0 < w < t. Plot 

curves on the diagram constructed for assignment 1, for values of w/t of 0, 0.25, 0.5, 0.75 and 

1.0. Write out the formula that you develop. Show that for w/t = 1 the equation becomes the 

equation for a dry slope, and that for w/t = 0 the equation becomes that for seepage parallel to 

the slope (the equation you used in part 1).  

 Apply the formula you developed for part 2 to a landslide at McKelvey Road in Cincinnati. 

Önder Gökce has made a detailed study of the landslide and following are some of the relevant 

data. The landslide was active at the time the measurements were taken. 

 The landslide is about 75 meters long (from head to toe), and about 10 meters deep 

(measured vertically). 

 The average slope of the ground surface is about 8°. 

 During drilling of three boreholes through the slide mass it was noted that the soil, which 

consists of about 7 m of till overlying about 3 m of glacial lake-clay, was rather dry until 

we had drilled through the lake clay and through one or two limestone beds in the bedrock 

underlying the lake clay. Then the cuttings became very wet (muddy) and after a few hours 

water rose in the borehole to a level of 0.5 to 1.5 m from the ground surface (depending on 

the time of year). 

Using these data, you are to compute the residual angle of internal friction of the lake clay 

involved in the sliding. 
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Exercise 4 – Tree Roots 

Mary Riestenberg determined and estimated the following parameters for a landslide that 

she studied in Cincinnati: 
–
C = 0  = 35° 

–
 = 12° w = 9.8 kN/m

3
 

t = 0.5 m t = 19.6 kN/m
3
  

(1/A) 
i=1

n

 Fi    = 5.7 kN/m
2
 

 

 

You are to determine the factor of safety against sliding. 

What is the effect of roots on the slide mass. What is the factor of safety without roots? How 

do roots enter the factor of safety calculation – what is what soil property do they change – and 

how would we model their effect. That is, if we were to do a back calculation for material 

parameters, what property would root strength be indistinguishable from. 
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Exercise 5 – Fellenius Method 

In order to "get the feel" for computation of stability factors, determine the factor of safety 

against sliding for the slope shown below: 

16°

34°

–5°

 2.5 m 

 h = 5.25 m 

 3.25 m 

 x =11.5 m  11.5 m  11.5 m 

2.747

1

 

Figure 11. Definition diagram for exercise 5. 

The water table is assumed to be at the upper surface of the slide, and, using the solution for 

pore-water pressures in an infinite slope, we compute 

ru = (u/h)  0.37  0.4 

in which h is the height of the slice (see figure below) and  is the saturated unit weight of 

the soil. The parameters are, 

 
–
C = 16 kN/m

2
 

  = 24 kN/m
3
 

 
–
 = 14° 

Table 2. Some of the important parameters for each slice in exercise 5. 

For problems other than this one, of course, you would use many more than three slices. The 

purpose is for you to be able to quickly solve a problem approximately; the method is what is 

important right now, not the result. 

Slice xi 

(m) 

hi 

(m) 

Wi 

(kN) 

i ui 

(kN/m
2
) 

1 11.5 2.5 690 –5° 24 

2 11.5 5.25 1450 +16 50.4 

3 11.5 3.25 900 +34 31.2 
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First, compute the factor of safety using the Fellenius method (Answer is approximately F = 

1.16). Then, start with an estimated factor of safety of 1.0 and iterate the modified-Bishop solution 

three times in order to estimate the factor of safety by that method. 

As a second exercise, use the Fellenius method to "back calculate" the residual strength of 

the soil involved in the slide shown in the figure on pg. 43. This is a method that we commonly 

use in analyzing existing landslides. The residual cohesion, 
–
Cr is generally nearly zero, so we set it 

equal to zero. Then we set the factor of safety equal to 1.0 and compute the angle of residual 

friction, 
–
r. 

It is presumably clear, upon examination of eq. (3.1.6), that we can solve directly for the 

residual friction, 

 tan (
–
r)= [Wisin(i)] / [ 

–
Ni]  (3.3.6) 

in which 

 
–
Ni = Ni – Ui and Ni = Wi cos(i) 

for the Fellenius method, and Ui is given by eq. (3.3.2b). 
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Exercise 6 – Janbu Method 

PART I 

Given the following landslide geometry: 

10 m

Slip Surface

Water table

Impervious layer
 

And the following average material properties: 

 Average total unit weight = 20 kN/m
3
 

 Residual Cohesion = 5 kPa 

 Residual Friction Angle = 15° 

1. Calculate the average factor of safety, and the distribution of forces within the landslide. How 

sensitive is you solution to varying these parameters? 

2. Assume that you have hydrostatic pore water conditions at the slip surface. How would you 

improve on this estimate of pore water pressure conditions 

3. How would one have to either load or unload the upper ¼ of the slide in order to get a factor 

of safety of approximately 1. 
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PART II 

1. Read the following paper: 

Baum, R.L., and Fleming, R.W., 1991. Use of longitudinal strain in identifying driving and 

resisting elements of landslides. Geological Society of America Bulletin 103(8):1121-

1132. 

A. What is the topic of the paper, and why is it important? 

B. How would you identify the various parts of the slide in surface mapping? Use information 

from some of the other papers we are reading in class. Cite references for your 

information. 

C. Using either the spreadsheet (janbu.xls) or programs (janbu31.cpp/janbu31.exe, 

janbu30.bas) provided perform a Janbu analysis of the Alani-Paty slide. Watch your 

coordinate system and slice numbering! 

D. What assumptions were made in the analysis of this slide? Are they reasonable?  

E. Would you perform a different analysis? If so, what would you do differently? 

F. Use infinite slope theory to analyze the Alani-Paty slide. How different is the factor of 

safety from that calculated using the Janbu method? Why do you think the results are 

similar/dissimilar? 

G. What would you do to stabilize the slide. Back this up with results from your analysis. 
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Appendix C. Computer Programs 
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Janbu31.cpp (18 pages) 
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Janbu30.bas (14 Pages) 
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Janbu.xls (8 pages) 
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Appendix D. Janbu (1973) Paper on Slope Stability Computations 

 

 


