THESIS APPROVAL

The abstract and thesis of Charles M. Clough for the Master of Science in Geology

presented April 22, 2005, and accepted by the thesis committee and the department.

COMMITTEE APPROVALS:

Curt Peterson, Chair

Georg Grathoff

Frederick Thrall

Trevor Smith Representative of the Office of Graduate Studies

DEPARTMENTAL APPROVAL:

Michael Cummings, Chair Department of Geology

ABSTRACT

An abstract of the thesis of Charles M. Clough for the Master of Science in Geology presented April 22, 2005.

Title: Geologic Model and Geotechnical Properties of Stratified Paleodune Deposits, Central Oregon Coast, Oregon.

Recent examinations of surficial deposits on the Central Oregon Coastal Plain have identified the remnants of a Pleistocene dune sheet (Newport Dune Sheet) that covers the preserved marine terraces. Mapping of the dune sheet (150 groundtruthing sites) shows that the dune deposits mantle more than 90% of the coastal plain. Detailed soil profiles (1-30 m depth) show that the paleodune deposits consist of interbedded dune sand, paleosols (Bg or Bw accumulation horizons), deflation surfaces, and iron-oxide (Ortstein) layers. Two dominant paleosol facies types consist of 1) flat lying, semi-continuous, Bg-accumulation horizons associated with groundwater level deflation surfaces, and 2) curvilinear, discontinuous Bw accumulation horizons associated with stabilized upland dune forms. Investigation of the cement mineralogy using XRD and SEM analytical methods show that the deposits are composed of weakly cemented minerals (vermiculite, gibbsite, allophane, imogolite, and ferrihydrite) resulting from sediment mineral weathering products, loess infiltration, and groundwater precipitation within the paleodune strata.

The field and laboratory methods used in this study to characterize the geotechnical and hydrological properties included ground penetrating radar (GPR), pressuremeter, direct shear testing, flexible wall permeability, and triaxial compression testing. The dune facies consisted of clean (<5% fines), fine uniform sand with an average hydraulic conductivity of 1.49×10^{-3} cm/s. The paleosol facies consisted of silty (>40% fines) fine sand to sandy silt with a hydraulic conductivity ranging from 6.21×10^{-4} cm/s to 1.63×10^{-6} cm/s. Results from soil strength tests showed that the calculated cohesion values taken from direct shear, triaxial, and PMT testing ranged from 0 to 64.2 kPa and the angle of internal friction taken from direct shear and triaxial testing ranged from 18 to 43 degrees. The measured shear strengths of the paleodune strata are lower than values expected to support observed semi-stable slopes of 50°-70°. Laboratory testing underestimated temporary cemented sand shear strength, however, the measured internal angles of friction should provide conservative values for long-term slope stability analysis. The results of the geologic framework and geotechnical characterization will provide a basis to aid engineers, geologists, and developmental planners in appropriate design and effective construction for "sustainable development" on the paleodune deposits.

GEOLOGIC MODEL AND GEOTECHNICAL PROPERTIES OF STRATIFIED PALEODUNE DEPOSITS, CENTRAL OREGON COAST, OREGON

by

CHARLES M. CLOUGH

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in GEOLOGY

Portland State University 2005

Dedication

For Suzan, Lauryn and Jonathon.

Acknowledgments

My entire secondary education has been completed with the support of my wife, Suzan. Her patience and support has been the catalyst for my ability to reach this goal. This thesis is a culmination of work completed in conjunction with many researchers and supporters. I would like to thank Dr. Curt Peterson for his patience, guidance, expertise in coastal processes, and his leadership in this research project. Dr. Georg Grathoff provided the knowledge and data for the paleodune cement mineralogy. Dr. Trevor Smith provided his knowledge in geotechnical testing and spent time in the field to conduct pressuremeter testing and data analysis on selected paleodune deposits. I would like to thank the following people: Renee Summers for help in the field and providing direct shear data; Rodger Hart and Susan Waycaster for help with field mapping; and Melissa Schweitzer for providing GIS maps of the field sites.

I would especially like to thank Dr. Rick Thrall for his support of my masters degree and helping me to establish my professional career as a consulting geologist. Dr. Thrall initiated my quest for this degree and arranged for the time and financial support to allow completion of my course work and thesis. I am very grateful to GeoDesign, Inc., of Tigard, Oregon, for providing funding for my tuition. In addition, the use of the geotechnical laboratory equipment and facility at GeoDesign amounted to over \$17,000 in test results for use in this thesis.

Support for the research presented here was facilitated by the NOAA Office of Sea Grant and Extramural Programs, U.S. Department of Commerce, under grant number NA76RG0476, project R/SD-04.

ii

Table of Contents	
-------------------	--

Acknowledgments	ii
List of Tables	v
List of Figures	vii
Introduction	13
Background	18
Study Area	18
Modern Climate	19
Paleoclimate Data	20
Local Geology	23
Origins of coastal dunes	24
Previous work	27
Methodology	
Field Sampling and In-situ Testing Methods	41
Field Sampling	42
Field Exploration and Testing Methods	45
Geotechnical Laboratory Tests	
Soil Classification	
Index Tests	
Soil Strength Tests	55
Permeability Tests	57
Clay Mineralogy	
Results	59
Field Mapping	59
Soil Horizon Dating	76
Geotechnical Observations	77
Geotechnical Study Sites	
Pinecrest Site	
Ona Beach Site	
Canary Road Cut Site	91
Geotechnical Testing	93
Sample Collection	94
Laboratory Testing	95
Grain Size Analysis	96
Densities	99
Index Tests	100
Permeability Testing	102
Direct Shear Testing	104
Triaxial Testing	105
Cement Mineralogy	
Pressuremeter Testing	127
Borehole Data	131
Discussion	132

Paleodune Stratigraphy and Geomorphology	136
Groundwater Model and Cemented Deposits	149
Geotechnical Parameters	151
Conclusions	161
References	165
Appendix A: Dune Sheet Mapping Profile Logs	169
Appendix B: Geotechnical Hand Auger Boring Logs	210
Appendix C: Direct Shear Data From Renee Summers, Civil Engineering, PSU	215
Appendix D: Laboratory Test Summaries for Geotechnical Samples	227
Appendix E: Triaxial Test Results	233
Appendix F: Pressuremeter Test Results	244
Appendix G: ODOT Borehole Logs	251

List of Tables

Number Page
Table 1 : Historical precipitation and temperature records for the Central Oregon Coast. 19
Table 2: Vegetation history of Oregon Coast Range compared with paleoclimate and relative sea level conditions. Modified from Worona and Whitlock, (1995) and Pirazzoli (1993). 22
Table 3: Published geotechnical parameters of dune sheet and marine terrace deposits by the Oregon Department of Geology and Mineral Resources (DOGAMI) and the United States Geological Survey (USGS).28
Table 4: Geotechnical data of surficial soils from Lane County soil survey. 28
Table 5: Geotechnical data of surficial soils from Lincoln County soil survey
Table 6: Summary of mapped profile thicknesses of Holocene and Pleistocene dune deposits and underlying units. The number of occurrences (n) indicates how many of each deposit type was recorded in the profile logs. The data includes outcrop and hand auger profile logs. 67
Table 7: Summary of measured sea cliff and road cut profile thicknesses. The number of occurrences (n) indicates how many of each exposure type was recorded in the profile logs.
Table 8: Summary of Pleistocene dune horizon thicknesses. The number of occurrences (n) indicates how many of each horizon type was recorded in the profile logs. 72
Table 9: Results of thermoluminescence dating for the Newport Dune Sheet (Peterson et al., 2005).
Table 10: Results of radiocarbon dating for the Newport Dune Sheet (Peterson et al., 2005).
Table 11: Summary of pocket penetrometer data The number of occurrences (n) indicates how many pocket penetrometer readings of each horizon type was recorded in the profile logs
Table 12: Profile log of the Pinecrest road cut with geotechnical soil description and interpreted soil horizon

Table 13: Typical geotechnical parameters of loose and dense sand, modified from Terzaghi and Peck (1967).	5
Table 14: A summary of the percent fines (material finer than 0.075mm) of geotechnical samples. 90	6
Table 15: Dry density results of geotechnical samples	0
Table 16: Summary of plasticity index testing. 10	0
Table 17: Summary of index tests for selected geotechnical samples	1
Table 18: Typical values of hydraulic conductivity for fine sand and silt. Range of relative permeability values for general classification, modified from Terzaghi and Peck (1967). 102	2
Table 19: Hydraulic conductivity results for geotechnical samples. Values in italics indicate a suspect result, possibly due to sample disturbance	3
Table 20: Direct Shear results of geotechnical samples. 10:	5
Table 21: Summary of triaxial testing for geotechnical samples. Note: 1 kPa = 20.8854 psf. 10'	1 7
Table 22: Table showing geotechnical sample site and test type and number of completed triaxial strength test. For test method "CD" is consolidated drained "CU" is consolidated undrained, and "NA" is no test attempt	, 5
Table 23: Summary of triaxial results for Pinecrest site. Note: $1 \text{ kPa} = 20.8854 \text{ psf}$. 11	7
Table 24: Summary of triaxial test results for Ona site. Note: $1 \text{ kPa} = 20.8854 \text{ psf.}$.119	9
Table 25: Summary of triaxial results for the Canary Road site. Note: 1 kPa = 20.8854 psf. 12	1
Table 26: Summary of pressuremeter test results for key layers at the geotechnical study sites. PL* stands for limit pressure and Eo stands for initial load modulus. 129	9
Table 27: Geotechnical borehole data from ODOT showing thickness of Holocene and Pleistocene dune deposits. 13	1 1
Table 28: Geotechnical borehole data from ODOT showing blow counts (N) for individual paleodune soil horizons. 132	2
Table 29: Comparison of direct shear and triaxial strength testing of geotechnical samples. Note: 1 kPa = 20.8854 psf	4 zi

List of Figures

Number	Page
Figure 1: Regional map on right shows the west coast of the United States and locations of mapped dune sheets (shaded boxes). The map on the left shows the mapped dune sheets in Oregon. This study focuses on the Newport Dune Sheet (NEWP) located on the Central Oregon Coast	e 13
Figure 2: Paleodune deposits at Ona Beach State Park.	14
Figure 3: The Capes Development at the headwall scarp of a dune slide in the Netard dune sheet. (Peterson et al., 2002)	ts 15
Figure 4: Florence Area Map showing location of Canary Road geotechnical site and mapped dune profile sites.	d 17
Figure 5: Eustatic sea level curves (worldwide) with respect to elevation for last 80 I years BP. Line A is from Chappell and Shackleton (1986), line B is from Shackleton (1987), and line C is from Bloom and Yonekura (1985). Boxed areas are probable error ranges for age and height for line C. Modified from Pirazzoli (1993).	ka 1 20
Figure 6: Schematic illustration of the high-stand emplacement model, from Beckstrand (2001).	25
Figure 7: Generalized section of low stand emplacement model, modified from Beckstrand (2001).	26
Figure 8: Map of Quaternary geologic units previously mapped in the Newport dune sheet with locations of mapped dune deposits (This Study). Redrafted from Schlicker et al. (1973) and Snavely et al. (1976)	e 30
Figure 9: Summarized soil survey map of Newport dune sheet with locations of mapped dune deposits (This Study). Redrafted from Shipman (1997)	31
Figure 10: Field procedures and laboratory test methods used to characterize paleodune deposits of the Newport Dune Sheet.	33
Figure 11: Road cut profile (Pinecrest site) along Highway 101 approximately 2 km north of Waldport. Center of picture is a 5m tall survey rod for scale	n 35
Figure 12: Photo of iron oxide cemented layer above tan fine sand.	38
	vii

Figure	13: Photo of a pocket penetrometer.	39
Figure	14: Photo showing soil sampling using a driven or pushed Shelby tube (on left in outcrop) and an AMS core sampler that holds six Dames and Moore brass rings (on the right).	43
Figure	15: Photo of block sample collection at the Pinecrest site.	45
Figure	16: Photo showing GPR equipment with the 100 MHz antenna attached	46
Figure	17: Photo showing GPR survey running parallel to the sea cliff (Yachats) to compare the stratigraphic log to the GPR reflections. Arrows point to major soil horizons.	47
Figure	18: Comparison of the measured profile section at Yachats (NEWP150) with the GPR reflection profile. The top 4 meters show a good correlation	48
Figure	19: Photo of Texam pressuremeter control unit in use at the Ona 1A site located on the top of Ona Beach sea cliff.	ł 49
Figure	20: Photo of pressuremeter test location at Pinecrest road cut.	50
Figure	21: Photo of PuP pressuremeter control box and pressure gauges	50
Figure	22: Photo of fully expanded EX pressuremeter membrane.	51
Figure	23: Triaxial and flex-wall permeability test equipment.	57
Figure	24: Road cut heading east from Highway 101 through paleodune deposits. The area on both sides of the road is zoned for residential development. The dip in the road (shown by arrows) is an interdunal stream running north to south	э 60
Figure	25: House foundation excavation situated on a paleodune deposit located on top of a sea cliff at Ona Beach.	, 60
Figure	26: House situated on paleodune deposit located in residential area of Newport, Oregon.	61
Figure	27: Northern portion of dune sheet showing map sites NEWP1 to NEWP62	63
Figure	28: Central portion of dune sheet showing map sites NEWP47 TO NEWP113.	64
Figure	29: Southern portion of dune sheet showing map sites NEWP113 to NEWP151	.65
Figure	30: Photo of logging road cut outcrop using a tape measure	66

Figure 31: Paleodune profile located 1.5 km east of Seal Rock at approximate elevation of 40 meters above MSL. The road outcrop contained a thin topsoil horizon formed on a Pleistocene dune deposit that was probably stripped off during logging activities. Dune sand contained well-developed foreset bedding dipping 20° to 30° to the south. 70
Figure 32: Photo of contact between a deflation plain/paleosol (Bg horizon) and overlying dune sand (C horizon) located at Canary Road, Florence. The thin light colored layer is allophone root replacement
Figure 33: Ona Beach sea cliff exposure showing interbedded dune sand layers with deflation plain layers (PDBtj and PDBg) overlying Tertiary Bedrock and covered by a well-established modern topsoil. Dune sand unit at top of section shows dune morphology with concave surface. 74
Figure 34: Photo of paleodune sand structure with foreset beds truncated by overlying horizontal sand bedding
Figure 35: Wedge block slide on sea cliff located north of Seal Rock
Figure 36: Sea cliff failure in Yachats located a few meters from a city street. Block failure occurred during a winter storm event in 2004. The failure may have been the result of ocean wave undercutting the sea cliff
Figure 37: Small block failure (2m high x 3m wide x 2m deep) on road cut at the Pinecrest site during winter of 2004. Groundwater seepage observed along contact between paleosol layer and upper paleodune sand
Figure 38: A roadcut failure along Highway 101 just south of the Newport Airport. Groundwater seepage at contact between paleodune deposits and underlying bedrock
Figure 39: Site map of Pinecrest showing location of the measured slope profile transect (modified from USGS, 1984 Waldport Quad.)
Figure 40: Pinecrest site showing road cut along Highway 101 and interpreted paleodune stratigraphy with geotechnical sample layer names. Pine-3 layer is a dune sand (PDC) containing foreset bedding, Pine-4 is a truncated paleosol (PDBtj horizon), Pine-5 is a dune sand(PDCox and PDC), and Pine-6 is a paleosol/deflation plain (PDBg horizon) that contains a discontinuous peat layer. Upper paleodune strata is dipping out of the road cut face approximately 20 to 30 degrees.

Figure 41: GPR profile line (facing east) at Pinecrest site using a 100 MHz antenna.... 86

Figure 42: Interpreted GPR profile (east to west) of Pinecrest site showing interpreted strong subsurface reflections (darkened lines are interpreted as paleosols). Exaggerated vertical scale. 8	57
Figure 43: Compiled east to west subsurface transect profile of the Pinecrest site using hand auger boring data, GPR data, and road outcrop observations	57
Figure 44: Site map of Ona Beach showing location of sea cliff profile	8
Figure 45: Stratigraphic profile of Ona sea cliff site (NEWP93)	0
Figure 46: Large road cut failure along Canary Road south of Florence. Slope was cut at 57° to widen the road shoulders	2
Figure 47: Interpreted dune profile and measured section showing slope originally extended down to interdunal stream cut (Woahink Lake). Four paleodune soils were sampled for geotechnical testing as shown	13
Figure 48: Grain size distribution from Pinecrest site showing difference in grain size between dune sand facies (Pine-1, Pine-3, and Pine-5) and the paleosol/deflation plain facies (Pine-1 @ 5.5m, Pine-4, and Pine-6)	97
Figure 49: Grain size distribution from Canary Road site showing difference in grain size between dune sand facies (Woah-2 and Woah-4) and the paleosol/deflation plain facies (Woah-1 and Woah-3)	8
Figure 50: An example showing the stress-strain plot for a consolidated drained (CD) triaxial test for Woah-4. A higher peak strength followed by a low residual strength is indicative of dense or cemented material. Note: 1 kPa = 20.8854 psf. 10	98
Figure 51: Sheared paleodune sand sample showing well-developed shear plane indicating brittle failure. 10	19
Figure 52: An example showing the volumetric strain plot for a consolidated drained (CD) triaxial test for Woah-4. Note: 1 kPa = 20.8854 psf	0
Figure 53: An example plot showing Mohr's circles for a consolidated drained (CD) triaxial test for Woah-4. The residual shear trend is the peak of the Mohr's circles (plotted) based on the residual shear stress. The " α " parameter is the slope of the peaks of each circle which is then corrected to " ϕ 'r" to get the angle of internal friction. The "a" parameter is the shear stress axis intercept of the qline. The parameter "a" is corrected to "c'r" which is the residual shear trend. The " ϕ 'r" parameter is the slope of tangent to the Mohr's circles which is the effective angle of internal friction. The "c'r" parameter is the shear stress axis intercept of the tangent to the Mohr's circles (strength envelope). The	

peak shear trend is the peak of the Mohr's circles (not plotted) based on the peak shear stress. Note: $1 \text{ kPa} = 20.8854 \text{ psf.}$
Figure 54: Plot of the change in pore water pressure during shearing of the triaxial sample. Negative pore water pressure indicates dilation of the sample during shearing. Note: 1 kPa = 20.8854 psf
Figure 55: Example of consolidated undrained (CU) triaxial test. See Figure 53 for explanation. Note: 1 kPa = 20.8854 psf
Figure 56: An example showing the stress-strain plot for a consolidated undrained (CU) triaxial test for Pine-5. A higher peak strength followed by a low residual strength is indicative of dense or cemented material. Note: 1 kPa = 20.8854 psf
Figure 57: SEM photo of cemented sand grains
Figure 58: SEM photo of clay cement morphology collected from Pinecrest site 123
Figure 59: Enlarged SEM photo of clay cement material coating and desiccation cracks (Box A of Figure 58)
Figure 60: EDX spectra of clay cement from a Pinecrest sample
Figure 61: X-ray diffraction pattern of the less than 2 micrometer size fraction of the ONA 1A sample (blue) overlain with a pure sample of allophane (pink). The lines below are lines from the other identified phases in the ONA 1A sample: gibbsite, quartz, cristobalite, and goethite. The comparison with the allophane sample shows that the ONA 1A sample contains a high concentration of allophane. The presence of the other minerals such as quartz may originate from detrital grains, rather than from secondary cement
Figure 62: Example of a pressuremeter test conducted at Ona-1A. The two dips in curve are unload and reload cycles
Figure 63: Eustatic sea level curves with respect to elevation for last 80 ka years BP. Line A is from Chappell and Shackleton (1986), line B is from Shackleton (1987), and line C is from Bloom and Yonekura (1985). Boxed areas are probable error ranges for age and height for line C. The C ¹⁴ and TL dates have been added with their respective error bars (double arrow). Modified from Pirazzoli (1983)
Figure 64: Figure showing location of Newport Dune Sheet relative to exposed continental shelf during low-stand sea level (20 ka). Modified from Komar (1997)

Figure 6	65: Annotated photos of Ona Beach sea cliff showing deflation plain (Bg horizons) underlying thicker dune sand layers (top) containing a hard pan 1	137
Figure 6	66: Panorama view of Ona Beach sea cliff showing lateral extent of paleodune strata.	139
Figure 6	67: North to south transect across the Newport Dune Sheet running parallel to the sea cliffs.	140
Figure 6	68: East to west traverse across the Newport Dune Sheet at Spencer Creek site.	141
Figure 6	69: East to west traverse across the Newport Dune Sheet at Nye Beach site 1	142
Figure 7	70: East to west traverse across the Newport Dune Sheet at Ona Beach site 1	143
Figure 7	71: East to west traverse across the Newport Dune Sheet at Yachats site 1	144
Figure 7	72: Generalized profile of the Newport Dune Sheet stratigraphy showing a transition of horizontal, flat-lying deflation plain sequences at the sea cliff to discontinuous, concave and convex upland dune sequences	146
Figure 7	73: Photo of Holocene dune paleosol with a Bw horizon overlying a Cox horizon.	149
Figure 7	74: Illustration of groundwater flow model showing possible high and low redox conditions throughout the paleodune strata	150
Figure 7	75: Sea cliff model of paleodune strata 1	152
Figure 7	76: Generalized stress/strain plot (a) and volumetric strain plot (b) for different soil types. Modified from Budhu (2000).	157

Introduction

The Oregon coastal plain (Figure 1) contains 505 km of ocean-facing coastline, of which 314 km, or 62%, contain some form of active or stabilized sand dune (Reckendorf, 1998).

Figure 1: Regional map on right shows the west coast of the United States and locations of mapped dune sheets (shaded boxes). The map on the left shows the mapped dune sheets in Oregon. This study focuses on the Newport Dune Sheet (NEWP) located on the Central Oregon Coast.

Commercial and residential development is primarily confined to the portion of the coastal plain that contains some form of sand dune cover. The prehistoric dune (paleodune) deposits contain interbedded soils, sand layers, iron oxide layers, and deflation plain gray clay layers that are characterized by unique geotechnical and hydrological properties (Figure 2). In this thesis, the term "geotechnical" is defined as the application of the principles of engineering and geology to solve engineering problems.

Figure 2: Paleodune deposits at Ona Beach State Park.

Previous geological studies (Schlicker, et al., 1973 and Snavely, et al., 1976) have shown the Oregon Central coastal plain to be covered by undifferentiated marine terrace deposits including dunes, beach sand and lenses of pebble and cobbles. Maps from these studies do not fully show the extent of the ancient sand dunes and their inter-stratification of sand and buried soil horizons. A fundamental question to be addressed is "Do the paleodune deposits require special geotechnical consideration for site planning, development, and construction?" In order to answer this question, several objectives are addressed as follows: 1) Identification and mapping of paleodune deposits, 2) Formation of a geologic model to explain the variability of strata cementation, 3) Characterization of general geotechnical properties of the deposits, and 4) Identification of geologic hazards associated with the deposits.

Planning for sustainable development is a key issue facing coastal communities along the Central Coastal plain. The Oregon coastal planners require a "framework of geologic and geotechnical understanding" in order to promote sustainable development.

Figure 3: The Capes Development at the headwall scarp of a dune slide in the Netarts dune sheet. (Peterson et al., 2002).

"Sustainable development," is defined in this study as a means to manage and

protect coastal resources for long-term use by coastal communities. Efficient

development requires a thorough understanding of the geologic and geotechnical parameters that effect development (Figure 3). Presently there is an incomplete understanding of the paleodune deposits, especially among practicing engineers and geologists, that appears to result in slope, drainage, settlement, and erosional type failures associated with site grading and development. The failures appear largely related to misinterpreting field reconnaissance and exploration data and a lack of appreciation of the complex structure and variability of the dunal deposits. Further, seismic issues consisting of the mechanics of shaking and the response of the dune deposits to seismic events are becoming a significant consideration for future developments on the coastal plain. The purpose of this study is to establish a geological model of the stratified dunal deposits to further develop that understanding and aid in sustainable development and resource planning.

Recent reports by Beckstrand (2001), and Peterson et al. (2002) point to the emplacement of large dune sheets that occupied the present coastline and the innercontinental shelf during the late Pleistocene. It is hypothesized that the paleodune deposits present along the Central Oregon Coast are remnants of widespread dune sheets that formed during late-Pleistocene episodes of marine regression (low stand sea levels). Some of these paleodune sheets extend 3-6 km inland from the present coastline. The dune deposits mantle the terraces of the coastal plain, which account for about 90% of the coastal residential, commercial, and public development. In June 2002, Dr. Curt Peterson, Dr. Trevor Smith, Dr. Georg Grathoff (Portland State University), and Dr. John Baham (Oregon State University) initiated a study to

16

investigate the geohydrology, groundwater geochemistry and geotechnical properties of the paleodunal deposits. The two studies were funded by Oregon Sea Grant (Peterson et al., 2005).

In this thesis I present a detailed database of the shallow subsurface stratigraphic development of the paleodune deposits for the Newport dune strata on the Central Oregon Coast, (Figure 1). Representative sites were investigated in detail to develop geotechnical models of the Pleistocene dune strata, in the Newport and Florence regions. (Figure 1 and Figure 4).

Figure 4: Florence Area Map showing location of Canary Road geotechnical site and mapped dune profile sites.

The dune stratigraphic profiles are compared to dune radiocarbon and luminescence dates to form a geologic model of diagenetic alteration and cementation. The variously cemented dune strata are measured for geotechnical properties of density, permeability, and shear strength, among others. The geotechnical hazards of poor drainage, weak shear strength, settlement, and over-steepened slopes are related to sites of recent failures. The most visible and obvious hazards are slope failures, thus, slope stability is the main focus of this study. Several field procedures and laboratory test methods are provided for performing geotechnical site investigations in paleodune deposits along the Oregon Coast. Estimates of seismic response is beyond the scope of this study, but is a major hazard effecting development and should be pursued in future research.

Background

Study Area

The study site for this thesis is centered in the Central Oregon Coastal Plain, which contains the informally named Newport dune sheet. The Newport dune sheet is bounded by Cape Foulweather on the north, Cape Perpetua on the south, the Coast Range to the east and the Pacific Ocean to the west. The Florence dune sheet is bounded by Heceta Head on the north, the Umpqua River on the south, the Coast Range to the east and the Pacific Ocean to the west. The Newport and Florence dune sheets are remnants of a large complex of dunes that covered the coastal plain and ramped up onto the foothills of the Coast Range. The dune sheets are believed to have extended westward of the current coastal headlands and were possibly contiguous on the continental shelf during low sea level stands (Peterson et al, 2002). Along the Coast Range uplands the paleodune deposits mantle the Pleistocene terrace deposits that overlie the Tertiary age marine sedimentary deposits and locally, basalts, as exposed in the resistant headlands.

Modern Climate

The central coastal climate is presently characterized by wet, stormy winters and dry, mild summers. Temperatures typically range from 11°C to 15° C during the summers and from 7°C to 9°C during the winter months. Precipitation primarily occurs from November to March with an annual average of 177 cm recorded from 1971 to 2000. The average temperature and precipitation measurements for the Central Oregon Coast is shown in Table 1. The modern wind direction along the coastline shifts with the seasons, with winter wind directed from the southwest and summer wind directed from the northwest.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Average precip. (cm)	26.04	22.07	19.66	12.37	9.35	6.91	2.64	2.59	6.07	13.00	27.10	28.91	176.71
Extreme 24 hr precip. (cm)	9.25	8.28	7.80	6.32	5.28	8.36	3.68	4.11	6.40	8.38	12.67	9.91	12.67
Temp. 1971- 2000 (°C)	7.2	8.0	8.5	9.4	11.3	13.1	14.4	14.6	14.0	11.7	9.2	7.3	10.7

Table 1 : Historical precipitation and temperature records for the Central Oregon Coast.

Paleoclimate Data

Worldwide climate fluctuations coincided with several glacial advance and retreat episodes during the late Pleistocene (120 to 10 thousand years before presentka). The glacial fluctuations are represented by eustatic sea level curves (Figure 5) that show the relative elevation of sea level during periods of glacial advance and retreat (Pirazzoli, 1993). The sea level curves show that the sea levels ranged from 30 m to 125 m below present.

Figure 5: Eustatic sea level curves (worldwide) with respect to elevation for last 80 ka years BP. Line A is from Chappell and Shackleton (1986), line B is from Shackleton (1987), and line C is from Bloom and Yonekura (1985). Boxed areas are probable error ranges for age and height for line C. Modified from Pirazzoli (1993).

Paleoclimate data is provided from core records of pollen collected at Little Lake, located east of Florence in the Oregon Coast Range (Grigg and Whitlock, 1997; Worona and Whitlock, 1995). The lake records extend back to about 40,000 RCYBP. This Late-Pleistocene record covers the time-period of the majority of late-Pleistocene dune deposits (Beckstrand, 2001). The pollen data indicates vegetation changes that imply regional climate change and wide-scale fire events. During the late-Glacial Transition from approximately 16 ka to 11 ka, the pollen data indicates several fluctuations in climate from cool and dry to warm and wet conditions associated with fire events. A regional change to a warmer, drier climate (Table 2) is indicated by a vegetation change at Little Lake approximately 11 ka. The climate conditions and the lower relative sea level that occurred during most of the latest Pleistocene would have been optimal for sand mobilization on the exposed continental shelf. Paleoclimate records for the San Francisco Bay area, located approximately 900 km to the south, indicate that during the last glacial maximum (21 ka to 17 ka) the Bay area was a broad forested valley and the shoreline was approximately 30 km west of the present California coastline (Helley et al., 1979).

Paleoclimate data has also been provided from foraminiferal species assemblages and oxygen isotope data collected from marine sediments. The marine deposits on the continental shelf/slope record marine water upwelling and downwelling currents that provide evidence for wind patterns along the Pacific Coastline during the LGM (Ortiz et al., 1997). Modeling based on microfossil records during the late Pleistocene (22ka to 10ka) indicate a stronger southerly onshore wind flow.

AGE (Years BP)	Oregon Coast Range (Little Lake)	Paleoclimate and Conditions		
0	Douglas fir, w. hemlock, and w. red			
5 000	Douglas fir, w. hemlock, cedar, and alder forests	INTER-GLACIAL PERIOD - Warmer and dryer: Sea level		
	Douglas fir, alder, and w. red cedar forests	rising		
10,000	Pine, fir, and homlock forests			
	Douglas fir, alder, and hemlock	LATE GLACIAL TRANSITION		
15,000	Spruce, fir, and hemlock forests	warm and wet, Sea level hsing		
		GLACIAL MAXIMUM PERIOD -		
20,000	Parkland forests of Engelmann spruce, lodge pole pine, and mountain hemlock	Cool and dry; Sea level at low point (90 to 125 meters below present)		
25,000				
30,000		INTER-GLACIAL PERIOD -		
35,000	W. white pine, fir, and w. hemlock forests	Warmer and dryer; Sea level fluctuations (30 to 70 meters below present)		
40,000				
	(Modified from Worona and Whitlock, 1995)	(Taken from Pirazzoli, 1983)		

Table 2: Vegetation history of Oregon Coast Range compared with paleoclimate and relative sea level conditions. Modified from Worona and Whitlock, (1995) and Pirazzoli (1993).

Local Geology

The geology and origin of the Oregon coastal plain has been studied by many geologists that include Beaulieu and Hughs (1975), Schlicker, et al. (1973), and Snavely, et al. (1976). During the late Cretaceous and early Tertiary periods, a majority of western Oregon was covered by shallow seas that deposited sediments shed from the western edge of the continental margin. A subduction zone was present trending northeast to southwest across what is now north-central Oregon. By the early Eocene, the subduction zone migrated slowly to the west followed by formation of the Siletz River Volcanics which consists of a thick sequence of basalt flows, pillow basalts, breccia, interbedded tuffs, siltstone, and volcaniclastic sandstone. During the late Eocene to middle Oligocene, the subduction zone had migrated near its present location and the Siletz River Volcanics were overlain by thick formations of marine sandstone and siltstone (Tyee, Flournoy, Yamhill, Yaquina). During the middle Miocene, uplift of the Coast Range began, accompanied by deposition of the Nye Mudstone and Astoria Formation and eruption of basalt flows (Depoe Bay Basalt and Cape Foulweather Basalt). Wave cut platforms were created on the Tertiary bedrock along the coastal plain during the Pleistocene due to rise and fall of sea level during episodes of continental glaciation and deglaciation. Multiple elevated platforms were formed due to net tectonic uplift of the coastal plain (Komar, 1997). The wave cut platforms are covered by Quaternary terrace deposits consisting of a mix of gravel lag deposits, beach sand, fluvial sand and gravel deposits, and layers of silt and fine sand. The terrace deposits are mantled by beach and eolian (dune) sand deposits.

23

Origins of coastal dunes

Two models, based on eustatic sea-level, have been used to explain the origin of the dune deposits. One model theorizes that marine transgressions (high-stand model) force sand onshore. The sand is subsequently transported by onshore winds and formed into dune deposits (Figure 6).

Figure 6: Schematic illustration of the high-stand emplacement model, from Beckstrand (2001).

A second model, outlined by Beckstrand (2001), theorizes that during low-stand sea levels (glacial periods), the inner continental shelf was subaerially exposed by lowered sea level of approximately 40 to 120 meters below present sea level. During the low-stands, onshore winds transported eolian dunes over receptive lowlands (Cooper, 1958). The paleodune sheets locally mantled the marine terraces and rampedup against a topographic barrier, the Coast Range foothills (Figure 7).

Both models apply to the Newport dune sheet. The thick Pleistocene dunes developed during marine low-stand conditions. By comparison, the thin Holocene dune caps at the tops of the modern sea cliffs were formed after the Holocene marine transgression.

Figure 7: Generalized section of low stand emplacement model, modified from Beckstrand (2001).

The Pleistocene sand dunes were transitory by nature, being episodically forested and remobilized. The episodic stabilization caused by climate and vegetation change resulted in numerous stacked deflation plain deposits and buried forest soils (Alton et al., 1996), as shown in Figure 2. In addition, fluvial and lacustrine processes coincided with dune forming processes that further complicated the geologic setting and resulted in the remnant dune sheet geomorphology that exits today.

Previous work

The origin of sand dunes along the Oregon coastal plain has been studied by many geologists and soil scientists that include Cooper (1958), Reckendorf (1975, 1985, 1998), Komar (1997), Beaulieu and Hughes (1975), Schlicker, et al. (1973), and Snavely, et al. (1976). They have reported the presence of sand dune deposits overlying the Quaternary terrace deposits that form a majority of the coastal plain. However, the dune and underlying beach or alluvium deposits are not differentiated in the published geology or environmental geology maps. Published geotechnical properties (Table 3) that characterize the stabilized dune and undifferentiated marine terrace deposits, as taken from the available literature, is limited (Schlicker et al., 1973 and Hampton, 1963). Available published data on paleodune deposits included index testing (soil classification, grain size, and plasticity), strength testing (internal friction angle and cohesion), and geohydrology (porosity and permeability). However, the data did not clearly identify or characterize the paleodune deposits due to the limited number of samples used for analysis.

	Stabilized dune sand	Quaternary Marine Terrace	Well 18/12w- 26B1	Well 18/12w- 26B3	Well 18/12w- 14R1	Test hole 18/12w- 23Q1
Depth (m)	-	-	3.66	1.83	1.68	6.10
Soil classification Angle of internal	SM	ML	SP	SP	SP	SP
friction	32 - 37	15 - 25	-	-	-	-
Cohesion (tsf)	0	0.29 - 0.5	-	-	-	-
Plasticity Index Mean grain size,	0	0 - 4	-	-	-	-
D50 (mm)	0.09 - 0.37	0.013 - 0.09	0.225	0.260	0.250	0.210
Porosity (%) Permeability (cm/s)	- 5.6E-3 - 1.7E-2	- 1.6E-2 - 0.17	39.2 1.27E- 02	38.8 2.83E- 02	39.5 2.83E- 02	36.5 1.93E- 02
Reference (Schlicker et al., 1973)		(Hampton, 1963)				

Table 3: Published geotechnical parameters of dune sheet and marine terrace deposits by the Oregon Department of Geology and Mineral Resources (DOGAMI) and the United States Geological Survey (USGS).

Surficial soil data, from the Natural Resources Conservation Service (NRCS)

Soil Survey, that characterize soils developed on the dune deposits are shown in Table

4 and Table 5 from Lane and Lincoln Counties, respectively (Patching, 1987 and

Shipman, 1997). However, the soil survey data typically reflects the top 1.5 m of the

soil profile and the geotechnical parameters were developed using variable and largely

undetermined sampling and testing methods.

	Bandon 7B	Bullards 21B- G	Ferrelo 21 B-G	Waldport 132E
Depth (m)	1.5	1.5	1.5	1.5
Soil classification	SM	SM	SM	SM
Plasticity Index	NP	NP	NP	NP
Mean grain size, D50 (mm)	0.11	0.28	0.17	0.15
Permeability (10 ⁻³ cm/s)	1.41 - 1.67	1.41 - 1.67	1.41 - 1.67	14.1 - 70.6
Reference (Patching, 1987)				

Table 4: Geotechnical data of surficial soils from Lane County soil survey.

	Bandon 3C-E	Nelscott 42C-E	Netarts 47C-E	Waldport 63E	Yaquina 67A
Depth (m)	1.5	1.5	1.5	1.5	1.5
Soil classification	SM	SM	SM	SM	SM
Plasticity Index	NP	NP	NP	NP	NP
Mean grain size, D50 (mm)	0.11	0.07 - 0.2	0.19 - 0.29	0.2	0.2 - 0.25
Permeability (10 ⁻³ cm/s)	1.41 - 1.67	1.41 - 1.67	1.67 - 14.1	14.1 - 70.6	1.67 - 14.1
Reference	ce (Shipman, 1997)				

Table 5: Geotechnical data of surficial soils from Lincoln County soil survey.

The distributions of marine terrace deposits in the Newport dune sheet are shown in Figure 8. The distribution of dune soils, spodisols, for the Newport dune sheet are shown in Figure 9. These published maps of potential dune sheet extent were groundtruthed for discrimination of dune sheet and shoreface deposits in this study.

Figure 8: Map of Quaternary geologic units previously mapped in the Newport dune sheet with locations of mapped dune deposits (This Study). Redrafted from Schlicker et al. (1973) and Snavely et al. (1976).

Figure 9: Summarized soil survey map of Newport dune sheet with locations of mapped dune deposits (This Study). Redrafted from Shipman (1997).

Methodology

This Methodology section outlines the geologic and geotechnical techniques used to establish the distribution and selected engineering properties of paleodune deposits located on the Central Oregon Coast. The methods used for this study are divided into geologic research, field mapping, site investigation, and laboratory testing. Geologic research and field mapping were conducted to establish a spatial and stratigraphic distribution of paleodune deposits that mantle the terrace deposits on the coastal plain. Geotechnical field and laboratory methods and tests were completed to broadly classify the typical soils that compose the paleodune deposits. The field procedures and test methods used to characterize the Newport Dune Sheet are summarized in a flow chart (Figure 10). These tests and methods assign general engineering properties to a range of Pleistocene dune strata in the Newport dune sheet.

Figure 10: Field procedures and laboratory test methods used to characterize paleodune deposits of the Newport Dune Sheet.

Field mapping was accomplished by integrating several reconnaissance survey methods. These included, 1) walking out sea cliff exposures, 2) driving along west-east transect, and 3) field checking proxy maps of dune sheet back edges. Topographic maps (USGS 1:24,000 scale), modified environmental geologic maps (Figure 8) and modified NCRS soils maps (Figure 9) were used to identify potential exposures of paleodune deposits in sea cliffs, road cuts and stream valleys of uplifted marine terraces. Paleodune geomorphologic features were identified in topographic maps that included impounded ponds or diverted streams and a change in contour expression from broad rounded lowland contours (marine terraces) to steep, sharp upland contours (Tertiary marine bedrock). Geologic and geotechnical site locations that were examined in the field were located using a global position satellite (GPS) system (Peterson et al., 2005). Groundtruthing of terrace surface deposits was conducted to establish the landward extent of paleodune strata. These strata were identified as dune sand, paleosols, cemented hardpans, and peats. Groundtruthing was completed by driving or walking public roads, right of ways, forest land, and beaches to locate paleodune exposures (Figure 11). Some private property was accessed after owner permission was granted.

Figure 11: Road cut profile (Pinecrest site) along Highway 101 approximately 2 km north of Waldport. Center of picture is a 5m tall survey rod for scale.

Paleodune deposits were identified based on stratigraphic position, grain size, and the presence of dune morphology such as foresets, truncated bedding (deflation surface), and buried soils. Surficial geomorphic features that characterize paleodune deposits were used to target potential dune topography during the reconnaissance mapping (Cooper, 1958; Schlicker et al., 1973; Ritter, 1986;). Surface features included :

- Rolling topography
- Linear ridges bounded by steep valleys
- Impounded streams or lakes and ponds (barrage ponds)

- High groundwater areas, broad shallow wetlands (deflation plains)
- Thick, modern soil cover often with mature forest
- Exposures show alternating layers of fine sand varying from tan to red-brown (dune sand) with layers of silty sand to sandy silt varying from grey to brown (paleosol/deflation plain)
- Paleodune strata (uniformly graded fine sand, hardpan layers, paleosols, deflation plains, and peats).

Stratigraphic profiles were constructed to represent the paleodune deposit at each groundtruthing site. Profile exposure lengths ranged from 10's of meters in road cuts to hundreds of meters in sea cliffs. Measured profiles show the vertical sequence and thickness of the paleodune strata. Stratigraphic profiles were measured using a 10 meter or 100 meter tape. Long profiles (greater than 10 meters) were measured using a hand-held clinometer to record slope angles for calculation of vertical and horizontal distance. Some sea-cliff exposures were too hazardous to climb and slope measurements were estimated using a known height of an object or person in digital photo mosaics taken at ground level.

The compiled site locality maps (Figures 27, 28, and 29; located in the Results Section) demonstrate the distribution of measured profiles of paleodune deposits. The groundtruthing site profiles were used to construct transects trending landward (west to east) from the sea cliff to the coastal uplands. Several of the groundtruthing sites were selected for radiocarbon (samples collected by Rodger Hart) and thermoluminescence dating (samples collected by Errol Stock, Griffith University, Australia and analyzed by David Price, Wollongong University, Australia. Samples of wood for radiocarbon dating were collected from road cuts and sea cliff exposures. Sand was collected for

36

thermoluminescence dating from hand auger borings (Peterson et al., 2002). The degree of modern topsoil formation was used as an indicator of relative age of the underlying deposit, i.e. Holocene (0 to 10,000 years BP) or Pleistocene (10,000 to 100,000 years BP). Relative age of the dune deposits was used to map the extent of young (uncemented) Holocene dune deposits and old (variably cemented) Pleistocene dune deposits. Soil formation parameters include: 1) overall profile thickness; 2) iron oxide accumulation i.e., soil color (Bw horizon) (chroma and hue) based on the Munsell color chart; 3) zone of clay accumulation (Bt horizon); and 4) presence of gibbsite mineral precipitates (Beckstrand, 2001). Mineral precipitates are common within the paleodune deposits and include red iron oxide staining (Figure 12) or cemented hardpans (ortstein), black iron oxide and/or humate nodules, allophane wood replacement, and white gibbsite nodules (Grathoff et al., 2003). Red iron oxide staining or cemented hardpan layers are the most apparent forms of the mineral precipitates in the paleodune sand deposits of the central Oregon Coast.

Figure 12: Photo of iron oxide cemented layer above tan fine sand.

The pocket penetrometer was used in the field to establish relative surficial soil strength characteristics of selected soil horizons (Figure 13). A fresh, smooth surface was cut into the outcrop and the penetrometer was pushed into the soil until the tip penetrated 6.4 mm or a maximum reading was reached. Several readings were collected to determine a representative penetration reading for a test location. The pocket penetrometer is designed to record the unconfined compressive strength of cohesive soils (silt and clay) in units ranging from 0.25 to 4.5 kg/cm². This device was not intended to replace laboratory testing, but to determine relative cementation of soil horizons for establishing soil development and selecting soil horizons for laboratory testing. It should be noted that the penetrometer is relatively ineffective in

granular and cemented materials and results from this test should be interpreted as relative penetration for comparing different soil units.

Figure 13: Photo of a pocket penetrometer.

Soil profile logs were constructed from mapped exposures that included road cuts, sea cliffs, slope cuts, trenches, and hand augers. The information collected included exposure type, unit age based on relative age and stratigraphic position, unit parent material, soil horizon designations, horizon thickness, predominant grain size, bedding structure, maximum Munsell color, soil formation structure, and diagenesis.

The relative geologic age designation of mapped surficial units consisted of Tertiary (T), Pleistocene (P), or Holocene (H). The parent materials were classified into one of the following: dune(D), loess(L), colluvium(U), peat(P), alluvial/fluvial(V), lagoon/estuary(N), beach shoreface(S), and basal conglomerate(M). The soil horizon designations were adapted from Birkeland (1984) and included the following: organic (A), leached (E), accumulation (B), Fe+3 accumulation (Bw), incipient clay accumulation (Btj), clay accumulation (Bt), Fe+2 reduced gleyed layer (Bg), parent material (C), and oxidized parent material (Cox). The horizon thickness was measured to an accuracy of 1 cm using a tape measure, however some profiles did not have direct access (i.e. steep cliffs) and measurements were estimated with an accuracy of 0.25 meters using a suspended tape measure or scaled digital photographs. The horizon grain size was classified as silt (0.002-0.075 mm), sand (0.075-4.75 mm), gravel (4.75-75 mm), or cobbles (75-300 mm) as based on the Unified Soil Classification System (USCS-ASTM-2487-98). Sand sizes ranged from coarse to very fine grained. Bedding structures, such as cross beds, planar beds, and laminations were recorded. The maximum Munsell color for selected horizons was recorded based on a moist field condition. Pocket penetrometer measurements were collected for relative soil strength comparisons. Soil formation structure included loose, very weak blocky, weak blocky, strong blocky, and columnar/prismatic (modified from Birkeland, 1984). Finally, inter-stratal groundwater diagenesis of horizons included Fe-ortstein (hard pan layer), Fe-humate, allophone, and gibbsite were recorded where observed in the stratigraphic section.

The geotechnical study was separated into two parts that included a field component and a laboratory component for each geotechnical field site. The sites were selected to provide a range of conditions associated with Pleistocene dune deposits found on the Central Oregon Coast. The field component of the site investigations included measured sections, detailed logs, and pocket penetrometer measurements of variably cemented dune strata on road cuts and sea cliff exposures. Subsurface information was collected using hand auger borings or excavated test pits. A slope cut exposure profile, subsurface boring log or test pit log was constructed for each geotechnical site using standard engineering geology classification. Visual field logging methods included estimated density, color, soil type based on main constituent and descriptors, moisture content, texture, and structure. These logs were formatted using a field logging sheet (Appendix B) based on American Society for Testing and Materials (ASTM) procedures (modified slightly by consulting practice methods) and terminology for ease of use by engineers and planners.

Field Sampling and In-situ Testing Methods

The variably cemented dune deposits proved to be difficult to sample without disturbing the sample integrity. Several different sampling strategies were incorporated into the field sampling program to reduce sample disturbance. The paleodune deposits were observed to be discontinuous and change orientations within the subsurface. Ground Penetrating Radar (GPR) was used to create subsurface profiles and to extend borehole and outcrop profiles. Pressuremeter testing was performed at selected sample sites to compare insitu field strength and laboratory measured sample strength.

Field Sampling

Hand auger borings were performed to collect samples at targeted depths using a 3-inch diameter aluminum sand auger. Typical boring depths ranged from 2 to 10 meters below ground surface. Hand auger borings generally extended down to refusal based on penetration resistance or boring collapse below ground water level. Individual paleodune layers were logged based on visual methods. Soil samples were collected vertically downhole or horizontally back into the outcrop exposure by one of several methods including auger grab (disturbed) samples, brass ring samples, Shelby tube samples, and excavated block samples. As indicated, all samples sustain variable levels of disturbance depending on the sampling method.

Disturbed samples were collected by hand or from hand auger cuttings (ASTM D 1452-00). The disturbed samples were placed in sealed plastic bags to retain moisture. Tests conducted on disturbed samples included moisture content, grain size, Atterberg limits, and specific gravity. Brass ring samples (Dames and Moore rings) were collected from hand auger borings and outcrop exposures using an AMS core soil sampler (Figure 14). The AMS sampler consists of a 6 pound hand slide hammer, one-meter extension rods, and a drive head that holds six 2-inch diameter by 1-inch tall brass rings. The drive head was driven (at the sample interval) with the slide hammer. The drive head was either pulled or dug out by shovel. The ring samples were carefully removed from the drive head and placed in a plastic liner and sealed in a tube for transport. Tests conducted on ring samples included moisture content, unit weight and direct shear.

Figure 14: Photo showing soil sampling using a driven or pushed Shelby tube (on left in outcrop) and an AMS core sampler that holds six Dames and Moore brass rings (on the right).

Shelby tube samples were collected from outcrop exposures using two methods. The first method involved driving the tube into the sample interval with a cushioned hammer (ASTM D 1587-00). This method resulted in relatively undisturbed samples. Some disturbance was suspected from driving the Shelby tubes into the weakly cemented sand deposits. This potential disturbance is addressed in the Results section.

The second method involved trimming an "undisturbed" block sample into a Shelby tube. Material was carefully removed with a hand trowel and knife to allow a Shelby tube to slide down around the sample with minimal force. The tube ends were trimmed flush and the ends were capped for transport. The steel Shelby tubes were split lengthwise using a Dremel tool and cutting blade to reduce the friction (sand lock) of the sandy soil during extrusion of the specimen. This is the preferred method to obtain, transport, and store "undisturbed" paleodune soil samples. The quotes indicate that no sample is completely "undisturbed" during or after removal from the sample site.

A third sampling method involved collecting large (50x50x50cm) block samples (Figure 15). The block samples were collected from outcrop exposures using several straight-edge shovels and hand trowels to excavate an intact soil block from a sample interval. The block was trimmed (30x30x30cm) in the field and wrapped in plastic sheeting, padded, and placed in a cardboard box for transport. The blocks were trimmed into cylinders in the laboratory for unit weight, hydraulic conductivity, and triaxial testing. A few block samples were collected only at the Pinecrest site due to the difficulty in handling, transport, and storage of large block samples required for trimming test specimens in the laboratory. Several of the large block samples fractured along internal planes of weakness during removal from the outcrop.

Figure 15: Photo of block sample collection at the Pinecrest site.

Field Exploration and Testing Methods

Ground Penetrating Radar

An Ecopulse 100A ground penetrating radar (GPR) system was used by Harry Jol (University of Wisconsin at Eau Claire) with a 100 MHz antenna and a 300 volt transmitter to profile the sand dune strata (Figure 16).

Figure 16: Photo showing GPR equipment with the 100 MHz antenna attached.

A step spacing of 0.5m was used to increase reflection density. A common midpoint (CMP) test was performed at each locality to establish velocity to depth relations (Jol, Smith & Meyers, 1996). GPR profiles were collected parallel to the outcrop at the Yachats site (Figure 17) to compare the GPR reflections to the outcrop measured profile strata that included paleosols, hardpans, dune cross-beds, deflation surfaces, and discontinuities (Figure 18). GPR profiles were also collected orthogonal to the outcrop face to extend the orientations of various strata back into the slope.

Figure 17: Photo showing GPR survey running parallel to the sea cliff (Yachats) to compare the stratigraphic log to the GPR reflections. Arrows point to major soil horizons.

Figure 18: Comparison of the measured profile section at Yachats (NEWP150) with the GPR reflection profile. The top 4 meters show a good correlation.

ASTM D 4719-87

Standard Test Method for Pressuremeter Testing in Soils

Prebored pressuremeter testing was done at selected intervals on boring locations

(Figure 20). The PMT test locations were chosen based on the results of the field site

investigations and laboratory testing to compare the in-situ soil strength to the

laboratory measured soil strength. The Pressuremeter test is an in-situ stress-strain test

performed with a cylindrical probe that expands radially within a prepared cavity, generally a bore hole. The cylindrical probe is then expanded in equal volume increments while measuring the change and pressure within the probe (Figure 22). The test was performed to ASTM D 4719-87 standard test method for pressuremeter testing in soils. The test measures soil stiffness and strength and reports the PMT Modulus (Eo) and Limit Pressure (P_L). The 32 mm EX-size diameter probe (Figure 22) was used in hand augered boreholes. Both Texam, manufactured by Roctest of New York (Figure 19), and Portland State University Pressuremeter (PuP) were used as control units. The PuP unit is a small capacity (maximum of 300 cc) portable unit for difficult access sites.

Figure 19: Photo of Texam pressuremeter control unit in use at the Ona 1A site located on the top of Ona Beach sea cliff.

Figure 20: Photo of pressuremeter test location at Pinecrest road cut.

Figure 21: Photo of PuP pressuremeter control box and pressure gauges.

Figure 22: Photo of fully expanded EX pressuremeter membrane.

Geotechnical Laboratory Tests

Testing was conducted in general accordance to ASTM standard test methods and performed in the field or in geotechnical soils laboratories located at GeoDesign, Inc. and at PSU Civil and Environmental Engineering Department (Portland, Oregon). The following is a list of laboratory tests performed to characterize paleodune geotechnical soil parameters.

Soil Classification

ASTM D 2487-98

Standard practice for classification of soils for engineering purposes (unified soil classification system).

The USCS was used to supplement the visual descriptions prepared in accordance with the field logging methods. The soil classification is based on laboratory test results that include particle-size analysis (ASTM D 422), liquid limit, and plasticity index (ASTM D 4318). The procedure assigns an appropriate group name and symbol to foundation soil samples based on laboratory testing. The Unified Soil Classification System (USCS) is a standard method to describe and correlate behavior of soils with similar engineering properties.

Index Tests

ASTM D 4318-00

Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

This method was used to determine the plasticity index of the paleodune deposits for the purpose of USCS soil classification. Few samples required this test due to the sandy nature of the soils.

ASTM D 2937-00

Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method

This method was used to determine the in place density of paleodune samples. Thin-wall sample tubes were pushed or driven with a cushioned hammer to the target depth, removed, and sealed for transport to the laboratory. The tube ends were cut square with a pipe cutter and the ends of the sample trimmed flush. The volume of sample was determined by measuring the sample dimensions in the tube using a caliper capable of reading to 0.025mm. The moist weight of the sample was recorded before drying. The moisture content of the sample was determined and the dry density calculated by dividing the weight of dry soil by the volume of soil.

ASTM D 422-63(2002)

Standard Test Method for Particle-Size Analysis of Soils

This method was used to determine the grain size distribution of the paleodune deposits. A hydrometer analysis was run on samples containing more than 10 percent fines (silt or clay) based on visual determination. Due to potential cementation effects, particle size may be variable based on the amount of aggregated grain breakdown imposed during the test. Further, allophane has a tendency to flocculate in the hydrometer, resulting in test results potentially biased toward the larger particle sizes.

ASTM D 854-92

Standard Test Method for Specific Gravity of Soils

This method was used to determine the specific gravity of the paleodune deposits. Test Method D was used for moist samples. The soil samples were placed in a 250mL or 500mL calibrated volumetric flask, partially filled with distilled water and gently boiled for a minimum of 2 hours. The sample plus water was allowed to cool and the flask was filled to the calibration mark and weighed. The specific gravity (G) was calculated using the formula: $G_T = M_o / (M_o + (M_a - M_b))$

Where: $M_0 = Mass of oven dry soil$

 $M_a = Mass of flask filled with water$

 M_b = Mass of flask filled with water plus soil

T = Temperature of flask contents at determination of M_b

The sample porosity, void ratio, and degree of saturation was calculated for each geotechnical sample based on index test results for sample moisture content, dry bulk density, and soil specific gravity. Each parameter was determined from the following formulas:

<u>Porosity</u> (n) is defined as the proportion of the volume of space between soil particles to the total volume of the space occupied by the sample. In terms of easily measured parameters were:

 $n = 1 - ((\gamma_d)/G_s * \gamma_w)$

Where: γ_d = dry density; G_s = specific gravity; and γ_w = unit weight of water.

<u>Void ratio</u> (e) is defined as the proportion of the volume of space between soil particles and the volume occupied by the solid particles.

 $e = (G_s * G_w) / \gamma_d) - 1$

<u>Degree of saturation</u> (S) is defined as the proportion of total volume that contains water.

 $S = (w * G_s)/e$

Where: $\gamma_d = dry$ density of soil; $G_s = soil$ specific gravity; $\gamma_w = unit$ weight of water; and w = percent water content of the soil.

Soil Strength Tests

ASTM D 3080-90

Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions

This test method was used to determine the consolidated drained shear strength of undisturbed paleodune samples. In general, three direct shear tests were conducted on brass ring (61mm diameter) samples at different confining stresses to generate a Mohr strength envelope. The resulting strength envelope indicates shear strength as defined by the angle of internal friction (phi) and cohesion intercept (c). The majority of the direct shear testing was performed by Renee Summers (civil engineering, Portland State University) for her Masters project.

ASTM D 4767-95

Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils.

This test method was used to determine the stress-strain relationship of undisturbed paleodune samples collected and prepared in accordance to procedures outlined in the previous section. Samples were saturated to a minimum "B" pore pressure parameter of 0.95. The samples were saturated with de-aired water by means of a back-pressure method. Air within the sample is dissolved into the water by application of incremental changes of the sample confining pressure and the internal sample head pressures. The B coefficient is determined by the change in pore-water pressure in the sample divided by the change in confining pressure. Once saturated, the samples were consolidated in two stages to an effective stress matching the median effective stress of the triaxial test for the representative sample location. In general, three triaxial strength tests were completed on 73mm diameter samples at different effective stresses to generate a Mohr strength envelope. Triaxial strength tests were conducted using drained and undrained methods. Under undrained conditions, the sample volume is held constant and the change in excess pore water pressure is held at zero and the change in sample volume is monitored during loading. In either case, drained strength parameters are determined.

Triaxial testing was conducted using a GeoComp Products Lab System. The GeoComp system is a computer-controlled, fully automated soil testing system produced by the GeoComp Corporation of Boxborough, Massachusetts (Figure 23). The system consists of a load frame, two automated flow pumps that control the cell and sample pressures, and a computer for data acquisition.

Figure 23: Triaxial and flex-wall permeability test equipment.

Permeability Tests

ASTM D 5084-00

Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.

This test method was used to determine the hydraulic conductivity of paleodune samples. Samples were saturated as in the triaxial test. Once saturated, the samples were consolidated in two stages to an effective stress matching the median effective stress of the triaxial test for the representative sample location. Water is then forced through the sample under a constant gradient. Hydraulic conductivity (K) is calculated from a constant rate of flow at a constant gradient (*i*) through the sample by the formulas:

 $i = \Delta h / L$

 $\mathbf{K} = (\Delta \mathbf{Q} * \mathbf{L}) / (\mathbf{A} * \Delta \mathbf{h} * \Delta \mathbf{t})$

Where: ΔQ = average of inflow and outflow for time Δt

L = sample length

A =sample cross-sectional area

 Δh = average head loss across sample

 $\Delta t = time interval of measurement$

Flexible wall permeability testing was also carried out using the GeoComp system (Figure 20).

Clay Mineralogy

X-ray diffraction (XRD) analysis was performed on selected geotechnical samples to determine the nature of the cementing material in the paleodune sands. Sample preparation consisted of a wash using distilled water and a #270 (53 μ m) sieve and collection of all wash liquid. The supernatant liquid was mixed with 90 mL of dispersant (sodium metahexaphosphate) and allowed to settle the oversize (>2 μ m) fraction under the influence of gravity using Stokes Law. The remaining suspended size fraction was collected and placed in a centrifuge to settle and concentrate the desired size fraction (<2 μ m). Sample analysis was completed by Catrina M. Johnson. The analysis was conducted using a Philips theta-theta X-pert, Cu K-alpha, and Peltier cooled energy dispersive detector.

The paleodune deposits were successfully sampled and characterized by the methods outlined in this section. Non-cohesive materials are difficult to maintain in an undisturbed condition when removed from the field. During laboratory testing, some samples had to be abandoned due to suspected disturbance or desiccated conditions.

Samples that contained some fines (<0.075mm), or were lightly cemented, were less prone to disturbance.

Results

The results of this study are intended to characterize the geologic framework and geotechnical properties of Pleistocene dune deposits that are located in the paleodune sheets of the central Oregon coast. This Results section is organized into: 1) field work consisting of geologic field mapping; 2) geotechnical study sites and field observations; 3) geotechnical testing consisting of sample collection and laboratory testing; and 4) in situ field testing using the pressuremeter. The mapping and most of the field sampling was performed in the Newport Dune Sheet.

Field Mapping

The Pleistocene dune strata cover marine terrace shoreface deposits of the coastal plain and Tertiary bedrock that form wave-cut platforms at the base of the Coast Range foothills. The Pleistocene dunes are typically overlain by topsoil horizons. The coastal plain is locally developed with residences, multistory buildings, and roads that are built on the paleodune deposits (Figures 24, 25 and 26). Significant future development is planned or underway.

Figure 24: Road cut heading east from Highway 101 through paleodune deposits. The area on both sides of the road is zoned for residential development. The dip in the road (shown by arrows) is an interdunal stream running north to south.

Figure 25: House foundation excavation situated on a paleodune deposit located on top of a sea cliff at Ona Beach.

The Newport Paleodune Sheet deposits extend from the beach and foredune deposits east to the coast range foothills. The north and south features bounding the Newport dune sheet are arbitrarily defined at the two major headlands, Cape Foulweather and Cape Perpetua. Mapping the dune sheet has produced 151 site profiles that show wide-spread coverage of paleodune deposits and their eastern limit along the coast range foothills. Site profile data is located in Appendix A. Radiocarbon (RC) and thermoluminescence (TL) dating performed on paleodune deposits at selected sites indicate that the dunes are mostly Pleistocene age. Dating results will be discussed later in the Results section.

The Newport dune sheet covers approximately 55 kilometers (km) along the central Oregon coastline and extends inland from the beach up to 3.5 km. From the

151 mapped sites, 16 locations (10.6%) did not contain paleodune deposits. The elevation of the paleodune sheet ranged from less than 5 meters (sea cliff sites) to 131 meters (NEWP23). The mapped eastern limit of the paleodune sheet corresponds with the western margin of the Coast Range foothills and is shown on Figure 27, Figure 28, and Figure 29 at a scale of 1:125,000. Based on the mapped eastern limit of the paleodune deposits, the average width of the paleodune sheet was measured to be 2.0 km.

Figure 27: Northern portion of dune sheet showing map sites NEWP1 to NEWP62.

Figure 28: Central portion of dune sheet showing map sites NEWP47 TO NEWP113.

Figure 29: Southern portion of dune sheet showing map sites NEWP113 to NEWP151.

USDA soil taxonomy was used for measuring topsoil profiles in an attempt to match the mapped paleodune deposits with the regional soil survey maps (Shipman, 1997) (Figure 9). However, soil survey profiles only extend a maximum of 5 feet below ground surface (bgs) and focus on soil taxonomy related to agriculture applications. In plan view the taxonomy may be used to discriminate between paleodune and marine terrace deposits, however no such classification is made with depth. Soil color (chroma & hue), soil texture, soil structure, position, and thickness are used to determine the relative age of the paleodune deposit profiles.

Figure 30: Photo of logging road cut outcrop using a tape measure.

Paleodune strata profile logs were created for 151 mapped sites within the Newport Paleodune Sheet (Appendix A). In general, the mapped profiles consisted of one or more type of unit that included Holocene dune deposits, Pleistocene dune deposits, marine terrace deposits, and Tertiary bedrock units. A summary of thicknesses for the total profile, Holocene dune deposits, Pleistocene dune deposits,

and underlying units from the mapped sites is shown on Table 6.

	Total				
	Profile			Underlving Units	
		Holocene	Pleistocene	Marine	
		Dune	Dune	Terrace	Tertiary
		Deposits	Deposits	Deposits	bedrock
	thickness	thickness	thickness	thickness	thickness
Total Duna Shoot	(CIII)	(CIII)	(CIII)	(CIII)	(CIII)
	406.4	201.0	205.2	100.0	205.2
AVERAGE	490.1	221.2	305.3	108.2	295.3
MEDIAN	305.0	125.0	265.0	131.0	1/4.0
MODE	100	400	300	100	25
MAX	3120	1897	1330	660	2039
MIN	25	10	10	5	10
OCCURRENCES (n)	151	38	131	51	44
North Section NEWP1- NEWP57					
AVERAGE	439.0	398.4	267.7	192.8	339.0
MEDIAN	290.0	270.0	220.0	100.0	85.0
MODE	300	400	300	100	25
MAX	3120	1897	708	660	2039
MIN	25	17	50	20	10
OCCURRENCES (n)	57	10	46	15	14
Middle Section NEWP58-					
NEWP113					
AVERAGE	633.0	154.7	348.9	176.3	328.7
MEDIAN	514.0	100.5	300.0	166.0	254.0
MODE	150	35	150	11	674
MAX	1790	590	1330	396	804
MIN	25	15	30	5	10
OCCURRENCES (n)	56	18	51	27	21
South Section NEWP114- NEWP151					
AVERAGE	380.0	158.4	290.9	102.6	179.4
MEDIAN	312.5	96.0	270.0	101.0	42.0
MODE	150	#N/A	315	150	25
MAX	1157	400	930	150	1000
MIN	35	10	10	40	25
OCCURRENCES (n)	38	10	34	9	9

Table 6: Summary of mapped profile thicknesses of Holocene and Pleistocene dune deposits and underlying units. The number of occurrences (n) indicates how many

of each deposit type was recorded in the profile logs. The data includes outcrop and hand auger profile logs.

The average observed profile thickness for the Newport Dune Sheet is 4.96 meters. The measured thickness of most sites was limited by the exposure in road cuts, slope cuts, and sea cliffs (Figure 30). The average observed Holocene dune deposit thickness is 2.21 meters and the average observed Pleistocene dune deposit thickness is 3.05 meters. The observed marine terrace deposit thickness averages 1.68 meters. The middle section of the Newport Dune Sheet contains the thickest observed profile exposures (6.33 meters). A better measure of dune sheet thickness is taken from the sea cliff exposures. The average dune sheet thickness observed in sea cliff profiles from the northern, central, and southern sections of the field area are 17.5m, 10.0m, and 6.0m, respectively (Table 7). The road cut exposures represent the intermediate and eastern portions of the dune sheet (Figure 31). The average dune sheet thickness for road cut profiles from the northern, central, and southern sections of the field area are 3.0m, 3.0m, and 2.9m, respectively (Table 7). Marine terrace deposits and/or bedrock exposures were generally not observed underlying the paleodune deposits in road cut exposures. Road cut exposures are considered to represent minimum dune sheet thicknesses due to the entire deposit (stratigraphic section) was generally not exposed.
	Expo	sures
	Sea Cliff Road Cut	
	thickness (cm)	thickness (cm)
Total Dune Sheet		
AVERAGE	1000.0	296.6
MEDIAN	865.0	270.0
MODE	1370	200
MAX	3120	850
MIN	272	25
OCCURRENCES (n)	45	83
Northern Section NEWP1-NEWP57		
AVERAGE	1745.3	297.8
MEDIAN	1661.0	300.0
MODE	#N/A	300
MAX	3120	700
MIN	275	25
OCCURRENCES (n)	6	40
Central Section NEWP58-NEWP113		
AVERAGE	997.9	303.9
MEDIAN	956.5	235.0
MODE	1370	150
MAX	1790	850
MIN	272	50
OCCURRENCES (n)	28	22
Southern Section NEWP114-NEWP151		
AVERAGE	598.7	286.7
MEDIAN	525.0	265.0
MODE	#N/A	100
MAX	1157	731
MIN	365	35
OCCURRENCES (n)	11	21

Table 7: Summary of measured sea cliff and road cut profile thicknesses. The number of occurrences (n) indicates how many of each exposure type was recorded in the profile logs.

The profile logs used the following soil horizon classification scheme to categorize each paleodune layer (Peterson et al., 2005 and Birkeland, 1984):

- (A-horizon) organic accumulation zone (modern topsoil);
- (Btj) clay accumulation or incipient accumulation zone (paleosol if buried);
- (Bw) iron oxide, Fe+3, accumulation zone (hard pan or iron pan);
- (Bg) gleyed horizon (Figure 32), reduced iron (deflation plain);
- (C or Cox) parent material or oxidized parent material.

Figure 31: Paleodune profile located 1.5 km east of Seal Rock at approximate elevation of 40 meters above MSL. The road outcrop contained a thin topsoil horizon formed on a Pleistocene dune deposit that was probably stripped off during logging activities. Dune sand contained well-developed foreset bedding dipping 20° to 30° to the south.

Figure 32: Photo of contact between a deflation plain/paleosol (Bg horizon) and overlying dune sand (C horizon) located at Canary Road, Florence. The thin light colored layer is allophone root replacement.

A summary of mapped paleodune profiles is shown in Table 8. The average total thickness of the paleodune sand facies (PDC and PDCox) was calculated to be 1.35 meters. The middle section of the Newport Dune Sheet contained the greatest number of sand units (83) and the largest average thickness (1.44 meters) of sand units.

Pleistocene Dune Deposits					
	PDC,				
	PDCox	PDBw	PDBtj	PDBg	
	thickness	thickness	thickness	thickness	
	(cm)	(cm)	(cm)	(cm)	
Total Dune Sheet					
AVERAGE	134.7	49.5	44.7	23.1	
MEDIAN	100.0	40.0	36.5	17.0	
MODE	100	50	30	10	
MAX	1000	200	200	110	
MIN	2	2	5	2	
OCCURRENCES (n)	199	151	46	113	
PERCENTAGE OF TOTAL					
UNITS	39	30	9	22	
North Section NEWP1-NEWP57					
AVERAGE	139.8	55.5	60.8	24.0	
MEDIAN	100.0	50.0	50.0	20.0	
MODE	100	50	50	10	
MAX	350	200	200	80	
MIN	10	10	20	5	
OCCURRENCES (n)	53	54	23	26	
Middle Section NEWP58-					
NEWP113					
AVERAGE	143.5	52.3	32.6	23.7	
MEDIAN	100.0	40.0	30.0	20.0	
MODE	60	20	30	20	
MAX	1000	200	60	110	
MIN	2	5	15	5	
OCCURRENCES (n)	83	57	14	58	
South Section NEWP114-					
NEWP151					
AVERAGE	114.3	38.6	22.2	20.8	
MEDIAN	80.0	30.0	15.0	15.0	
MODE	100	50	15	10	
MAX	450	166	50	100	
MIN	10	2	5	2	
OCCURRENCES (n)	63	40	9	29	

Table 8: Summary of Pleistocene dune horizon thicknesses. The number of occurrences (n) indicates how many of each horizon type was recorded in the profile logs.

The most frequently occurring deposit type mapped within the Newport Dune

Sheet was the PDC/PDCox unit (39%) followed by the PDBw unit (30%) and the

PDBg unit (22%). The PDBtj unit occurred the least often (9%). The terrace deposits consist of beach sand and gravel layers, fluvial and lacustrine deposits, estuary and bog deposits (peat), and other preexisting soil surfaces. These deposits were differentiated from overlying paleodune sheet deposits on the basis of distinctive texture and structure criteria. Paleodune deposits are recognized in the field on the basis of :

- 1. tan to red-brown, well-sorted (uniformly graded) fine sand;
- 2. large-scale foreset beds, cross-bedding, thin horizontal beds;

3. subaerial features that include paleosol interbeds consisting of gray to brown silty sand or sandy silt with carbonized organics, truncated root casts, and peat horizons.

Foreset beds are not abundant in the irregular parabolic dunes located in the foot hills or in the flat-lying dune sand layers interbedded with the deflation plain layers. Foreset bedding is locally developed in the thicker paleodune sequences and are generally preserved near the top of the section. The presence of deflation plain strata indicates removal or truncation of preexisting dune sand morphologic structures. The subaerial features including paleosols and deflation surfaces are common in the temperate coastal dune deposits of the Pacific Northwest (Peterson et al., 2002).

Paleodune deposits were locally observed in contact with underlying Tertiary bedrock units consisting of marine sedimentary rocks and volcanic and volcaniclastic rocks. Preexisting topography covered by paleodune deposits include marine wave-cut

73

terraces (Ona Beach-Figure 33), sea-stacks (Seal Rocks), incised stream valleys (Beverly Beach), and ancient landslide debris (Johnson Creek Landslide).

Figure 33: Ona Beach sea cliff exposure showing interbedded dune sand layers with deflation plain layers (PDBtj and PDBg) overlying Tertiary Bedrock and covered by a well-established modern topsoil. Dune sand unit at top of section shows dune morphology with concave surface.

Paleodune deposits observed during this study are described in terms of two general facies consisting of clean sand dune strata (dune facies) and paleosol or deflation plain strata (paleosol facies). The term facies is used in this study to describe a discrete set of strata that depicts the lateral and vertical change in lithology as a result of contemporaneous soil formation, sand deposition and/or erosion due to migration of dune deposits, fluctuating groundwater conditions, and change in vegetative cover. Based on field observations, the dune facies consists of a uniform, subangular to subround fine sand that varies in color, bedding structure, thickness, relative density, and incipient cementation. Color of the deposits varies from tan, brown, green-gray, orange-brown, and red-brown. The orange and red color is an indicator of the presence of iron oxide precipitates. The precipitates occur as hard concretions, layers (commonly called hard pans, ortsteins, or iron pans), bands or zones, within the paleodune sand. Observed paleodune bedding structures consist of a collection of horizontal to dipping planar laminations, shallow to steeply dipping foresets, truncated surfaces, and massive bedding (Figure 34).

Figure 34: Photo of paleodune sand structure with foreset beds truncated by overlying horizontal sand bedding.

The paleodune deposits observed on the Oregon coastal plain exhibit classic dune stratification and contain first-order and second-order bounding surfaces (Boggs, 1987). First-order surfaces consist of flat-lying bedding that truncate underlying paleodune strata. These surfaces were observed as sharp contacts (generally <5cm wide) between the different dune strata and/or between dune strata and paleosol strata.

Second-order surfaces consist of an angular contact between first-order surfaces and underlying paleodune strata. These surfaces were often observed as a sharp truncation of foreset bedding by overlying strata (Figure 34). The dune surfaces are readily discriminated from low angle, continuous beach laminae.

Soil Horizon Dating

Selected samples were collected from representative paleodune horizons for thermoluminescence (TL) and radiocarbon (C14) dating (Peterson et al., 2005). The results of sample dating is shown on Tables 9 and 10 and also located on Figures 27, 28, and 29.

Dune Sheet/	Exposure	Dune Sheet	Depth	Age TLYBP
Sample Site	Туре	Strata/Setting	(m)	(ka)
NEWP5	Road Cut	E. Pleist. Dune	3.5	>37.9±3.9
NEWP22	Road Cut	E. Pleist. Dune	4.3	>77.4±5.4
NEWP44	Road Cut	E. Pleist. Dune	3.0	50.5±4.7
NEWP82	Sea Cliff	Base Holo. Dune	2.5	4.1±0.4
NEWP93	Sea Cliff	Base Pleist. Dune	12.7	62.6±4.1
NEWP94	Road Cut	E. Pleist. Dune	2.5	103±7
NEWP103	Sea Cliff	Top Pleist. Dune	2.5	46.4±4.1
NEWP103	Sea Cliff	Beach Backshore	7.5	111±23
NEWP137	Road Cut	E. Pleist. Dune	4.3	60.5±5.4

Table 9: Results of thermoluminescence dating for the Newport Dune Sheet (Peterson et al., 2005).

Sample	Exposure		Depth	Material	Conventional
Site	Туре	Strata/Setting	(m)	Rad/AMS	C14 ±1s. YBP
NEWP35	NA	Dune Ramp Top	NA	Charcoal	4100±60
NEWP35	NA	Dune Ramp	NA	Charcoal	5030±60
NEWP35	NA	Dune Ramp	NA	Charcoal	5330±110
NEWP86	Sea Cliff	Dune Ramp Base	0.5	Wood (-25.3)	3420±60
				Charred AMS	
NEWP106	Sea Cliff	Dune Ramp Base	1.5	(-24.5)	2930±40
NEWP122	Road Cut	Pleist. Dune	5.8	Wood	>46,690
				Charred AMS	
NEWP151	Sea Cliff	Holo. Dune	0.8	(-28.4)	650±40

Table 10: Results of radiocarbon dating for the Newport Dune Sheet (Peterson et al., 2005).

Geotechnical Observations

Slope stability is a major consideration in our assessment of geotechnical issues and is a major focus of this study. Examples of various observed slope failures are shown on Figures 35, 36, 37, and 38.

Figure 35: Wedge block slide on sea cliff located north of Seal Rock.

Figure 36: Sea cliff failure in Yachats located a few meters from a city street. Block failure occurred during a winter storm event in 2004. The failure may have been the result of ocean wave undercutting the sea cliff.

Groundwater seepage from paleodune cut slopes and sea cliffs was a common occurrence along the central Oregon coastal plain. Slow groundwater seepage was often observed near the base of cut slopes and above the contact between a dune sand layer and an underlying paleosol layer. A majority of the slope failures contained zones of seepage (Figures 37 and 38).

Figure 37: Small block failure (2m high x 3m wide x 2m deep) on road cut at the Pinecrest site during winter of 2004. Groundwater seepage observed along contact between paleosol layer and upper paleodune sand.

Figure 38: A roadcut failure along Highway 101 just south of the Newport Airport. Groundwater seepage at contact between paleodune deposits and underlying bedrock.

The relative strength of selected paleodune horizons was performed to try to assess the relationship between relative strengths of the soils. Strength surveys were performed during mapping using a pocket penetrometer. The results of the penetrometer data is shown in Table 11. The penetrometer was designed to determine the unconfined compressive strength of soft to medium stiff cohesive soils. The pocket penetrometer is not typically used in sandy soils, however, in this case the pocket penetrometer was used in this study as a standard to compare relative strengths of selected units. Thus, the actual measurement may not represent inherent material properties. The results can be used for purposes of general comparison.

The penetrometer values ranged from 0.5 to greater than 4.5 kg/m². The penetrometer values for the Pleistocene dune deposits averaged 3.4 kg/m^2 (C and Cox horizons), 3.7 kg/m^2 (Bw horizons), 4.0 kg/m^2 (Btj horizons), and 2.5 kg/m^2 (Bg horizons). The holocene dune sand deposits averaged 1.3 kg/m^2 .

	Holocen e Dune Deposits	Pleis	tocene Pale	odune Dep	osits
	HDC, HDCox	PDC, PDCox	PDBw	PDBti	PDBa
	Pocket	Pocket	Pocket	Pocket	Pocket
	Pen.	Pen.	Pen.	Pen.	Pen.
Total Paleodune Sheet	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)
AVERAGE	1.3	3.4	3.7	4.0	2.5
MEDIAN	1.0	3.5	4.0	4.0	2.5
MODE	0.5	3	4	4.5	2.5
MAX	2.75	4.5	4.5	4.5	4
MIN	0.5	1.75	2	3	0.5
OCCURRENCES (n)	30	66	74	28	29
Section NEWP1-NEWP57					
AVERAGE	1.6	3.8	3.8	4.0	3.5
MEDIAN	1.5	3.9	4.0	4.3	3.5
MODE	1.5	4.5	3.5	4.5	#N/A
MAX	2.75	4.5	4.5	4.5	4
MIN	0.5	2.75	3	3	3
OCCURRENCES (n)	12	8	13	8	2
Section NEWP57-NEWP113					
AVERAGE	1.3	3.4	3.8	4.0	2.5
MEDIAN	1.0	3.5	4.0	4.0	2.5
MODE	0.5	3	4	4	3.5
MAX	2.5	4.5	4.5	4.5	4
MIN	0.5	1.75	2	3.5	1
OCCURRENCES (n)	13	43	44	11	19
Section NEWP114-					
NEWP151					
AVERAGE	0.6	3.2	3.2	4.0	2.3
MEDIAN	0.5	3.3	3.3	4.0	2.5
MODE	0.5	3.25	4	4.5	2.5
MAX	1	4.5	4	4.5	4
MIN	0.5	2	2	3	0.5
OCCURRENCES (n)	5	15	17	9	8

Table 11: Summary of pocket penetrometer data. . The number of occurrences (n) indicates how many pocket penetrometer readings of each horizon type was recorded in the profile logs.

Geotechnical Study Sites

Geotechnical study sites were chosen based on a exposure of representative

paleodune layers, location as a road cut or sea cliff, and presence of a potential slope

stability problem. Three geotechnical field study sites were specifically selected for analysis based on the following criteria: 1) a good exposure representing typical paleodune strata; and 2) a location that represents typical development concerns such as road construction, residential development, and sea cliff stability. The three study sites chosen include a small subdivision at Pinecrest, a high sea cliff site at Ona Beach, and a tall road cut that has partially failed on Canary Road located south of Florence (note that the Canary Road site is outside of the study area).

Pinecrest Site

The Pinecrest site (NEWP122) is a partially developed subdivision located along the crest of a Pleistocene dune ridge (Figure 39). The site has been mostly cleared of trees, vegetation, and some topsoil for development of 8 to 10 single family residential lots (a very typical coastal development). A paved street runs north from an older subdivision along the ridge crest and ends at the north end of the dune ridge. The slopes along the ridge are moderate to steep (10 to 30 degrees). The east side of the site contains a steep slope down to a small drainage that flows into a pond located on the north end of the site. The west side of the site slopes down to a 10 to 12 meter high road cut along the northbound lane of Highway 101. A site profile transect was constructed trending east to west from the subdivision street to the highway (Figure 39). The hand auger borings, 2 GPR survey lines, and a road cut slope log were completed along the transect to define subsurface stratigraphy.

82

Figure 39: Site map of Pinecrest showing location of the measured slope profile transect (modified from USGS, 1984 Waldport Quad.).

Two hand auger borings (Pine-1 and Pine-2) were completed near the top of the dune ridge and penetrated down to 6 meters below ground surface (bgs) where the bore hole collapsed due to groundwater infiltration. The groundwater level was measured at 5.5 m bgs. The boring logs are located in Appendix B. Two pressuremeter (PMT) tests were performed in boring Pine-1 at 2.4 m and boring Pine-2 at 1.7 m bgs. The results of the PMT tests are discussed later in the Results section. The road cut slope ranges from 30° (areas of past slope failure) to near vertical. Four distinct paleodune layers are exposed in the cut (Figure 40). A log of the road cut profile that includes the soil horizon terminology (mapping data) and the geotechnical soil descriptions is described in Table 12.

Figure 40: Pinecrest site showing road cut along Highway 101 and interpreted paleodune stratigraphy with geotechnical sample layer names. Pine-3 layer is a dune sand (PDC) containing foreset bedding, Pine-4 is a truncated paleosol (PDBtj horizon), Pine-5 is a dune sand(PDCox and PDC), and Pine-6 is a paleosol/deflation plain (PDBg horizon) that contains a discontinuous peat layer. Upper paleodune strata is dipping out of the road cut face approximately 20 to 30 degrees.

Soil samples were collected from selected layers (Pine-2 through Pine-6) to

characterize the geotechnical soil parameters that comprise the paleodune deposits at

Pinecrest. Geotechnical test results are discussed later in the Results section.

DEPTH	UNIT NAME	DESCRIPTION
(CM)	(Geotech Layer)	(Soil Horizon Description)
0-15	PDA	(Modern topsoil with organic horizon)
15-53	PDBtj	Brown, moist, fine silty SAND/sandy SILT with trace fine organics and roots; blocky structure (Modern topsoil B horizon with trace clay accumulation)
53-97	PDBw	Brown to red-brown, moist, fine SAND with trace to some silt; blocky structure. Uniformly graded. (Modern topsoil B horizon with Fe3+ accumulation)
97-247	PDCox (Pine-3)	Red-brown to tan, moist, fine SAND; uniformly graded, weak to moderately cemented, contains shallow dipping (SW) foreset beds. (Paleodune sand with cross bedding)
247-269	PDBtj (Pine-4)	Brown, moist to wet, fine sandy SILT/silty SAND; low plasticity to non-plastic, weak to moderately cemented, blocky structure, contains trace charcoal and gibbsite concretions. (Paleosol, truncated B horizon)
269-279	PDBw (Pine-4)	Brown to red-brown, moist, fine SAND with trace to some silt; blocky structure, uniformly graded. (Paleosol B horizon with Fe3+ accumulation)
279-579	PDCox and PDC (Pine-5)	Red-brown to tan, moist to wet, fine SAND; uniformly graded, weakly cemented to uncemented, some cross bedding. (Paleodune sand with cross bedding)
579-601	PDP (Pine-6)	Black to gray-brown, wet, sandy SILT with trace clay and some fine organics and wood fragments; moderately plastic, contains some thin sand lenses. (Paleosol, truncated peat horizon)
601-701	PDBg (Pine-6)	Light gray, wet, sandy SILT with trace clay and fine organics; moderately plastic, contains some thin sand lenses. (Paleosol, Bg horizon)
701-731 (End of profile)	PDCox	Red-brown, wet, fine SAND; uniformly graded, weak to moderately cemented. (Paleodune sand)

Table 12: Profile log of the Pinecrest road cut with geotechnical soil description and interpreted soil horizon.

Ground penetrating radar (GPR) was used at the Pinecrest site (Figure 41) to

demonstrate the complex geomorphic features of the paleodune surfaces. The GPR

profile (Figure 41) shows strong reflection layers that were interpreted to be paleosols.

Outcrop observations indicate that the paleodune deposits contain multiple buried

surfaces that are not laterally continuous or horizontal for great distances (Figure 42). Generally, borehole data does not provide sufficient information to trace thin (<10cm thick) subsurface features with a high degree of accuracy unless the borehole and sample interval spacing is close. Subsurface information was supplemented using GPR to "extend" borehole data and outcrop observations to trace out common paleosol horizons and construct an interpreted subsurface profile (Figure 43). The low permeability of the silt-rich paleosols causes these layers to redirect groundwater flow, as shown by seepage at dune sand/paleosol contacts exposed in cuts.

Figure 41: GPR profile line (facing east) at Pinecrest site using a 100 MHz antenna.

Figure 42: Interpreted GPR profile (east to west) of Pinecrest site showing interpreted strong subsurface reflections (darkened lines are interpreted as paleosols). Exaggerated vertical scale.

Figure 43: Compiled east to west subsurface transect profile of the Pinecrest site using hand auger boring data, GPR data, and road outcrop observations.

Ona Beach Site

The Ona Beach site (NEWP93) is a tall (13.9 meter) sea cliff located 2 km north of Seal Rock (Figure 44). The site represents a typical sea cliff section that contains a

thick (12.9 m) paleodune section, overlying a thin (0.9 m) marine terrace deposit, that overlies Tertiary sandstone bedrock (wave-cut platform). The top of the sea cliff contains single family residences.

Figure 44: Site map of Ona Beach showing location of sea cliff profile.

The paleodune strata is traceable along the sea cliff for approximately 500 meters (Figure 66-located in Discussion Section). In general, the paleodune strata consists of weak to moderately cemented dune sand layers with interbedded thin, gray, sandy silt deflation layers (Figure 45). The deflation layers typically form ridges more resistant to erosion than the adjacent dune sand layers. The uppermost sand layers and Bw paleosols form concave and convex strata. The lowermost strata, including Bg horizons, are flat lying and semi-continuous in the sea cliff exposure.

Slow groundwater seepage was observed along the contacts between the dune sand layers and the underlying deflation layers. Small slump blocks ($< 10 \text{ m}^3$) are common along the base of the sea cliff and often form a vegetated talus slope. Observations made during repeat visits to the site indicate that the talus material is removed from the beach during winter storm events.

Figure 45: Stratigraphic profile of Ona sea cliff site (NEWP93).

Soil samples were collected from selected layers (Ona-A, Ona-B, and Ona-C) to characterize the geotechnical soil parameters that comprise the paleodune deposits at Ona Beach. Geotechnical test results are discussed later in the Results section.

Canary Road Cut Site

The Canary Road Site is located in the Florence Dune Sheet approximately 8 km south of Florence, Oregon. This site was selected to study the geotechnical soil properties of a road cut failure in paleodune deposits (Figure 46). Further, is was included to form a potential basis for comparison between the Newport and Florence Dune Sheets. Based on conversations with local residents, the county road was widened during the Summer of 1999 and the slope was constructed at approximately a 57 degree (0.5 horizontal to 1 vertical) angle. The slope failure occurred during the Winter of 1999/2000. The failure surface angle measurements ranged from 32 to 36 degrees (Figure 47). Groundwater seepage was observed near mid-slope above a paleosol layer where a majority of the failure had initiated.

Figure 46: Large road cut failure along Canary Road south of Florence. Slope was cut at 57° to widen the road shoulders.

Figure 47: Interpreted dune profile and measured section showing slope originally extended down to interdunal stream cut (Woahink Lake). Four paleodune soils were sampled for geotechnical testing as shown.

Geotechnical Testing

Geotechnical testing was conducted on representative paleodune layers at the three selected sites (Pinecrest, Ona Beach, and Canary Road). Geotechnical sample testing and in situ field testing was conducted in a cooperative effort with Renee Summers and Dr. Trevor Smith (Portland State University Civil and Environmental Engineering Department) and GeoDesign, Inc. (a local geotechnical consultant). Ms. Summers' work reported in this thesis consisted of direct shear testing and constant head permeability testing of samples. GeoDesign provided the use of their laboratory and specialized testing apparatus.

Sample Collection

Disturbed and relatively undisturbed samples were collected to perform soil classification and laboratory testing. All samples were sealed in plastic bags or metal tubes to prevent moisture loss and damage during transport. Undisturbed samples of paleodune deposits are difficult to collect due to their brittle nature. Slight disturbance of the sample during removal from the outcrop or borehole can destroy inherent cementation or in-place density. Disturbed samples were recognized by the formation of cracks in the sample or expansion (bulging) of the sample during collection. Disturbance was also recognized by the presence of loose material that disaggregated during extraction, transport, or storage.

Collection of shear strength and permeability samples was completed using hand methods. Hand driving Shelby tubes or brass ring samples (ASTM) was the fastest method of sample recovery, but it resulted in a high occurrence of disturbed samples. Hand-carved block and tube samples resulted in a lower frequency of disturbed samples. Transportation and storage of block samples can become a logistical problem due to the sample size required for triaxial strength testing. Block samples require more laboratory sample preparation time and are more prone to moisture loss. All samples are likely to have a reduced stress states relative to the in situ field conditions due to removal of confining pressures that existed in the outcrops.

Laboratory Testing

The apparent weakly cemented samples were difficult to prepare for testing. Permeability and triaxial compression samples require careful preparation for testing to ensure accurate density and strength results. Several samples were disturbed during collection, transportation, and sample preparation. Disturbed samples were recognized by loose material, cracks or breaks in the sample, and shrinkage due to dehydration. Long-term storage of sand samples in Shelby tubes can result in "sand lock" of the material in the tube due to friction during extrusion. Samples with the appearance of disturbance were not tested or test results were noted as a "disturbed sample." Damage to samples resulted in incomplete data for some of the sample locations.

Geotechnical laboratory testing of paleodune strata was conducted to document material properties. Laboratory tests include moisture content, density, plasticity index, grain size distribution, specific gravity, void ratio, porosity, degree of saturation, coefficient of permeability, and shear strength. Test results are summarized for each geotechnical site and are located in Appendix D. Published values of typical test results for uniform sand are shown in Table 13.

	Loose, uniform	Dense, uniform
	sand	sand
Percent Moisture	32.0	19.0
Dry density (g/cu cm)	1.43	1.75
Dry density (pcf)	89.3	109.2
Wet density (g/cu cm)	1.89	2.09
Wet density (pcf)	118.0	130.5
Void ratio (<i>e</i>)	0.85	0.51
Porosity (n)	0.46	0.34

Table 13: Typical geotechnical parameters of loose and dense sand, modified from Terzaghi and Peck (1967).

Grain Size Analysis

The paleodune strata were separated into dune facies or paleosol facies depending on the percent passing #200 (0.075mm) sieve. A summary of the paleodune deposits separated by dune facies and paleosol facies is located in Table 14.

Paleodune Sand Layers - DUNE FACIES			
Sample Site	Field Description	Percent passing #200 (0.075mm)	
Woah-2	Tan, fine sand (PDC horizon)	0.1	
Woah-4	Red-brown fine sand (PDC horizon)	0.2	
Ona-1A&1B	Tan to red-brown fine sand (PDCox horizon)	0.3	
Ona-B	Tan, fine sand (PDC horizon)	0.1	
Ona-C	Tan, fine sand (PDC horizon)	0.4	
Pine-2	Red-brown fine sand (PDCox horizon)	3.1	
Pine-3	Tan, fine sand (PDC horizon)	0.7	
Pine-5	Light brown fine sand (PDC horizon)	0.5	
	AVERAGE	0.68	

Paleosol/deflation Plain Layers - PALEOSOL FACIES			
Sample Site	Field Description	Percent passing #200 (0.075mm)	
Woah-1	Gray, silty fine sand (PDBg horizon)	43	
Woah-3	Gray, silty fine sand (PDBg horizon)	43.4	
Pine-4	Orange-brown, silty fine sand (PDBtj horizon)	49	
Pine-6	Light gray, sandy silt (PDBg horizon)	52.8	
	AVERAGE	47.1	

Table 14: A summary of the percent fines (material finer than 0.075mm) of geotechnical samples.

Grain size analysis was conducted on permeability samples of representative

strata from each geotechnical site. The grain size plots (Figure 48 and Figure 49) show

a delineation between the paleodune sand strata and the paleosol/deflation plain strata.

Figure 48: Grain size distribution from Pinecrest site showing difference in grain size between dune sand facies (Pine-1, Pine-3, and Pine-5) and the paleosol/deflation plain facies (Pine-1 @ 5.5m, Pine-4, and Pine-6).

Pinecrest Site

Figure 49: Grain size distribution from Canary Road site showing difference in grain size between dune sand facies (Woah-2 and Woah-4) and the paleosol/deflation plain facies (Woah-1 and Woah-3).

The dune facies are shown to consist of fine, uniform (well-sorted) sand. The sand contains a very low percentage (<5%) of the total material passing the #200 sieve (0.075mm) as based on a washed analysis. The average fines content (passing 0.075mm sieve) of the dune facies tested in this study is 0.68 percent.

The moderate to strongly cemented clasts that are present in the paleodune sand strata observed in the field often misrepresent the actual gradation. Several sand samples that contained abundant iron-oxide cement, noted by strong red-brown soil color, did not break down with firm finger pressure during sample washing. After oven drying the large clasts typically separated into individual fine sand particles during sieving. The clasts, however, may determine the overall geotechnical behavior of the deposit.

The paleosol/deflation plain stratum are shown to consist of silty fine sand to fine sandy silt. The paleosol strata contained more than 40 percent of the total material passing the #200 sieve (0.075) as based on a washed analysis. The average fines content of the paleosol/deflation plain strata tested in this study is 47.1 percent. The paleosol strata located at the Pinecrest site contained a low percentage (<15%) of medium to coarse sand-sized particles. Close examination of the particles revealed that the coarse material generally consisted of aggradations of strongly cemented fine dune sand grains in an iron-oxide cement and clay matrix and that the particle size distribution is dependent on the amount of mechanical work put into sample preparation (See Mineralogy later in Results). Standard methods were used for the purpose of this study, however, other methods may need to be developed to adequately define the geotechnical behavior of the deposits.

Densities

The measured dry densities of the paleodune deposits are highly variable. The paleodune sand densities ranged from 1.47 g/cu. cm to 1.74 g/cu. cm with an average density of 1.60 g/cu. cm and a standard deviation of 0.11 g/cu. cm. The paleosol densities ranged from 1.08 g/cu. cm to 1.82 g/cu. cm with an average density of 1.47 g/cu. cm and a standard deviation of 0.36 g/cu. cm. Typical values (Table 15) of dry

densities of uniform fine sand ranged from 1.43 g/cu. cm (loose) to 1.75 g/cu. cm

(dense).

Paleodune Sand Layers - DUNE FACIES			
Sample Site	Field Description	Dry density (g/cu. cm)	
Woah-2	Tan, fine sand (PDC horizon)	1.74	
Woah-4	Red-brown fine sand (PDC horizon)	1.74	
Ona-1A&1B	Tan to red-brown fine sand (PDCox horizon)	1.47	
Ona-B	Tan, fine sand (PDC horizon)	1.60	
Ona-C	Tan, fine sand (PDC horizon)	1.63	
Pine-2	Red-brown fine sand (PDCox horizon)	1.49	
Pine-3	Tan, fine sand (PDC horizon)	1.47	
Pine-5	Light brown fine sand (PDC horizon)	1.62	
	AVERAGE	1.60	

	Paleosol/deflation Plain Layers - PALEOSOL FACIES			
Sample Site	Field Description	Dry density (g/cu. cm)		
Woah-1	Gray, silty fine sand (PDBg horizon)	1.73		
Woah-3	Gray, silty fine sand (PDBg horizon)	1.82		
Pine-4	Orange-brown, silty fine sand (PDBtj horizon)	1.08		
Pine-6	Light gray, sandy silt (PDBg horizon)	1.24		
	AVERAGE	1.47		

Table 15: Dry density results of geotechnical samples.

Index Tests

Plasticity index was determined on 3 of the 4 paleosol facies samples and ranged

from 7% to 44% (Table 16). In general, the paleosol deposits are characterized as

having low plasticity to non-plastic behavior.

Paleosol/deflation Plain Layers - PALEOSOL FACIES					
		Liquid Limit	Plastic	Plasticity	
Sample Site	Field Description	(%)	Limit (%)	Index (%)	
Woah-1	Gray, silty fine sand (SM)	32	25	7	
Woah-3	Gray, silty fine sand (SM)	NP	NP	NP	
	Orange-brown, silty fine sand				
Pine-4	(SM)	58	40	18	
Pine-6	Light gray, sandy silt (MH)	94	50	44	

Table 16: Summary of plasticity index testing.

Dry density tests and specific gravity tests were performed on the samples in order to calculate void ratio, porosity, and degree of saturation. The results are shown on Table 17. Specific gravity results ranged from 2.63 to 2.69.

Paleodune Sand Layers - DUNE FACIES									
Sample Site	Field Description	Sample Moisture (%)	Dry density (g/cu. cm)	In-situ Void ratio (<i>e</i>)	Porosity (n)	Degree of Saturation (%)			
Woah-2	Tan, fine sand (SP)	10.3	1.74	0.53	0.35	52			
Woah-4	Red-brown fine sand (SP)	12.6	1.74	0.55	0.35	61			
Ona-1A	Tan to red- brown fine sand (SP)	14.0	1.47	0.80	0.44	46			
Ona-B	Tan, fine sand (SP)	9.3	1.60	0.65	0.39	38			
Ona-C	Tan, fine sand (SP)	17.6	1.63	0.64	0.39	72			
Pine-2	Red-brown fine sand (SP)	14.9	1.49	0.79	0.44	50			
Pine-3	Tan, fine sand (SP)	17.0	1.47	0.83	0.45	56			
Pine-5	Light brown fine sand (SP)	15.2	1.62	0.67	0.40	62			
Paleosol/deflation Plain Layers - PALEOSOL FACIES									
Sample Site	Field Description	Sample Moisture (%)	Dry density (g/cu. cm)	In-situ Void ratio (<i>e</i>)	Porosity (n)	Degree of Saturation (%)			
Woah-1	Gray, silty fine sand (SM)	20.3	1.73	0.55	0.36	99			
Woah-3	Gray, silty fine sand (SM)	22.2	1.82	0.41	0.29	100			
Pine-4	Orange-brown, silty fine sand (SM)	47.8	1.08	1.47	0.59	86			
Pine-6	Light gray, sandy silt (MH)	38.2	1.24	1.16	0.53	88			

Table 17: Summary of index tests for selected geotechnical samples.

The results of index test on selected samples indicated the paleodune sand layers are partially saturated ranging from 38 to 72 percent. The paleosol layers were highly

saturated ranging from 86 to 100 percent. It should be noted that moisture may have been lost during transport and storage of the samples before testing. Moisture content is highly dependent on the timing of sample collection and testing and also the season the samples are collected.

Permeability Testing

Typical range of hydraulic conductivity values for sand and loess from Terzaghi and Peck (1967) are listed in Table 18. These values can be used to compare to test results from this study.

Typical Values					
Hydraulic Conductivity	(cm/s)				
Dune sand	0.1 to 0.3				
loess	10-3				
Very fine uniform sand	6.4×10^{-3} to 10^{-4}				
Degree of Permeability	(cm/s)				
High	>0.1				
Medium	0.1 to 10 ⁻³				
Low	10^{-3} to 10^{-5}				
Very Low	10^{-5} to 10^{-7}				
Impermeable	>10-7				

Table 18: Typical values of hydraulic conductivity for fine sand and silt. Range of relative permeability values for general classification, modified from Terzaghi and Peck (1967).

Initial constant head (ASTM D2434) permeability tests were conducted by

Renee Summers and Trevor Smith (PSU unpublished data) to determine a general range of conductivity (k) values for the paleodune strata. The permeability results ranged from 4.4×10^{-3} cm/s to 7.0×10^{-7} cm/s which is lower than the typical conductivity value of 10^{-3} cm/s recommended for the constant head procedure. The results of hydraulic conductivity testing is shown in Table 19.

Flex-wall permeability tests conducted on the geotechnical site samples were performed using constant gradients ranging units from 5 to 20 at an effective stress of 17 kPa to 34 kPa. The constant head test might give lower hydraulic conductivity, when fines are present, due to a lower degree of saturation.

Paleodune Sand Layers - DUNE FACIES					
		Hydraulic conductivity			
Sample Site	Field Description	(cm/s)			
Woah-2	Tan, fine sand (PDC horizon)	6.3 x10 ⁻⁴			
Woah-4	Red-brown fine sand (PDC horizon)	5.5 x10 ⁻⁴			
Ona-1A	Tan to red-brown fine sand (PDCox horizon)	3.8 x10 ⁻³			
Ona-B	Tan, fine sand (PDC horizon)	4.4 x10 ⁻⁴			
Ona-C	Tan, fine sand (PDC horizon)	5.5 x10 ⁻⁴			
Pine-2 ⁽¹⁾	Red-brown fine sand (PDCox horizon)	4.4 x10 ⁻³			
Pine-3	Tan, fine sand (PDC horizon)	6.4 x10 ⁻⁴			
Pine-5	Light brown fine sand (PDC horizon)	9.4 x10 ⁻⁴			
(1) indicates					
test	AVERAGE	1.5 x10 ⁻³			

Paleosol/deflation Plain Layers - PALEOSOL FACIES					
Sample Site	Field Description	Hydraulic conductivity (cm/s)			
Woah-1	Gray, silty fine sand (PDBg horizon)	1.6 x10 ⁻⁶			
Woah-3	Gray, silty fine sand (PDBg horizon)	1.3 x10 ⁻⁵			
Pine-4	Orange-brown, silty fine sand (PDBtj horizon)	$6.2 x 10^{-4}$			
Pine-6	Light gray, sandy silt (PDBg horizon)	2.0 x10 ⁻⁵			
Italics indicates suspect value	AVERAGE	1.6 x10 ⁻⁴			

Table 19: Hydraulic conductivity results for geotechnical samples. Values in italics indicate a suspect result, possibly due to sample disturbance.

Direct Shear Testing

Direct shear testing was conducted on selected paleodune samples by Renee Summers and Dr. Trevor Smith (Portland State University, Civil and Environmental Engineering Department). The typical range of the angle of internal friction (phi) for a uniform fine sand is 27 to 37 degrees. In addition, sand is generally considered to have no cohesion. The direct shear results for the dune sand, shown in Table 20, have phi angles ranging from 20 to 43 degrees and cohesion values ranging from 0 to 64.3 kPa. The test results for Ona-C and Pine-5 have anomalously low phi angles (20 degrees) and higher cohesion values (64.3 kPa and 27.2 kPa, respectively). The anomalous results are likely due to sample disturbance.
	Paleodune Sand Layers - DUNE FACIES									
Sample Site	Field Description	Direct Shear \ophi'p (degrees)	Direct Shear c' psf (kPa)							
Woah-2	Tan, fine sand (PDC horizon)	43	0							
Woah-4	Red-brown fine sand (PDC horizon)	37	124 (5.9)							
Ona-1A&1B	Tan to red-brown fine sand (PDCox horizon)	40	236 (11.3)							
Ona-B	Tan, fine sand (PDC horizon)	35	384 (18.4)							
Ona-C	Tan, fine sand (PDC horizon)	20	1343 (64.3)							
Pine-2	Red-brown fine sand (PDCox horizon)	42.6	270 (12.9)							
Pine-3	Tan, fine sand (PDC horizon)	42	335 (16.0)							
Pine-5	Light brown fine sand (PDC horizon)	20.5	568 (27.2)							

Italics	indicates	sus	pect	value

Pa	Paleosol/deflation Plain Layers - PALEOSOL FACIES									
Sample Site	Field Description	Direct Shear ∮'₅ (degrees)	Direct Shear c' psf (kPa)							
	Gray, silty fine sand (PDBg									
Woah-1	horizon)	37	248 (11.9)							
	Gray, silty fine sand (PDBg									
Woah-3	horizon)	36	519 (24.8)							
Pine-4	Orange-brown, silty fine sand (PDBtj horizon)	36	568 (27.2)							
	Light gray, sandy silt (PDBg									
Pine-6	horizon)	No value	No value							
1 kPa = 20.88	54 psf	"p" indicates	peak value							

Table 20: Direct Shear results of geotechnical samples.

Triaxial Testing

Consolidated drained (CD) and consolidated undrained (CU) triaxial

compression tests were conducted on the paleodune deposit samples. The dune facies samples were tested under CD conditions and the paleosol facies samples were tested under CU conditions. Two exceptions are that samples from Pine-5 was tested under CU conditions and samples from Pine-6 was tested under CD conditions. General testing convention is to test fine-grained (cohesive) samples under undrained

conditions such that the sample volume is held constant and the change in excess pore water pressure is monitored during loading. Granular (non-cohesive) samples are typically tested under drained conditions such that excess pore water pressure is held at zero and the change in sample volume is monitored during loading.

Triaxial strength plots of representative paleodune layers were constructed for each of the geotechnical sites (Pinecrest, Ona Beach, and Canary Road) and are located in Table 21 and in Appendix E. Units of pounds per square foot (psf) were used for the triaxial tests for comparison with the direct shear results produced by Renee Summers and Dr. Trevor Smith (Portland State University, Civil and Environmental Engineering Department). The plots document the drained shear strength parameters for the major paleodune layers found covering the coastal plain. The plotted Mohr's circles are based on residual shear strengths as are typically interpreted for general geotechnical engineering applications.

	Paleodune Sand Layers - DUN	NE FACI	ES		
Sample Site	Field Description	Triax ∳'₁ (degrees)	Triax	Triax c' _r psf (kPa)	Triax c' _p psf (kPa)
Woah-2	Tan, fine sand (PDC horizon)	29	25	55 (2.6)	217 (10.4)
Woah-4	Red-brown fine sand (PDC horizon)	29.6	29.3	84 (4.0)	525 (25.1)
Ona-1A	Tan to red-brown fine sand (PDCox horizon)	-	-	-	-
Ona-B	Tan, fine sand (PDC horizon)	30	32	0	108 (5.2)
Ona-C	Tan, fine sand (PDC horizon)	33	38	0	0
Pine-2	Red-brown fine sand (PDCox horizon)	-	-	-	-
Pine-3	Tan, fine sand (PDC horizon)	-	-	-	-
Pine-5	Light brown fine sand (PDC horizon)	18	21	178 (8.5)	0
"-" NOT TESTED	AVERAGE	27.9	29.1	60.8 (2.9)	245.0 (11.7)
	Paleosol/deflation Plain Layers - PA	LEOSO		S	
Sample Site	Field Description	Triax	Triax ∳'₅ (degrees)	Triax c' _r psf (kPa)	Triax c' _p psf (kPa)
Woah-1	Gray, silty fine sand (PDBg horizon)	28.6	29.4	181 (8.7)	383 (18.3)
Woah-3	Gray, silty fine sand (PDBg horizon)	25.4	27	1207 (57.8)	1016 (48.6)
Pine-4	Orange-brown, silty fine sand (PDBtj horizon)	36.5	36.1	0	0
Pine-6	Light gray, sandy silt (PDBg horizon)	32.7	34.5	0	0
		20.0	04.0	347.0	349.8
	AVERAGE	30.8	31.8	(16.6)	(16.7)

Table 21: Summary of triaxial testing for geotechnical samples. Note: 1 kPa = 20.8854 psf.

Consolidated Drained Tests

Consolidated drained triaxial test result plots (Appendix E) indicate that the dune facies samples exhibited dilation during shearing at low strain levels. The stress-strain plot (Figure 50) shows a peak in the deviator stress at low strain followed by a drop in stress as strain is increased. The peak strength indicates that the soil particles are densely packed and must overcome a peak shear stress prior to moving past adjacent particles. Dense soils often have brittle behavior during triaxial shear resulting in a well-developed shear plane as shown in Figure 51. The residual strength is defined as the ultimate shear strength of the soil where no increase in deviator stress or volume occurs with an increase in axial strain (Lambe and Whitman, 1969).

Figure 50: An example showing the stress-strain plot for a consolidated drained (CD) triaxial test for Woah-4. A higher peak strength followed by a low residual strength is indicative of dense or cemented material. Note: 1 kPa = 20.8854 psf.

Figure 51: Sheared paleodune sand sample showing well-developed shear plane indicating brittle failure.

The volumetric strain plot (Figure 52) shows a small peak followed by a drop in volumetric strain to negative values. Negative volumetric strain is indicative of an increase in sample volume as the soil particles move away from each other during shearing as a result of an initial dense packing (Lambe and Whitman, 1969).

Figure 52: An example showing the volumetric strain plot for a consolidated drained (CD) triaxial test for Woah-4. Note: 1 kPa = 20.8854 psf.

Figure 53: An example plot showing Mohr's circles for a consolidated drained (CD) triaxial test for Woah-4. The residual shear trend is the peak of the Mohr's circles (plotted) based on the residual shear stress. The " α " parameter is the slope of the peaks of each circle which is then corrected to " ϕ '_r" to get the angle of internal friction. The "a" parameter is the shear stress axis intercept of the α line. The parameter "a" is corrected to "c'_r" which is the residual shear trend. The " ϕ '_r" parameter is the slope of tangent to the Mohr's circles which is the effective angle of internal friction. The "c'_r" parameter is the shear stress axis intercept of the tangent to the Mohr's circles (strength envelope). The peak shear trend is the peak of the Mohr's circles (not plotted) based on the peak shear stress. Note: 1 kPa = 20.8854 psf.

Consolidated Undrained Tests

Consolidated undrained triaxial test result plots (Appendix E) indicate that the

dune facies samples exhibited dilation due to fracturing of the sample during shearing

at low strain levels. The change in pore water pressure plot (Figure 55) shows a peak within one percent axial strain followed by a rapid drop in pore water pressure as strain is increased. The measure of dilation is a result of the expansion of cracks within the sample as the unfractured and partially fractured materials reposition themselves during shearing (Yamamuro, 2005, personal communication). The peak strength indicates that the soil particles are densely packed or cemented and must overcome a peak shear stress prior to moving past adjacent particles or cemented blocks. Evidence for brittle behavior during triaxial shear is shown by a well-formed fracture plane that was observed in many of the test samples (Figure 51).

Figure 54: Plot of the change in pore water pressure during shearing of the triaxial sample. Negative pore water pressure indicates dilation of the sample during shearing. Note: 1 kPa = 20.8854 psf.

Figure 55: Example of consolidated undrained (CU) triaxial test. See Figure 53 for explanation. Note: 1 kPa = 20.8854 psf.

The peak stress of the upper two curves shown on Figure 56 coincides with the maximum slope of the pore water pressure curves shown on Figure 54. The fact that the rate of dilation continues after shear stress drops and that the "residual strength" appears to increase relative to the peak strength as the confining pressure increases, indicates that the sample is exhibiting a "fracturing behavior" and is most likely cemented (Yamamuro, 2005, personal communication). The slope of the residual

strength trend (Figure 55) represents the friction angle between the sliding cemented blocks at the applied low levels of normal stress and confining pressures. An increase in effective stress and confining pressures on test samples will most likely overcome the affects of weak cementation resulting in a residual strength of the sand particles and not the cemented blocks.

Figure 56: An example showing the stress-strain plot for a consolidated undrained (CU) triaxial test for Pine-5. A higher peak strength followed by a low residual strength is indicative of dense or cemented material. Note: 1 kPa = 20.8854 psf.

Typical triaxial strength envelopes are comprised of three tests at different effective stresses. However, a few envelopes have only one or two tests due to lack of "undisturbed" sample material (Table 22). A significant number of the samples tested are not included due to errors in the testing. Typical test errors included loss of data from power failures, program errors, operator errors, and sample shear strengths

greater than the apparatus load cell.

Paleodune Sand Layers - DUNE FACIES									
Sample Site	Field Description	Test	Number of strength tests						
Woah-2	Tan, fine sand (SP)	CD	3						
Woah-4	Red-brown fine sand (SP)	CD	3						
Ona-1A	Tan to red-brown fine sand (SP)	CD	1						
Ona-B	Tan, fine sand (SP)	CD	2						
Ona-C	Tan, fine sand (SP)	CD	3						
Pine-2	Red-brown fine sand (SP)	NA	—						
Pine-3	Tan, fine sand (SP)	NA							
Pine-5	Light brown fine sand (SP)	CU	3						
	Paleosol/deflation Plain Layers - PAL	EOSOL FACIES							
Sample Site	Field Description	Test	Number of strength tests						
Woah-1	Gray, silty fine sand (SM)	CU	2						
Woah-3	Gray, silty fine sand (SM)	CU	3						
Pine-4	Orange-brown, silty fine sand (SM)	CU	3						
Pine-6	Light gray, sandy silt (MH)	CD	2						

Table 22: Table showing geotechnical sample site and test type and number of completed triaxial strength test. For test method "CD" is consolidated drained, "CU" is consolidated undrained, and "NA" is no test attempt.

Triaxial Test Samples

Pinecrest Site

Consolidated undrained triaxial tests were conducted on Pine-4 and Pine-5 samples. Consolidated drained triaxial tests were conducted on Pine-6 samples. The results of the triaxial tests are shown in Table 18 and Appendix E. Only two tests were completed for Pine-6 due to sample disturbance during sample preparation. Interpretation of test results are located in the Discussion section. The measured values for the residual angle of internal friction ranged from 17 to 37 degrees and the cohesion values ranged from 0 to 8.5 kPa (Table 23). The measured values for the 23).

	Pine – 4				Pine – 5		Pine - 6			
Field Description	Hwy 101 silty fin	roadcut; Orar e SAND; FeC	nge-brown, 9 staining	Hwy 101	roadcut; Light SAND	brown, fine	Hwy 101 roadcut; Light gray to olive- brown, sandy SILT with some clay			
Triaxial Compression Test Method	Consolidated Undrained			Con	solidated Undr	ained	(Consolidated Dr	ained	
Residual Soil Shear Strength	$\begin{array}{c c} \sigma'_3 psf & \sigma'_1 \text{-} \sigma'_3 & \Delta u_r psf \\ \hline (kPa) & psf (kPa) & (kPa) \end{array}$		σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	∆u _r psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	Δε _{vol} (%)		
	936	3625	1079	7467	7141	-7107	721	2109		
	(44.8)	(137.6)	(51.7)	(357.5)	(341.9)	(-340.3)	(34.5)	(101.0)	-0.16	
	1019	4372	422	10031	9957	-8877	1441	4335		
	(48.8)	(209.3)	(20.2)	(480.3)	(476.7)	(-425.0)	(69.0)	(207.6)	1.34	
	1055 (50.5)	4576 (219.1)	-314 (-15.0)	14118 (676.0)	13271 (635.4)	-13397 (-641.5)	-	-	-	
Angle of internal friction (ϕ'_{r})	36.5°				17.7°			32 7°		
Cohesion psf (kPa)		0		178 (8.5)				0		
Peak Soil Shear Strength	σ'₃ psf (kPa)	σ' ₁ -σ' ₃ psf (kPa)	∆u psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	∆u psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	Δε _{νοι} (%)	
	857	3639	1158	7390	7175	-7030	717	2409		
	(41.0)	(174.2)	(55.4)	(353.8)	(343.5)	(-336.6)	(34.3)	(115.3)	-0.14	
	958	4644	-217	9412	11659	-8258	1438	5082		
	(45.9)	(222.4)	(-10.4)	(450.6)	(558.2)	(-395.4)	(68.9)	(243.3)	-1.55	
	1019	4372	422	12904	16368	-12182				
	(48.8)	(209.3)	(20.2)	(617.8)	(783.7)	(-583.3)	-	-	-	
Angle of internal friction (ϕ'_p)		37.2°			21.1°			34.5°		
Cohesion (psf)		0		0			0			
Indicates suspect or estimated value				•						
"-" Indicates no value										
Subscript "r" = residual; "p" = peak										

Table 23: Summary of triaxial results for Pinecrest site. Note: 1 kPa = 20.8854 psf.

Ona Site

Consolidated drained triaxial tests were conducted on Ona-1A, Ona-B, and Ona-C. Triaxial test results are shown on Table 24. Only two tests were completed for Ona-B due to sample disturbance during sample preparation. One test was completed for Ona-1A due to poor sample recover in the field. Interpretation of test results are located in the Discussion section. The measured values for the residual angle of internal friction ranged from 30 to 33 degrees with no cohesion. The measured values for the peak angle of internal friction ranged from 32 to 38 degrees and the cohesion values ranged from 0 to 5.2 kPa (Table 24).

SITE LOCATION	Ona-1A				Ona-B		Ona-C		
Field Description	Tan to re-	d-brown, fine SA foundation-PMT	ND; house	Beach sea	t cliff; Dense, tan	fine SAND	Beach sea cliff; Dense, tan fine SAND		
Exploration Method		Hand auger			Grab sample			Grab sample	
Triaxial Compression Test Method	Со	nsolidated Dra	nined	Co	nsolidated Dra	ined	Co	nsolidated Dra	ined
Residual Soil Shear Strength	$\begin{array}{c c} \hline \sigma_{3}^{\prime} \text{ psf} & \sigma_{1}^{\prime} - \sigma_{3}^{\prime} & \Delta \varepsilon_{\text{vol}} \\ \hline \text{(kPa)} & \text{psf} \text{(kPa)} & \textbf{(\%)} \end{array}$			σ'₃ psf (kPa)	ס'₁-ס'₃ psf (kPa)	∆ɛ _{vol} (%)	σ'₃ psf (kPa)	σ' ₁ -σ' ₃ psf (kPa)	∆ɛ _{vol} (%)
	722	2289		721	1630		350	802	
	(34.60	(109.6)	-4.6	(34.5)	(78.0)	-5.9	(16.8)	(38.4)	-6.2
				1455	3388		721	2421	
	-	-	-	(69.7)	(162.2)	-6.4	(34.5)	(115.9)	-5.2
							1441	4496	
	-	-	-	-	-	-	(69.0)	(215.3)	-5.2
Angle of internal friction (ϕ'_r)		-			30°			33.2°	
Cohesion psf (kPa)		-		0			0		
Peak Soil Shear Strength	σ'₃ psf (kPa)	σ' ₁ -σ' ₃ psf (kPa)	∆ɛ _{vol} (%)	σ'₃ psf (kPa)	σ' ₁ -σ' ₃ psf (kPa)	Δε _{νοι} (%)	σ'₃ psf (kPa)	σ' ₁ -σ' ₃ psf (kPa)	∆ε _{vol} (%)
	731	2889		753	2565		353	1178	× 7
	(35.0)	(138.3)	-0.3	(36.1)	(122.8)	-1.8	(16.9)	(56.4)	-3.4
	. ,			1437	4432		729	4601	
	-	-	-	(68.8)	(212.2)	-2.1	(34.9)	(220.3)	-1.2
							1445	6833	
	-	-	-	-	-	-	(69.2)	(327.4)	-0.8
Angle of internal friction (ϕ'_{p})		-			32°			38.4°	
Cohesion psf (kPa)		-		108 (5.2)			0		
Indicates suspect or estimated value	•				. ,		·		
"-" Indicates no value									
Subscript "r" = residual; "p" = peak									

Table 24: Summary of triaxial test results for Ona site. Note: 1 kPa = 20.8854 psf.

Canary Road Site

Consolidated undrained triaxial tests were conducted on Woah-1 and Woah-3 samples. Consolidated drained triaxial tests were conducted on Woah-2 and Woah-4 samples. The results of the triaxial tests are shown on Table 25. Only two tests were completed for Woah-1 due to disturbance during sample preparation. Interpretation of test results are located in the Discussion section. The measured values for the residual angle of internal friction ranged from 25 to 30 degrees and the cohesion values ranged from 2.6 to 57.8 kPa. The measured values for the peak angle of internal friction ranged from 25 to 31 degrees and the cohesion values ranged from 10.4 to 48.6 kPa (Table 25). The results of stress-strain and volumetric strain plots from test sites Woah-2 and Woah-4 indicate strong sample dilation during shearing. The results of stress-strain and change in pore water pressure plots from test site Woah-3 also indicate strong sample dilation during shearing.

SITE LOCATION		Woah-1			Woah-2		Woah-3			Woah-4			
Field Description	Canary R	Canary Road roadcut; Gray, silty fine SAND			Canary Road roadcut; Tan, fine SAND		Canary Road roadcut; Gray, silty fine SAND			Canary Road roadcut; Red- brown, fine SAND			
Triaxial Compression Test Method	Consolidated Undrained			Conso	Consolidated Drained			Consolidated Undrained			Consolidated Drained		
Residual Soil Shear Strength	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	∆u _r psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	Δε _{νοι} (%)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	∆u _r psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	Δε _{νοι} (%)	
	2945 (141.0)	7790 (373.0)	1053 (50.4)	357 (17.1)	998 (47.8)	-8.4	2053 (93.8)	7577 (362.8)	-973 (-46.6)	363 (17.4)	1063 (50.9)	-9.0	
	5894 (282.2)	14889 (712.9)	-3878 (-185.7)	724 (34.7)	1771 (84.8)	-8.4	2882 (138.0)	8807 (421.7)	-2522 (-120.8)	724 (34.7)	2189 (104.8)	-8.8	
	-	-	-	1441 (69.0)	3369 (161.3)	-5.2	3530 (169.0)	10082 (482.7)	-2811 (-134.6)	1441 (69.0)	3624 (173.5)	-5.1	
Angle of internal friction (ϕ'_r)	28.6			28.8			25.4			29.6			
Cohesion psf (kPa)		181 (8.7)		55 (2.6)		1207 (57.8)			84 (4.0)				
Peak Soil Shear Strength	σ'₃ psf (kPa)	σ' ₁ -σ' ₃ psf (kPa)	∆u psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	Δε _{νοι} (%)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	∆u psf (kPa)	σ'₃ psf (kPa)	σ'₁-σ'₃ psf (kPa)	Δε _{νοι} (%)	
	2862 (137.0)	8038 (384 9)	1137 (54.4)	401	1651 (79.1)	-27	2053	7577 (362.8)	-973 (-46.6)	370	2884 (138-1)	-2.6	
	5849 (280.1)	14907 (713.8)	-3833 (-183.5)	754 (36.1)	3200 (153.2)	-2.4	2882 (138.0)	8807 (421.7)	-2522 (-120.8)	755 (36.1)	3608 (172.8)	-3.1	
	-	-	-	1449 (69.4)	4338 (207.7)	-2.1	3511 (168.1)	10351 (495.6)	-2791 (-133.6)	1458 (69.8)	5326 (255.0)	-0.7	
Angle of internal friction (ϕ'_p)	29.4			30.7			27			29.3			
Cohesion psf (kPa)	383 (18.3)			2	217 (10.4) 1016 (48.6)				525 (25.1)				
Indicates suspect or estimated	d value		S	Subscript "	r" = residua	al; "p" =	peak						
"-" Indicates no value													

Table 25: Summary of triaxial results for the Canary Road site. Note: 1 kPa = 20.8854 psf.

Cement Mineralogy

The results of field observations and laboratory strength testing led to closer inspection of the cement agent within the paleodune deposits. The analysis of the cement mineralogy was conducted by Dr. Georg Grathoff and Catrina Johnson (Portland State University, Geology Department). A scanning electron microscope (SEM) was used to identify the cement morphology around the individual sand grains (Figures 57, 58, and 59). The SEM analysis showed portions of the paleodune sand samples to contain aggregations of cemented grains (Figure 57). The observed cement morphology consisted of cement bridges between grains, pore space filling, and sand grain surface coating (Figure 58). The sand grain coating contained abundant desiccation cracks indicative of dehydration of the cement minerals (Figures 58 and 59).

1mm

Figure 57: SEM photo of cemented sand grains.

Figure 58: SEM photo of clay cement morphology collected from Pinecrest site.

²⁰µm

Analysis of the cement using Energy Dispersive X-ray (EDX) detected the major elements of the cement coating on selected paleodune sand samples (Figure 60). The main elements identified in the cement for the Pinecrest sample consisted of Al, Si, and Fe. X-ray diffraction (XRD) techniques (Figure 61) identified the majority of the cements to contain the minerals gibbsite, vermiculite, allophane, imogolite, and ferrihydrite. The cement morphology consisted of crystalline and amorphous phases, however hematite was the only crystalline phase identified (Johnson, 2003). The majority of the cement minerals were poorly crystalline to amorphous.

Figure 59: Enlarged SEM photo of clay cement material coating and desiccation cracks (Box A of Figure 58).

Figure 60: EDX spectra of clay cement from a Pinecrest sample.

Figure 61: X-ray diffraction pattern of the less than 2 micrometer size fraction of the ONA 1A sample (blue) overlain with a pure sample of allophane (pink). The lines below are lines from the other identified phases in the ONA 1A sample: gibbsite, quartz, cristobalite, and goethite. The comparison with the allophane sample shows that the ONA 1A sample contains a high concentration of allophane. The presence of the other minerals such as quartz may originate from detrital grains, rather than from secondary cement.

Pressuremeter Testing

The problems encountered with undisturbed sampling and testing of paleodune strata led to in situ testing of representative sample sites. The pressuremeter (PMT) was used to perform companion strength testing at geotechnical sample sites. A summary of pressuremeter tests is shown on Table 26. Plots of individual PMT tests are located in Appendix F. Pressuremeter tests were performed typically in easy access locations in the key strata identified in each study site. To permit the maximum number of tests to be conducted on occasionally steep dune faces, all tests were conducted in hand augered boreholes.

SITE	Location	Test Reference	Field Description	PL* (kPa)	Eo (kPa)	Eo/PL* ratio	Test Quality (*** = max)	Interpreted Shear Behavior	Interpreted material properties	COMMENTS
Ona	Ona-1A @ 1.7m bgs	#3	Tan to red- brown fine sand	2188	23413	10.7	***	Drained conditions	Φ'r range from 36 [°] to 40 [°]	Good fit to Eo/PL* guidance
	Ona-1A @ 2.9m bgs	#4	Tan to red- brown fine sand	2375	22504	9.5	***	Drained conditions	Φ'r range from 36 [°] to 40 [°]	Good fit to Eo/PL* guidance
	Ona-A	PMT1	Black to brown silty sand/sandy silt	168	2442	14.6	**	Partially drained conditions (cemented)	unclear	Poor fit to Eo/PL* due to weak cementation breakdown
	Ona-B	PMT2	Tan fine sand	656	12784	19.5	***	Drained conditions (2)	Φ'r range from 30 [°] to 33 [°]	Poor fit to Eo/PL* due to weak cementation
	Ona-C	PMT3	Tan fine sand	1053	23078	21.9	**	Cemented full range		Poor fit to Eo/PL* due to weak cementation breakdown
Pinecrest	Pine-2 @ 1.7m bgs	#5 in PMT1	Red-brown fine sand	1853	24227	13.1	***	Drained conditions (2)	Φ'r range from 34 [°] to 38 [°]	Poor fit to Eo/PL* due to weak cementation
	Pine-2 @ 2.5m bgs	#6 in PMT1	Red-brown fine sand	2135	23605	11.1	***	Drained conditions	Φ'r range from 36 [°] to 42 [°]	Good fit to Eo/PL* guidance
	Pine-5 PDBw	РМТ3	Orange-brown silty fine sand	1288	20780	16.1	***	Partially drained conditions (cemented)		Poor fit to Eo/PL* due to weak cementation
	Pine-5 PDC	PMT2	Light brown fine sand	397	4740	11.9	***	Drained conditions	Φ'r range from 28 [°] to 30 [°]	Good fit to Eo/PL* guidance
	Pine-6	PMT1	Light gray sandy silt	263	3639	13.8	***	Undrained conditions	Su(PL*) = 35 (kPa)	Good fit to Eo/PL*, no creep

Canary Road (Woahink)	Woah-1	#3	Gray to brown silty fine sand	2384	35000	14.7	***	Drained conditions (2)	Φ'r range from 35 [°] to 39°	Poor fit to Eo/PL* due to weak cementation breakdown
	Woah-3	#4	Gray silty fine sand	783	9049	11.6	***	Partially drained conditions (cemented)	Su(PL*) = 90 (kPa)	Poor fit to Eo/PL* due to weak cementation breakdown
Yachats	Peel site	#7	Red-brown fine sand	2475	19583	7.9	***	Drained conditions (2)	Φ'r range from 36 [°] to 44°	Good fit to Eo/PL* guidance

NOTES: PL* stands

1) For sandy materials: 7<Eo/PL*<12; For

For clayey materials: Eo/PL*>12;

2) Typical sand Eo/PL* <12; however cementation and/or overconsolidation will raise sand Eo/PL* ratio.

3) All phi should be considered as phi residual (Φ 'r), i.e. constant volume, not peak.

4) Φ'r is the residual angle of internal friction for granular materials, Su_(PL*) is the undrained shear strength for cohesive materials.

Table 26: Summary of pressuremeter test results for key layers at the geotechnical study sites. PL* stands for limit pressure and Eo stands for initial load modulus.

The PMT test results provide a limit pressure (PI*) and an initial load modulus (Eo) (Figure 62). The limit pressure is the maximum pressure, observed or calculated, at soil failure. This is defined as the pressure at a point where the cavity volume, expanded by the membrane, is double the initial borehole size. The initial load modulus is the calculated slope of the linear elastic strain portion of the pressuremeter curve. Unload and reload in cycles are often incorporated in PMT testing to gain insight into the soil behavior under increased stress levels. The ratio of Eo/P_L* can be used to compare specific PMT tests to average values for sand and clay (Briaud, 1986; Baguelin et. al., 1978).

Figure 62: Example of a pressuremeter test conducted at Ona-1A. The two dips in curve are unload and reload cycles.

Borehole Data

Geotechnical drilling data was obtained from the Oregon Department of Transportation (ODOT) to supplement and expand the characterization of the paleodune deposits to other dune sheets. A total of 33 boring logs were reviewed from 14 geotechnical investigation sites located along the coastal plain of Oregon (Peterson et al., 2005). Summary of the boring logs are located in Appendix G. The paleodune soil horizons were interpreted from the boring log descriptions which reported the material type, depth, and standard penetration test (SPT) results (blow counts). The borehole data was differentiated by Holocene and Pleistocene dune deposits based on the soil log description and reported paleodune stratigraphy in nearby sites (Table 27). The Holocene dune deposits ranged in thickness from 2 to 14 meters and had an average thickness of 5 meters. The Pleistocene dune deposits ranged in thickness from 1 to 15 meters and had an average thickness of 5 meters.

ODOT BOREHOLE DATA	Holocene Dune	Pleistocene Dune
Number of Dune Type	17	20
Minimum Thickness (m)	2	1
Maximum Thickness (m)	14	15
Mean Thickness (m)	5	5
1 Std.Dev.	±3	±4

Table 27: Geotechnical borehole data from ODOT showing thickness of Holocene and Pleistocene dune deposits.

Standard penetration test blow counts (N) of individual paleodune soil horizons were identified from the boring logs (Table 28). The range in blow counts for the

Holocene dune deposits (HDC) ranged from 2 to 26 blows per foot (N) with an average N-value of 9. The range in blow counts for the Pleistocene dune sand (PDC) ranged from 8 to 100 blows per foot (N) with an average N-value of 44. The range in blow counts for the Pleistocene paleosol deposits (PDBg and PDBtj) ranged from 0 to 24 blows per foot (N) with an average N-value of 11. The range in blow counts for the Pleistocene dune sand (PDBw and PDCox) ranged from 69 to 100 blows per foot (N) with an average N-value of 84.

Description/Statistics	Holocene dune sand	Pleistocene dune sand	Pleistocene dune paleosol with loess	Pleistocene dune sand; cemented with iron oxide	Tertiary bedrock
USCS	SP	SP	SM	SP	
Soil Horizon	HDC	PDC	PDBg, PDBtj	PDBw, PDCox	Т
Number of Tests	62	64	38	4	10
Minimum (N)	2	8	0	69	34
Maximum (N)	26	100	24	100	100
Mean (N)	9	44	11	84	81
1Std.Dev. (N)	±5	±28	±6	±16	±31
note: SPT (N) values gre	eater than 100	blows per 12 inc	hes are rounded to	N=100 for statistical	calculations.

Table 28: Geotechnical borehole data from ODOT showing blow counts (N) for individual paleodune soil horizons.

Discussion

Sustainable development on the Central Oregon Coastal plain requires a thorough understanding foundation soils, cut slope stabilities, and subsurface drainage. The bedrock geology is well-established through work by Vokes et al. (1949), Baldwin (1956), Baldwin (1961), and Snavely (1976). DOGAMI Bulletin 81 (Schlicker et al., 1973) was the first comprehensive work to outline the geologic hazards and engineering geology issues for the coastal plain of Lincoln County, Oregon. In the previous literature, the authors show that the coastal plain is covered by Pleistocene surficial deposits. These deposits were combined together into a generic unit called "marine terrace deposits." The terrace deposits were not well-defined in terms of depositional environment, lithology, stratigraphy, thickness, or engineering properties. This study demonstrates that development on the coastal plain is generally built on the Pleistocene surficial deposits and not on the underlying bedrock or shoreface beach deposits. The results of this thesis show that the coastal plain is covered by a remnant Pleistocene dune sheet that extends from the beach to the Coast Range foothills and that the dune sheet is a separate unit from the marine terrace deposits. These Pleistocene dune strata vary in their geotechnical and geohydrologic properties. The generalized geotechnical characterizations of these dune strata are the focus of this project.

The setting of the Central Oregon coastal plain had a much different geomorphic appearance during the late Pleistocene (100 ka to 10 ka) than at present. The offshore continental shelf of Central Oregon is broad, flat, and wide, based on compiled geologic mapping by Peterson et al., (1986). Relative sea level curves indicate the mean sea level (MSL) fluctuated between 25 and 125 meters below current MSL as shown on Figure 63. The coast line of Central Oregon would have been 7 to 45 km west of the present shoreline, respectively (Figure 64). Low-stand sea level would have exposed a broad, flat shelf containing an abundant source of sand and silt for eolian transport and formation of a dune sheet during most of the late-Pleistocene.

133

Figure 63: Eustatic sea level curves with respect to elevation for last 80 ka years BP. Line A is from Chappell and Shackleton (1986), line B is from Shackleton (1987), and line C is from Bloom and Yonekura (1985). Boxed areas are probable error ranges for age and height for line C. The C^{14} and TL dates have been added with their respective error bars (double arrow). Modified from Pirazzoli (1983).

The evidence for a large, preexisting dune sheet is found on the Central Coast of Oregon within the coastal plain, which includes the Newport Dune Sheet. Mapping of paleodune deposits for this thesis has shown that a remnant dune sheet mantles a majority of the coastal plain in the Newport area. The geographic boundaries of the Newport Dune sheet are the Pacific Ocean to the west, the Coast Range to the east, Cape Foulweather to the north, and Cape Perpetua to the south.

The maximum inland extent of the dune sheet is approximately 3 km east of the present shoreline (Figures 27,28, and 29). The dune sheet laps up onto the Coast Range foothills which act as physical and climatological barriers. The Coast Range receives a great deal of precipitation (~200 cm/yr) as western storm tracks come off

the Pacific Ocean, dropping moisture as they cross over the Coast Range mountains. The combination of high precipitation, associated dense vegetation cover, and higher elevation of the foothills created a barrier to westerly dune sheet migration. At the end of the last glacial period (beginning 17 ka) the rise in sea level resulted in a transgression across the continental shelf and sea cliff erosion back to present coastline (Figure 64).

The widest area of the remnant Newport Dune Sheet corresponds to a stretch of

terraced coastline between remnant basaltic headlands at Cape Foulweather and Cape

Perpetua. The dune sheet is characterized by a series of transects, one transect running north to south, and 4 transects running west to east. The transects cross mapped paleodune profiles that show lateral and vertical sequences of lithologies that correspond to distinct depositional or erosional conditions (facies) that occurred during the episodic deposition of a dune sheet.

Paleodune Stratigraphy and Geomorphology

The paleodune deposits contain two general facies consisting of sand dune strata (dune facies) and paleosol strata (paleosol facies). The dune facies is depicted as a tan to red-brown, fine, uniformly-graded (well-sorted), subangular to subrounded sand containing less than 5% fines (C and Cox horizons). The dune facies contains eolian dune cross-bedding, massive to laminated bedding, and/or truncated strata. The dune facies bedding average 1.35 meters in thickness, but is found in zones up to 10 meters thick.

The paleosol facies is depicted as a brown to light gray sandy silt to silty fine sand containing more than 40% fines and commonly contains trace carbonized organics and wood fragments. These paleosols are roughly divided into two categories based on soil accumulation horizons (ie. oxidative Bw/Btj horizons and reductive Bg horizons). Some paleosols have preserved organic layers and peat. The paleosol facies varies from Bg flat-lying planar beds, traceable to more than 100 meters laterally, to concave and convex Bw/Btj horizons that are discontinuous (Figure 65).

136

Figure 65: Annotated photos of Ona Beach sea cliff showing deflation plain (Bg horizons) underlying thicker dune sand layers (top) containing a hard pan.

The sea cliff exposures provided the best stratigraphic view of the Newport Dune Sheet. The north-south transect (Figure 67) runs parallel to the beach and shows relative thicknesses of paleodune deposits that form the sea cliffs. Paleodune coverage is continuous from Cape Foulweather south to Cape Perpetua. The paleodune deposits have the greatest thickness near the middle of the dune sheet and progressively thin towards the north and south headland boundaries. Often the paleodune deposits were in contact with the marine terrace deposits (beach sand, cobble gravel, and peat horizons) and the wave-cut Tertiary bedrock.

Early results of the sea cliff exposure mapping demonstrated two different morphostratigraphic relations in the Newport Dune Sheet. Specifically, the higher elevation (> 10m MSL) dune paleosols were oxidative (Bw) and frequently inclined, cross-cut, and discontinuous. By comparison, the lower elevation paleosols (< 10m MSL) were reductive (Bg) and were generally horizontal and continuous out 10s to 100s of meters. (Figure 66).

Figure 66: Panorama view of Ona Beach sea cliff showing lateral extent of paleodune strata.

Figure 67: North to south transect across the Newport Dune Sheet running parallel to the sea cliffs.

Figure 68: East to west traverse across the Newport Dune Sheet at Spencer Creek site.

Figure 69: East to west traverse across the Newport Dune Sheet at Nye Beach site.

Figure 70: East to west traverse across the Newport Dune Sheet at Ona Beach site.

Figure 71: East to west traverse across the Newport Dune Sheet at Yachats site.

The west to east transects (Figures 68-71) show the paleodune deposits climbing in elevation to the east, but also thinning until the deposits pinch-cut with bedrock or bedrock regolith. A majority of the paleodune profiles mapped east of the sea cliffs (road cuts) do not show the base of the paleodune deposits so they are considered to represent minimum dune sheet thicknesses.

The sea cliff exposures typically contain flat-lying paleosols that are interbedded with dense dune sand near the lower portions of the profiles (Figure 72). This strata sequence is interpreted to be the result of formation of paleosols in deflation plains that are controlled by groundwater table during dune sheet mobilization. The strata type changes with an increase in elevation to yield dune facies with discontinuous, and concave or convex bedding. The implications of variable geotechnical behavior between relatively uniform interbedded deposits and discontinuous concave or convex bedding is obvious. Understanding the complex geomorphology of the paleodune deposits as well as the geotechnical behavior of the soil units will help to properly characterize a site for development.

Figure 72: Generalized profile of the Newport Dune Sheet stratigraphy showing a transition of horizontal, flat-lying deflation plain sequences at the sea cliff to discontinuous, concave and convex upland dune sequences.

Changing climate and vegetation have likely influenced the formation of the deflation plains along the Central Oregon Coastal Plain. During much of the latest Pleistocene (last 40 ka), the Oregon Coast was drier and more sparsely vegetated than at present (Worona and Whitlock, 1995). These conditions permitted sand plains to migrate across the exposed continental shelf. Deflation plains are the result of the lateral migration of dune sand and the stripping of sand down to the local groundwater surface. (Kocurek, 1992) The proximity of the groundwater to the surface promotes vegetation growth and stabilized soil formation. Carbonized organics, root casts, and peat are often associated with deflation plain deposits indicating past vegetation. Deflation plains generally conform to the top of the groundwater surface and are flat-lying. The process of weathering and influx of silt and clay fines on to the deflation plain due to eolian processes (loess) incorporate fine particles into the uniform sand

deposits. Over time soil formation creates silty (Bg) horizons that are nearly horizontal and fairly continuous. Conditions that are favorable for sand mobilization (strong wind, dry climate, and available sand supply) will both erode preexisting dunes and bury preexisting landforms. If sand supply is low, wind is high, and groundwater is low, then the dune sheet will deflate, resulting in a high occurrence of truncated dune and deflation plain surfaces.

The dune facies found above the deflation plains are interpreted to be an influx of dune sand that covered the previous deposits. Over time the buried deflation plain soil will consolidate due to overburden pressure and become a low permeable layer. Locally, groundwater will perch within the dune sand overlying the previous deflation plain paleosols. Subsequent wind erosion of the overlying dune will form a new deflation plain at the higher groundwater elevation. This creates a vertical succession of interbedded dune sand and paleosol/deflation plain layers. The flat-lying deflation plains reflect paleo-groundwater surfaces. The implications of the existence of zones within the paleodune strata that concentrate groundwater are important for both slope stability and drainage issues.

As previously noted, the flat lying Bg paleosols (deflation plain strata) grade up section and with distance into upland dune strata dominated by discontinuous Bw and Btj horizons. The higher elevations of the upland dunes place the episodically stabilized dune surfaces well above groundwater surfaces. These dune surfaces are well-drained, seasonally oxidative, and are susceptible to blow-outs. Filling of the blow-out truncations leads to the discontinuous nature of the inclined dune form (Bw) paleosols. As the dune sheet aggrades vertically, in ramps against the foothills, the corresponding sand strata are increasingly interbedded with the irregular, discontinuous, inclined Bw horizons.

The Pleistocene dune deposits were locally capped by Holocene dune deposits that had formed ramps from the late-Holocene beach platforms to the tops of the sea cliffs. The Holocene dunes were differentiated from the older deposits based on stratigraphic position, degree of soil formation, lack of cementation, and relative strength. The Holocene dunes mantled the older deposits and typically exhibited thin, poorly developed soil profiles compare to the Pleistocene dune soils (Figure 73). The Holocene dune deposits generally lacked cementation and exhibited low strength when tested with a pocket penetrometer. Exceptions to this general rule occur at the base of the Holocene dune caps where oxidative groundwater precipitated iron-oxide in Ortstein layers. Penetrometer readings for the Holocene sand layers averaged 1.3 kg/m² where the Pleistocene sand layers averaged 3.4 kg/m². Recall that pocket Penetrometer readings are used to compare relative cementation values.

Groundwater Model and Cemented Deposits

The interaction of vegetation, weathering, and soil formation all influence redox conditions in the shallow groundwater. The redox conditions control the precipitation of dissolutions of some cements. Specifically, oxygenated groundwater (high-redox) precipitates goethite and other iron oxides in shallow dune strata. (Figure 74). The precipitation and concentration of the reddish iron oxides results in Ortstein layers. In contrast, deeper groundwater flows below the influence of the shallow oxidative zone. At these depths microsoil respiration of dissolved organics lowers the oxygen content of the groundwater. The low redox state of the deeper groundwater converts Fe^{+++} to Fe^{++} , thereby destabilizing and dissolving the amount of iron oxide cements (Baham, personal communication, 2005). Sand strata leached of cement are observed at the base of many Pleistocene dune sections as illustrated on the model (Figure 74).

Surface water and groundwater can easily penetrate and flow through permeable dune sand. Weathering and soil formation processes leach chemicals and minerals from the dune sand. The parent mineralogy of the dune sand found on the Central Oregon Coast (Beckstrand, 2001; Peterson et al., 1991) in turn creates hydrous oxides of aluminum and iron silicate clay minerals. The clay minerals form both crystalline and amorphous Fe, Al, and Si products that act as cementing agents in the paleodune deposits (Figure 57 and Figure 58). The clay minerals identified using X-ray diffraction (XRD) techniques include gibbsite, vermiculite, allophane, imogolite, and ferrihydrite. A scanning electron microscope (SEM) was used to identify the amorphous phases (allophane, imogolite, and ferrihydrite) coating and cementing the sand grains in the B and C horizons of the paleodune deposits (Grathoff et al., 2003).

Geotechnical Parameters

The geologic model, outlined above, demonstrates the formation and structure of the deposits of the Newport Dune Sheet. A common observation is that the sea cliffs and road cuts are primarily composed of weakly cemented dune sand. The typical range of angle of repose for a uniform, fine sand is 27-37°. General visual observations made of existing road cut and sea cliff slope angles indicate that slopes are apparently temporarily stable at angles greater than 40°, and locally 45 to 80 degrees. These higher slope angles are apparently temporarily stabilized by cementing of paleosols (Figure 75) and/or iron oxide layers. In contrast, leaching of some sand layers could produce weaker strata. This result implies that the strength of the materials at the base of the slope is gradually reduced. Over time this may result in significant reduction in the stability of the slope.

Undisturbed and bulk soil samples were collected of representative paleodune layers to determine laboratory soil index and strength parameters. Index parameters included USCS classification, grain size, dry density, plasticity index, specific gravity, void ratio, porosity, degree of saturation, and permeability.

Figure 75: Sea cliff model of paleodune strata.

Grain size analysis indicated a clear distinction between the amount of fines (<0.075mm) in the dune facies samples (0.7% average) and the paleosol facies. The dune strata facies samples consisted of a fine, uniformly-graded (well-sorted) sand. The paleodune facies samples consisted of a well-graded (poorly-sorted) fine silty sand/sandy silt. Several of the samples that contained heavy Fe-staining and cementation contained cemented clasts of fine sand that did not break down during the wash process. However, the clasts completely disaggregated into individual sand particles after oven drying and sieving, indicating their cohesion resulted from unstable cement.

The USCS classification (ASTM D2488) was performed only on the laboratory tested samples. In general, the dune facies samples classified as a poorly graded sand (SP) and the paleosol facies samples classified as a silty sand (SM). One paleosol sample classified as an elastic silt (MH). Based on observation, the paleodune deposits are more variable (ie. grain dissaggradation) than what the USCS classification system determines or allows. Further, the USCS system may not adequately reflect the actual behavior of the materials.

Permeability testing was conducted on undisturbed paleodune samples and is summarized in the Results section. The test results indicate the paleodune deposits have lower permeability values than expected for dune sand (see Results Section). Low permeability values are caused either by tight packing of particles or filling of the pore space between particles with gels or cement-type materials (ie. loess).

Direct shear and Triaxial strength tests were performed on twelve sets of samples collected from the geotechnical investigation sites. The sample layers selected included eight dune facies layers and four paleosol facies layers. The strength test results are summarized in Table 29.

Paleodune Sa	and Layers - DUNE FACIES						
Sample Site	Field Description	Direct Shear ø' _p (degrees)	Direct Shear c' psf (kPa)	Triax	Triax φ' _p (degrees)	Triax c' _r psf (kPa)	Triax c' _p psf (kPa)
Woah-2	Tan, fine sand (SP)	43	0	28.8	30.7	55 (2.6)	217 (10.4)
Woah-4	Red-brown fine sand (SP)	37	124 (5.9)	29.6	29.3	84 (4.0)	525 (25.1)
Ona-1A	Tan to red-brown fine sand (SP)	40	236 (11.3)	-	-	_	-
Ona-B	Tan, fine sand (SP)	35	384 (18.4)	30	32	0	108 (5.2)
Ona-C	Tan, fine sand (SP)	20	1343 (64.3)	33	38	0	0
Pine-2	Red-brown fine sand (SP)	42.6	270 (12.9)	-			-
Pine-3	Tan, fine sand (SP)	42	335 (16.0)	-	-	-	-
Pine-5	Light brown fine sand (SP)	20.5	568 (27.2)	18	21	178 (8.5)	0
Paleosol/defl	ation Plain Layers - PALEO	SOL FACIES	6				
Sample Site	Field Description	Direct Shear ø'p (degrees)	Direct Shear c' psf (kPa)	Triax ϕ'_r (degrees)	Triax φ' _p (degrees)	Triax c' _r psf (kPa)	Triax c' _p psf (kPa)
Woah-1	Gray, silty fine sand (SM)	37	248 (11.9)	28.6	29.4	181 (8.7)	383 (18.3)
Woah-3	Gray, silty fine sand (SM)	36	519 (24.8)	25.4	27	1207 (57.8)	1016 (48.6)
Pine-4	Orange-brown, silty fine sand (SM)	36	568 (27.2)	36.5	36.1	0	0
Pine-6	Light gray, sandy silt (MH)	_	_	32.7	34.5	0	0

Table 29: Comparison of direct shear and triaxial strength testing of geotechnical samples. Note: 1 kPa = 20.8854 psf.

Generalized plots, modeled after Budhu (2000), are summarized in Figure 76. These plots show typical behavior of different soil types to shearing force. Loose sands and normally consolidated and lightly over-consolidated clays (Type I soils) show a gradual increase in shear stress, with increase in shear strain, until no change is recorded (ultimate or residual strength, Figure 76a). Type I soils will compress (positive volume change), until a critical void ratio is reached (Figure 76b). Dense sands and heavily over-consolidated clays (Type II soils) show a rapid increase in shear stress to a peak value (peak stress) at low strain, followed by a decrease in shear stress, until no change in stress with increasing strain is measured (ultimate or residual strength). Type II soils will initially compress, and then expand (negative volume change), until a critical void ratio is reached (Figure 76b).

The direct shear angle of internal friction (phi) ranged from 20° to 43° for the dune facies and ranged from 36° to 37° for the Paleosol facies. The cohesion (c) ranged from 0 to 1,343 psf for the dune facies and ranged from 248 psf to 568 psf for the paleosol facies. The direct shear tests behaved as dense soils, based on the spikes recorded on the stress-strain plots (Summers, 2005). A portion of the peak may be related to cementation.

Work published by Clough (1981) on consolidated drained (CD) triaxial testing and Saxena and Lastrico (1978) on consolidated undrained (CU) triaxial testing, indicate that cemented behavior can be determined from specific test results. CD triaxial testing by Clough (1981) and CU triaxial testing by Saxena and Lastrico

(1978) on cemented sands indicate that cemented behavior can be recognized in test results as follows:

- Peak strength increases with degree of cementation
- The strain at peak strength decreases with the degree of cementation
- Volume increase during shear is concentrated over a smaller strain range
- Failure mode for weakly cemented sand is brittle at low confining pressures
- Cemented sands with a significant percent fines (<0.075mm) content were stronger than samples with a small proportion of fines

Cemented behavior can be recognized in CU triaxial testing based on the following behavior (Saxena and Lastrico, 1978):

- Pore water peaks within 1% strain and then decreases
- Cementation creates an "apparent" high density behavior
- Higher strengths can occur at lower confining pressures compared to same samples at higher confining pressures

The paleodune samples were run in CU and CD conditions at low confining stress in an effort to detect the above effects. Consolidated drained triaxial test result plots indicate that the dune facies samples exhibited dilation during shearing at low strain levels. The stress-strain plots show a peak in the deviator stress at low strain followed by a drop in stress as strain is increased (See Results section). The peak strength indicates that the soil particles are either densely packed and/or cemented and must overcome a peak shear stress prior to moving past one another. Negative volumetric strain is indicative of an increase in sample volume as the soil particles move away from each other during shearing as a result of an initial dense packing (Lambe and Whitman, 1969).

The paleodune samples tested in triaxial conditions in most cases exhibit unusually high negative pore water pressure (CU testing), or negative volume strain (CD testing) as a result of sample dilation. The occurrence of sample dilation during triaxial shearing is interpreted to be a result of the effects of weak cementation of the particles. During shearing of the sample, the material deforms elastically at low strain until the stress levels exceed the strength of the weak cement holding the particles together (as shown in Figure 51). At this point (peak strength) one or more fractures form within the sample and dilation occurs as the cracks move past each other and fractures expand as strain increases (Yamamuro, personal communication, 2005). Examples of similar exaggerated behavior is found in the literature for dense or potentially cemented sands (Clough et al., 1981; Saxena and Lastrico, 1978).

Previous work published in the literature, has typically tested sand under drained conditions with no measure or attention paid to pore water pressure. However, with the capabilities of the GeoComp apparatus a detailed record of the change in pore pressure and volumetric strain can be recorded. In drained testing, typically, the samples are not back-pressure saturated in drained compression. The pore space is open to the atmosphere and volume changes are not measured. For this study, the samples are back-pressure saturated and the GeoComp computer 'micro-stepping pumps' maintain zero pore pressure by precisely pumping water into and out of the sample. Similarly with undrained testing, high negative pore pressures can be generated by the 'micro-stepping pumps' allowing exactly no volume change in real time during the test. It appears, therefore that in this study the ability to precisely control the conditions within the pore space of the sample has illuminated behaviors which were previously difficult to detect in all but the most sophisticated and properly operated equipment.

The next question would be what is generating those extreme pressures or volume changes. Typical dense sand does not respond with negative pressures of the magnitude noted above. Therefore it must be some other phenomenon, possibly light cementation which was heretofore undetectable by older testing methods and apparatus. The hydraulic conductivity results of the paleodune samples tested in this study also supports the presence of weak cementation. The overall conductivity levels observed in the samples tested were lower than expected for a typical eolian sand deposit (Tables 18 and 19). The results of XRD, EDX, and SEM analysis has shown that the paleodune sand grains contain cementation consisting of poorly crystalline to amorphous minerals of gibbsite, vermiculite, allophane, imogolite, and ferrihydrite. These minerals act as a weak cement to bond particles and also reduce the permeability of the deposits by coating the particles and filling pore space in the sand matrix. Ortstein layers (iron oxide hard pans) are known for having very low

with more sophisticated sampling methods would be required to confirm these suspicions.

Issues not considered but needing further work:

- The stability of the paleodune deposits is important for providing sustainable development on the Central Oregon Coastal plain. The majority of the observed slope failures are classified as slumps, block topples, or wedge failures. Slope failures were observed in road cut and sea cliff exposures, however detailing the total number and areal extent of slope failures in paleodune deposits on the coastal plain was beyond the scope of this thesis project. At some point, the failure(s) should be mapped relative to the improvement(s) that may be affected.
- A risk matrix related to development on the dunes such as: shallow versus deep foundations for major structures; steep versus shallow cuts for grading. This may be further developed by suggesting type, spacing, and depth of explorations for various developments.
- Further interpretive information regarding paleodune structure, for instance, sand materials seem to be loose on the lee side of the dune and dense on the windward side. Is the relative size (thickness) of the dune strata relative to slope stability hazards?

 Further investigate the response to seismic shaking relative to the presence of cement content within the soil structure. This would be accomplished by specialized sampling and testing using a cyclic triaxial apparatus.

Conclusions

Paleodune deposits are unique geotechnical materials in that the method of formation does not fall into the typical soil formation process that is commonly understood from a geotechnical standpoint. Typical soil formation processes involve weathering of in-place bedrock (residual soil) or soil formation from colluvial or alluvial processes. The formational history of paleodune deposits most likely can be defined as a series of alternating deposition and erosion sequences. The paleodune deposits appear to be formed as a result of optimal climactic conditions (cool and dry) and geographic location (broad continental shelf) with an abundant sand supply. These conditions are not unique to the Central Oregon Coast and therefore paleodune deposits are likely widespread at least on the West Coast region and on other continents having similar geography, climate, and sand supply. The implications are that most significant developments occur in coastal areas within a few kilometers of the existing shoreline as indicated in this study.

The Central Oregon Coastal Plain is covered by paleodune deposits that comprise the Newport Dune Sheet. The Newport Dune Sheet is a remnant of a large dune sheet that existed on the continental shelf during the late Pleistocene. It is

postulated that during low-stand sea level the Newport Dune Sheet probably spread along the coastline to the north and south and combined with adjacent dune sheets. The paleodune deposits were previously mapped as Pleistocene marine terrace deposits. (Schlicker et al, 1973). This study changes the previous conception of the coastal plain based on the following major findings regarding:

- The need for practitioners in the private and public sector to understand the complexity of the dune sheet system and to properly and safely construct within the dune sheet area.
- The presence of a significant percentage of weak cements within the soil matrix of the paleodune deposits add to the variability and significantly affect the behavior of the deposits for slope stability and foundation design.
- From groundtruth mapping, the paleodune deposits are shown to have continuous coverage over the Central Oregon Coast Plain from Cape Foulweather (northern boundary) to Cape Perpetua (southern boundary), and from the ocean sea cliffs east to the Coast Range foothills. The average thickness of the Pleistocene dune deposits (approximately 5 to 10 meters) extends beyond the maximum construction depths in many sites.

- The Pleistocene dune strata was observed to have a brittle nature likely caused by a combination of consolidation over time, dense packing of sand grains, and varying cementation.
- The paleodune deposits consist of interbedded dune sand facies and paleosol facies. The paleosol facies can be separated into upland (Bw horizon) facies and flat-lying deflation plain (Bg horizon) facies.
- Direct shear and triaxial testing of paleodune samples report the angle of internal friction (phi) ranging from 20 to 35 degrees and generally having low cohesion.
- The Newport Dune Sheet are observed to contain slope angles observed to range from 50 to 70 degrees. These slope angles are up to twice the expected angle of repose estimated from laboratory testing indicating a certain amount of cohesion with the deposits. The cohesion may be caused by the cementation products observed during sample analysis.
- The measured phi angles represent largely conservative parameters for use in slope stability models.

The unique combination of materials tested, particularly the potential cementation effect, with the precise triaxial testing apparatus, may have revealed

unique extremes relative to volumetric change and generation of negative pore pressure.

References

- Alton, C., Cowburn, S., Jones, J., Knoepp, C., Peterson, C.D., Polidoro, B., and Stock, E., 1996. Origin of a Coastal Dune Complex: Source Mineralogy and Paleosol Development, From the Central Oregon Coast, GSA Cordilleran Meeting, Programs with Abstracts, 28:42.
- Baguelin, F., Jezequel, J.F., and Shields, D.H., 1978. *The Pressuremeter and Foundation Engineering*, Trans Tech Publications, France, 614 p.
- Baldwin, Ewart M., 1956. Geologic Map of the Lower Suislaw River Area, Oregon, USA. Washington, DC: US Geological Survey, Map OM-186.
- Baldwin, Ewart M., 1961. Geologic Map of the Lower Umpqua River Area, Oregon, USA. Washington, DC: US Geological Survey, Map OM-204.
- Baldwin E.M., J.D. Beaulieu, L. Ramp, J. Gray, V.C. Newton, and R.S. Mason, 1973. Geology and Mineral Resources of Coos County, Oregon. Oregon Department of Geology and Mineral Industries, Bulletin 80, 82 p. with maps.
- Beaulieu J.D., and P.W. Hughes, 1975. Environmental geology of western Coos and Douglas Counties, Oregon. State of Oregon Department of Geology and Mineral Industries, Bulletin 90, 148 p. with maps.
- Beckstrand, D.L., 2001. Origin of the Coos Bay and Florence Dune Sheets, South Central Coast, Oregon. Unpublished M.S. thesis, Portland State University, Portland, Oregon, 192 p.
- Birkeland, P.W., 1984. *Soils and Geomorphology*. New York: Oxford University Press, 372 p.
- Briaud, Jean-Louis, 1986. Pressuremeter and Foundation Design, Proceedings of the ASCE Specialty Conference on "Use of In Situ Tests in Geotechnical Engineering".
- Boggs, Jr., Sam, 1987. *Principles of Sedimentology and Stratigraphy*. Columbus, Ohio: Merrill Publishing Co., 784 p.
- Clough, G. Wayne, Sitar, Nicholas, Bachus, Robert, and Rad, Nader Shafii, 1981. Cemented Sands Under Static Loading. Journal of the Geotechnical Engineering Division, pp. 799-817.
- Cooper, W. S., 1958, Coastal sand dunes of Oregon and Washington, Geological Society of America. Memoir 72: New York, Geological Society of America, 169 p.
- Grathoff, Georg H., Baham, John., Peterson, Curt D., Johnson, Catrina M., 2003. Authigenic AL, FE, SI Minerals of Varying Crystallinity in Dunal Soils Near Newport, Oregon, USA. The Clay Mineral Society, joint meeting, Abstract.
- Grathoff, Georg H., Peterson, Curt D., Beckstrand, Darren L., 2003. Coastal Dune Soils in Oregon, USA, Forming Allophane and Gibbsite. Proceedings of the 12th International Clay Conference, pp. 197-204.

- Grigg, Laurie D. and Whitlock, Cathy, 1997. Late-Glacial Vegetation and Climate Change in Western Oregon. Quarternary Research, No. 49, pp. 287-298.
- Hampton, E.R., 1963, Ground Water in the Coastal Dune Area Near Florence, Oregon: United States Geological Survey, 1539-K.
- Hart R.A., and C.D., Peterson, 2002. Alternation of dune and forest landscapes: evidence from paleosols in marine terrace deposits, Lincoln County, Oregon. Geological Society of America, 98th Annual Meeting, Cordillera Section, Abstracts with Programs, 34:A7.
- Helley, E.J., Lajoie, K.R., Spangle, W.E., and Blair, M.L., 1979. Flatland Deposits of the San Francisco Bay Region, California-their geology and engineering properties, and their importance to comprehensive planning. US Geological Survey Professional Paper 943.
- Hofgren, J. C., Burkett, S. P., Peterson, C. D., Origin of Pleistocene dunal gray layers: deflation wetland deposition versus upland pedogenic weathering, Lincoln City Dune Sheet, Oregon. Geological Society of America, Cordillera Meeting Abstracts, in press.
- http://www.ocs.orst.edu/allzone/allzone1.html, 2002.
- Johnson, Catrina M., 2003. Iron Mineralogy in the Newport Dune Sheet, Oregon Coast. Unpublished senior thesis, Portland State University.
- Jol, Harry M., Smith, Derald G., and Meyers, Richard A., 1996. Digital Ground Penetrating Radar (GPR): A New Geophysical Tool for Coastal Barrier Research Examples from the Atlantic, Gulf, and Pacific Coasts, USA. Journal of Coastal Research, Vol. 12, No. 4, pp. 960-968.
- Kocurek, G., Townsley, M., Yeh, E., Kavholm, K., and Sweet, M.L., 1992. Dune and Dune-Field Development on Padre Island, Texas, with Implications for Interdune Deposition and Water-Table-Controlled Accumulation. Journal of Sedimentary Petrology, Vol. 62, No. 4, pp. 622-635.
- Komar, Paul D., 1997. *The Pacific Northwest Coast*, Durham, North Carolina: Duke University Press, 195 p.
- Lambe, T. William and Whitman, Robert V., 1969. *Soil Mechanics*. New York: John Wiley & Sons, Inc., 553 p.
- Minor, Rick, 1991, Yaquina Head: A Middle Archaic Settlement on the North-Central Oregon Coast. Bureau of Land Management, cultural resource manual No. 6. Natural Resource Conservation Service, 1997, Soil Survey of Lincoln County Area, Oregon.
- Orr, E., Orr, W. and Baldwin, E., 1992, *Geology of Oregon*. Dubuque, Iowa: Kendall Hunt Publishing, 254 pp.
- Ortiz, J., Mix, A., Hostetler, S., and Kashgarian, M., 1997. The California Current of the last glacial maximum; reconstruction at 42 degrees N based on multiple proxies. Paleoceanography, v. 12, no. 2, p. 191-205.
- Patching, W.R., 1987. Soil Survey of Lane County Area, Oregon. Natural Resources Conservation Service, US Department of Agriculture, 369 p., 153 map sheets.

- Peterson, C.D., Gleeson, G., and Wetzel, N., 1987. Stratigraphic Development, Mineral Sources, and Preservation of Marine Placers from Pleistocene Terraces in Southern Oregon. Sedimentary Geology, 53:203-229.
- Peterson C.D., M.E., Darienzo, D.J. Pettit, P. Jackson, and C. Rosenfeld, 1991. Littoral Cell Development in the Convergent Cascadia Margin of the Pacific Northwest, USA. In. R. Osborne (ed) From Shoreline to the Abyss, Contributions in Marine Geology in Honor of F.P. Shepard, SEPM Special Publication, 46:17-34.
- Peterson, C.D., Jol, H.M., Woxell, L.K., Vanderburgh, S., Phipps, J.B., Percy, D., Reckendorf, F., Gelfenbaum, G.R., 2001. Late Holocene Shoreface Retreat Scarps from Ground Penetrating Rader Profiles, Columbia River Littoral Cell, Washington-Oregon, USA. USGS OpenFile Report. In Press.
- Peterson, C.D., Baham, J., Beckstrand, D., Clough, C., Cloyd, C., Erlandson, J., Grathoff, G., Hart, R., Jol, H., Percy, D., Reckendorf, F., Rosenfeld, C., Smith, T., Phyllis Steeves, P., Stock, E., 2002. Field Guide to the Pleistocene and Holocene Dunal Landscapes of the Central Oregon Coast: Newport to Florence, Oregon. Geological Society of America, Field Trips Guide, Cordillera Meeting, Corvallis, Oregon, USA, 13 p.
- Peterson, C.D., Stock, E., and C., Cloyd, 2002. Further constraints on age dating of late-Pleistocene and Holocene coastal dunes and spodosol chronosequences from the Central Oregon coast based on reconnaissance thermoluminescence dating. Geological Society of America, 98th Annual Meeting, Cordillera Section, Abstracts with Programs, 34:A7.
- Peterson, C.D., 2005. Morphostratigraphy and Dating of Coastal Dune Sheets in Washington, Oregon, Northern California, and San Miguel Island, United States, and Baja California Sur, Mexico: West Coast Dune Database. Oregon Sea Grant Report. (In press.)
- Pirazzoli, P.A., 1993. Global Sea-Level Changes and Their Measurement, Global and Planetary Change, v.8, pp. 135-148.
- Reckendorf F.F., 1975. Beaches and Dunes of the Oregon Coast. US Department of Agriculture, Oregon Department of Soil Conservation Service, and Oregon Coastal Conservation and Development Commission, 161 p.
- Reckendorf, Frank, et al. 1985. Stabilization of Sand Dunes in Oregon. In Douglas Helms and Susan L. Flader [eds.] The History of Soil and Water Conservation: A Symposium. Agr. History Society, Davis, California, USA.
- Reckendorf, Frank, 1998, Geologic Hazards of Development on Sand Dunes along the Oregon Coast. Environmental, Groundwater and Engineering Geology, Applications from Oregon, edited by Scott Burns, Belmont, California: Star Publishing Company, pp. 429-438.
- Ritter, Dale F., 1986. *Process Geomorphology*, Dubuque, Iowa: Wm. C. Brown Publishers, 579 p.

- Schlicker, Hebert G., Deacon, R.J. Olcott, G.Wm. and Beaulieu J.D., 1973. Environmental Geology of Lincoln County Oregon. Oregon Department of Geology and Mineral Industries, Bulletin 81.
- Saxena, Surendra K., Lastrico, Roberto M., 1978. Static Properties of Lightly Cemented Sand. Journal of the Geotechnical Engineering Division, pp. 1449-1463.
- Shipman J.A., 1997. Soil Survey of Lincoln County, Oregon. Natural Resources Conservation Service, US Department of Agriculture, 256 p. 50 map sheets.
- Smith, Trevor, 2005. (PSU civil engineering, unpublished data.)
- Snavely, Jr., Parke D., MacLeod, Norman S., Wagner, Holly C., and Rau, Weldon W., 1976. Geologic Map of the Yaquina and Toledo Quadrangles, Lincoln County, Oregon, USA. Washington, DC: US Geological Survey, Map I-867.
- Snavely, Jr., Parke D., MacLeod, Norman S., Wagner, Holly C., and Rau, Weldon W., 1976. Geologic Map of the Waldport and Tidewater Quadrangles, Lincoln, Lane, and Benton Counties, Oregon, USA, Map I-866.
- Summers, Renee, 2005. (PSU Civil and Environmental Engineering Department, unpublished Masters project data).
- Terzaghi, K., and Peck, R., 1967. *Soil Mechanics in Engineering Practice*. New York: John Wiley & Sons, Inc.
- Vokes, H.E., Norbisrath, H., and Snavely, P.D., Jr., 1949, Geology of the Newport-Waldport area, Lincoln County, Oregon: U.S. Geological Survey Oil and Gas Investigation, Preliminary Map 88.
- Worona, M.A., and Whitlock, C., 1995, Late Quaternary vegetation and climate history near Little Lake, Central Coast Range, Oregon. GSA Bulletin, v. 107, no. 7, p. 867-876.
- Yamamuro, Jerry A., 2005, personal communication, Department of Civil, Construction and Environmental Engineering, Oregon State University, Corvallis, Oregon.

Appendix A: Dune Sheet Mapping Profile Logs

Newport Dune Sheet, Oregon

UTM Sector and Datum (xx/yr), Northing, Easting, Estimated Error (EPE +-m), DEM Altitude (Alt m MSL). Exposure Type: Active (AC), Trench (TR), Auger (AU), Road Cut (RC), Creek Cut (CC), Sea Cliff (SC), Slope (SL). Units: Age: Tertiary (T), Pleistocene (P), Holocene (H), Wave-cut Platform (W); Parent Material; Soil Horizon Parent Material: Eolian Dune (D), Loess (L), Colluvium (U), Peat (P), Alluvial/Fluvial (V), Lagoonal/Estuary (N), Beach Shoreface (S), Basal Conglomerate (M). Note: Loess (L) is designated where it overlies bedrock, colluvium, or pre-existing Bw/Bt horizons. Soil Horizon: Organic (A), Leached (E), Accumulation (B), Fe+3 Accumulation (Bw), Incipient Clay Accumulation (Btj), Clay Accumulation (Bt), Humate Accumulation (Bh), Calcrete (Bk), Silcrete (Bq), Reduced Glade Layer (Bg), Subsoil Calcrete (K), Dune Parent (C), Oxidized Parent (Cox). Subsurface depth (cm); Dominant Grain Size: Silt, Sand, Pebbles, Cobbles (default is sand) Sand sizes (Coarse U/L, Medium U/L, Fine U/L, VeryFine U/L) Bedding: Cross Beds (XB,dipxx), Planar Beds (PB), Fluidization (FL), Heavy Mineral Laminae (HM) Munsel Maximum Color (field condition: moist) Penetrometer: (P. kg/square cm) unconfined compressive strength. Structure: loose, very weak blocky, weak blocky, strong blocky, columnar/prismatic.

Diagenesis: Fe-ortstein, Fe-humate, allophane, gibbsite, calcrete, silcrete

Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP1	10N/1983	4956110	416450		10		101	6/24/2000	SL
Site Notes: Loess	s and coluvium o	ver basalt. At l	east one pale	osol is pres	erved	within the	loess	сар.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm'	2	Structure	Diagenesis
LBw	0-100	Silt							
PU	100-300								
TBtj	300-350								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP2	10N/1983	4956290	415790		7		17	6/24/2000	SL
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm'	2	Structure	Diagenesis
PU	0-100								
PUBw	100-200			10YR4/8					
PM	200-220								
PW	220-221								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP3	10N/1983	4955400	416380		8		34	6/24/2000	AU
Site Notes: Easte	ernmost limit of P	liestoncene du	ne sheet, top i	is truncated	by lo	ess colluv	um.		
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm'	2	Structure	Diagenesis
LBw	0-40	Silt							
PUBw	40-60								
PDBw	50-100	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure

NEWP4	10N/1983	4955050	417630		4		112	6/26/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDC	0-300		XBdipNE			Ū			-
			·						
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP5	10N/1983	4955040	417640		4		114	6/29/2000	RC
Site Notes: Pleist	tocene dunes, at	oundant gibbsite	e, locally trunc	ated by ma	ss wa	isting.			
TL Sample (039N	I) taken at depth	of 3.5 m in Qua	arry north faci	ng side wall		0			
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
UBw	0-50		Disturbed			Ū			-
LBw	50-100	Silt	Truncated				2	Very Weak B.	
								Stong	
PDBtj	100-150						4.5	Blocky	
PDBw	150-180	FU					45	Blocky	aibhsite
PDCox	180-380	10	XBdinNF				1.0	Dioeity	gibbolite
1 DOOX	100 300		ABGIDITE						gibbolic
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NFWP6	10N/1983	4955020	416420	LI L (III)	10	, (iii)	37	6/24/2000	RC
	Denth cm	Grain Size	Redding	Color	10	P ka/cm^	2	Structure	Diagenesis
		Silt	Dedding	00101		r .kg/cm	2	Structure	Diagenesis
L Rw	10-50	Silt					25	Vory Woak B	
LDW	10-30	Jiit					2.5	Weak	
PDBtj	50-110	FL		7.5YR4/4			4.5	Blocky	
PDBg	50-130								
PDBw	130-180								
PDBg	180-200								
PDC	200-300								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP7	10N/1983	4954900	416870		5		75	6/26/2000	RC
Site Notes: Easte	ern edge of dune	cover.							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-10								
PDBtj	10-100			10YR5/8					
PDBw	100-150								
PDCox	150-200								
	7 /0100								F
Dune Sneet	Zone/NAD		UTM-E	EPE (M)	0	Ait (m)	70	Date	Exposure
NEWP8	10N/1983	4954820	41/250	<u>.</u>	8		72	6/26/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm'	2	Structure	Diagenesis
PDBtj	0-75								
PDBw	/5-85								
PDCox	85-150								
Duna Shoot	Zono/NIAD	LITM-N		FDF (m)		Alt (m)		Dato	Exposuro
NFW/P13	10N/1983	4954710	416550	LI L (III)	0	, ut (11)	47	6/26/2000	RC
	10111703	1/07/10	110000		/		r <i>1</i>	012012000	

Units	Depth cm	Grain Size	Bedding	Color 7.5YR6/8		P.kg/cm'	2	Structure Weak	Diagenesis
PDBw	0-50			w7.5YR4/6			4.5	Blocky	
Dune Sheet NEWP9 Site Notes: Easte	Zone/NAD 10N/1983 ern edge of dune	UTM-N 4954610 cover overlying	UTM-E 417670	EPE (m)	7	Alt (m)	116	Date 6/26/2000	Exposure RC
Units PDC PV	Depth cm 0-100 100-200	Grain Size	Bedding XBdipNE	Color		P.kg/cm [^]	2	Structure	Diagenesis
Dune Sheet NEWP10	Zone/NAD 10N/1983	UTM-N 4954250	UTM-E 417770	EPE (m)	7	Alt (m)	105	Date 6/26/2000	Exposure RC
Units PDA	Depth cm 0-17	Grain Size	Bedding	Color		P.kg/cm ²	2 1	Structure	Diagenesis
PDBtj PDBW	17-52 52-117			10YR5/8			4	Blocky	
Dune Sheet NEWP11	Zone/NAD 10N/1983	UTM-N 4953700	UTM-E 416510	EPE (m)	10	Alt (m)	25	Date 6/25/2000	Exposure RC
Units	Depth cm 0-20	Grain Size	Bedding	Color		P.kg/cm [/]	2	Structure	Diagenesis
PDBtj PDBw PDCox	20-60 60-90 90-290			7.5YR4/3				Very Weak B. Very Weak B.	
Dune Sheet NEWP12	Zone/NAD 10N/1983	UTM-N 4953440	UTM-E 416780	EPE (m)	8	Alt (m)	33	Date 6/25/2000	Exposure RC
Units PDA	Depth cm	Grain Size	Bedding	Color		P.kg/cm′	2	Structure	Diagenesis
PDBw PDCox				10YR5/8					
PDBw PDCox				10YR3/4					
Dune Sheet NEWP10	Zone/NAD 10N/1983	UTM-N 4954250	UTM-E 417770	EPE (m)	7	Alt (m)	105	Date 6/26/2000	Exposure RC
Units PDA	Depth cm 0-17	Grain Size	Bedding	Color		P.kg/cm′	2 1	Structure	Diagenesis
PDBtj PDBW	17-52 52-117			10YR5/8			3.5	Very Weak B.	rare charcoal
Dune Sheet NEWP14	Zone/NAD 10N/1983	UTM-N 4952980	UTM-E 416890	EPE (m)	4	Alt (m)	42	Date 6/24/2000	Exposure SL
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm/	2	Structure	Diagenesis 172

PDBtj PDBw PDCox	0-100 100-200 200-300			7.5YR5/8 7.5YR5/8			4.5	Stong Blocky	
Dune Sheet NEWP15 Site Notes: This	Zone/NAD N10/83 site is 500 m sou	UTM-N 4952830 Ith of beach acc	UTM-E 416230 cess at Beverl	EPE (m) y Beach Sta	19 nte Pa	Alt (m) ark, ie., sou	37 th of \$	Date 5/8/2000 Spencer Creek.	Exposure SC
Units PDA	Depth cm 0-90	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
PDBw PDBg	90-175 175-205	FU		10YR5/8			4	Weak Blocky Very Weak B.	Fe-ortstein
PDBw PDBg	205-280 280-305	FU		2.5Y6/1			3.5	Very Weak B. Very Weak B.	allophane
PDCox PDBg	305-625 625-705	FU		10YR6/3				5	
PP PS	705-720 720-1185	MU- Pebbles					4		
PM PW	1185-1225 1225-1226	Cobbles							
Т	1226-3025								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	F	Alt (m)	20	Date	Exposure
NEWP10 Sita Notas: Sita i	1011/1983 s just south of Br	4952800 everly Beach R	41023U nadievitiatico	rnor of Rov	5 orly D	rive and Ba	39 Svorlv	0/24/2000	RC
	Denth cm	Grain Size	Reddina		Sily D	P ka/cm^	2 2	Structure	Diagenesis
PDA	0-25	Gruin Size	Dedding	00101		r .kg/ciii /	2		Diagenesis
PDBw	25-45			10YR5/8					
PDCox	45-145								
PDBtj	145-165			2.5YR4/6					Fe-ortstein
PDBw	165-195								
PDCox	195-295								
PDBg	295-305								
PDCox	305-325								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP17	10N/1983	4952690	417280		9		80	6/24/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2	2	Structure	Diagenesis
PDA	0-20		-			-			-
PDBw	20-220			7.5YR5/6					
PDCox	220-320								
PDBw	320-370			7.5YR5/6					
PDCox	370-470								
Т		Mudstone							

Dune Sheet NEWP18 Units	Zone/NAD 10N/1983 Depth cm	UTM-N 4952660 Grain Size	UTM-E 417380 Bedding	EPE (m) Color	4	Alt (m) P.kg/cm^2	99	Date 6/24/2000 Structure	Exposure RC Diagenesis
U	0-100								
Т									
	7 (1) 4 D								-
Dune Sneet	2000/002		UTM-E 417020	EPE (M)	4	AIt (m)	74		Exposure
Site Notes: Easte	IUN/1903 arn limit of Plaiste	4952290 Scono duno san	417030 d		4		/0	0/24/2000	ĸĊ
	Denth cm	Grain Size	Beddina	Color		P ka/cm^2		Structure	Diagenesis
PDA	0-10		Dedding	00101		T .itg/cill Z		Structure	Diagenesis
PDBti	10-110	VFI		7.5YR4/6					
PDBw	110-260	FU		1.011(10					
	110 200								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP20	10N/1983	4952130	416850		4	3	39	6/24/2000	SL
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2		Structure	Diagenesis
LA	0-15	Silt							
LBw	15-75	Silt							
PDBtj	75-115	FL		7.5YR4/6					
PDBw	115-215	FU							
PDCox	215-265								
				/ 、					_
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	_	Alt (m)		Date	Exposure
NEWP21	10N/1983	4951/50	41///0	<u>.</u>	5	15	58	6/24/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2		Structure	Diagenesis
I		Mudstone							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP22	10N/1983	4951540	417620		8	11	10	6/29/2000	RC
Site Notes: Near	top of Road 100	(TL Sample 54	0N taken at d	epth of 4.3	m).				
Lipito	Donth om	Thickness	Grain	Dodding		Color		D ka/om^2	Ctructure
Units		CM 15	SIZE	веаанд		COIOI		P.Kg/CIII ⁻²	Structure
	U-10 15 100	10	SIII						
	10-100	00 70		Shoor Eail	Iro				Columnar
FDBIJ	100-170	70	VIL		ure				Weak
PDBw	170-240	70	FU						Blocky Vory Wook
PDCox	240-550	310	FU	XBdipNE					B.
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP23	10N/1983	4951530	417870		10	14	41	6/25/2000	RC
Site Notes: Site is	s about 100 m w	est of eastern li	mit dune shee	et.					
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2		Structure	Diagenesis
PDA	0-20								

PDBtj PDCox	20-220 220-520			7.5YR4/4					
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP24	N10/83	4951370	416090		18		32	5/7/2000	SC
Site Notes: This	section is locate	d 0.5 km south	of Wade Cree	k, and conti	nues	upsection	to HW	101 road.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-20								
HD	20-210							Very Weak B.	
PDBw	210-310	FU		10YR5/8			4	Stong Blocky Verv Weak	allophane.
PDCox	310-410							B.	Fe-ortstein
PDBg	410-430								
PDCox	430-780	FU	XBdipNE	10YR4/3			4.5		allophane
PDBg	780-830								
PS	830-1040	ML-pebbles					4		
PM	1040-1070	Cobbles							
PW	1070-1071								
Т	1071-3120								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP25	10N/1983	4951220	417000		9		72	6/24/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-35								
PDBtj	35-135			7.5YR5/6					
PDBw	135-235								
PDCox	235-435								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP26	10N/1983	4951210	416110		6		33	6/24/2000	RC
Site Notes: Site is	s 10 m east of H	IW101 at 100 R	d intersection.						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-10								
PDBw	10-30			10YR5/6					
PDCox	30-130								
PDBg	130-150								
PDCox	150-200								
PDBw	200-230								
PS	230-330								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP27	10N/1983	4950520	416820		4		75	6/25/2000	RC
Site Notes: Site is	s at easternmos	t limit of dune c	over and inclu	des regolith	ı Btj u	nder thin d	une de	eposits.	
Units	Depth cm	Grain Size	Bedding	Color	-	P.kg/cm^	2	Structure	Diagenesis
U	0-50								

PDBtj PDBw TBtj T	50-100 100-120 120-220 220-270		Truncated						
Dune Sheet NEWP28 Units PDA	Zone/NAD 10N/1983 Depth cm 0-5	UTM-N 4950420 Grain Size	UTM-E 416350 Bedding	EPE (m) Color	7	Alt (m) 37 P.kg/cm^2	Date 6/25/2000 Structure	Exposure RC Diagenesis	
PDBtj PDBw PDCox PDBw	5-35 35-65 65-85 85-100			7.5YR5/6 7.5YR4/6		3.5 3 2.75	Very Weak B. Very Weak B. Very Weak B.		
Dune Sheet NEWP29 Units TBtj T	Zone/NAD 10N/1983 Depth cm 0-150 150-300	UTM-N 4949520 Grain Size	UTM-E 417250 Bedding	EPE (m) Color	5	Alt (m) 106 P.kg/cm^2	Date 6/25/2000 Structure	Exposure RC Diagenesis	
Dune Sheet NEWP30 Site Notes: Easte	Zone/NAD 10N/1983 ernmost edge of	UTM-N 4949000 dune cover	UTM-E 416630	EPE (m)	5	Alt (m) 76	Date 6/26/2000	Exposure RC	
Units PDBtj PDBw	Depth cm 0-30 30-100	Grain Size	Bedding Truncated	Color 5YR4/6		P.kg/cm^2 3	Structure Very Weak B. Very Weak B.	Diagenesis	
Dune Sheet NEWP31 Units PDA PDBtj PDBw PDCox PDBw PDCox	Zone/NAD 10N/1983 Depth cm 0-5 5-35 35-85 85-185 185-215 215-415	UTM-N 4948920 Grain Size	UTM-E 415890 Bedding	EPE (m) Color 7.5YR5/6 7.5YR6/6	8	Alt (m) 36 P.kg/cm^2	Date 6/25/2000 Structure	Exposure RC Diagenesis	
Dune Sheet NEWP32 Units PDBtj PDBw PDBg PDCox	Zone/NAD 10N/1983 Depth cm 0-50 50-70 70-87 87-147	UTM-N 4947690 Grain Size	UTM-E 416460 Bedding	EPE (m) Color 5YR4/4	6	Alt (m) 74 P.kg/cm^2 4.5 3.5 3	Date 6/28/2000 Structure Strong Blocky Weak Blocky Very Weak B.	Exposure RC Diagenesis	
PDBg	147-172								
--------------------	---------------------	------------------	---------------	----------------	--------	----------------------	--------	-------------------	------------
PDCox	172-222								
PMBw	222-242								Fe-orstein
Т	242-342								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP33	10N/83	4947610	416330		5		60	6/25/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
PDBtj	0-50			7.5YR5/6					
PDBw	50-100								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP34	10N/1983	4947560	416720		7		89	6/25/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
UBtj	0-50								
Т									
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP35	N10/83	4947460	414940		8		62	7/11/2002	RC
Site Notes: This s	site is in the sade	dle of Yaquina I	Head, located	about 30 m	east	of the Visit	ors Ce	enter parking lo	t.
Colluvium from ri	dge (now quarrie	ed) covered the	thin dune dep	oosit, preserv	/ing i	t from defla	ation.		
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
Fill	0-30								
LBw	30-80								
UBw	80-110								
UC	110-150								
PDBw	150-200	FU and cobble	ç						
PDCox	200-500	FU							
Т	500-700	Basalt							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP36	10N/1983	4946680	416800		7		54	6/28/2000	SL
Site Notes: No du	une sand east of	Agate Beach g	olf course. G	olf course de	evelo	ped on PS	depos	sits (1 m thick).	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
ТА	0-30								
TBtj	30-130								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP37	10N/1983	4946410	416290		7		28	6/28/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
PMBtj	0-100								
Т	100-150								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP38	10N/1983	4946080	416490		7		31	6/28/2000	RC

Units	Depth cm	Grain Size	Bedding	Color	P.kg/cm^2	Structure	Diagenesis
PDA	U-IU 10.100						
PDBIJ	10-100			7.31R3/0			
PDBW	100-160						
PDCox	160-210						
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	Alt (m)	Date	Exposure
NEWP39	N10/83	4945930	416200	6	18	3/9/2003	RC
Site Notes: This F	PD site is at the r	northernmost ex	ctent of the Ho	olocene dunes.			
Units	Depth cm	Grain Size	Bedding	Color	P.kg/cm^2	Structure	Diagenesis
PDBw	0-45						
PDCox	45-200	FU					
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	Alt (m)	Date	Exposure
NEWP40	10N/1983	4945740	416950	5	31	6/28/2000	RC
Site Notes: Shore	eface deposits at	ove wave cut p	latform, cut ir	nto Pleistocene al	lluvium/lagoon	al deposits.	
Units	Depth cm	Grain Size	Bedding	Color	P.kg/cm ²	Structure	Diagenesis
PSBtj	0-50		5		0		5
PSCox	50-300						
PM	300-350						
PW	350-360						
PV	360-660						
Duna Shoot	Zana/NAD				Alt ()	Data	-
Durie Srieel	ZOHE/INAD	U I IVI-IN	UTIVI-E	EPE (M)	AIT (m)	Date	Exposure
NEWP41	N10/83	4944790	416100	EPE (m) 6	Ait (m) 25	Date 3/9/2003	Exposure RC
NEWP41 Site Notes: Site is	N10/83 N10/83	4944790 ope contact wit	416100 h Pleistocene	EPE (m) 6 dunes (deflation	Alt (m) 25 surface?) imm	Jate 3/9/2003 ediately to the ea	Exposure RC ist.
NEWP41 Site Notes: Site is The Holocene du	N10/83 N10/83 adjacent to a sl nes (mid-Holoce	4944790 ope contact wit ne Fe-Ox stain	416100 h Pleistocene ed) do not cor	EPE (m) 6 dunes (deflation ntain deflation Bg	Ait (m) 25 surface?) imm or other paleo	Jate 3/9/2003 ediately to the ea sols at this site.	Exposure RC ist.
NEWP41 Site Notes: Site is The Holocene du Units	N10/83 adjacent to a sl nes (mid-Holoce Depth cm	4944790 ope contact wit ne Fe-Ox stain Grain Size	416100 h Pleistocene ed) do not cor Bedding	dunes (deflation tain deflation Bg Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm ²	Jate 3/9/2003 ediately to the ea sols at this site. Structure	Exposure RC st. Diagenesis
NEWP41 Site Notes: Site is The Holocene du Units HDA	N10/83 adjacent to a sl nes (mid-Holoce Depth cm 0-10	4944790 ope contact wit ne Fe-Ox staine Grain Size	416100 h Pleistocene ed) do not cor Bedding	6 dunes (deflation ntain deflation Bg Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2	3/9/2003 ediately to the ea sols at this site. Structure	Exposure RC st. Diagenesis
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW	N10/83 adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35	4944790 ope contact wit ne Fe-Ox staine Grain Size	416100 h Pleistocene ed) do not cor Bedding	6 dunes (deflation tain deflation Bg Color	All (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5	3/9/2003 ediately to the ea sols at this site. Structure Very Weak B.	Exposure RC ist. Diagenesis
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox	N10/83 adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400	4944790 ope contact wit ne Fe-Ox staind Grain Size	416100 h Pleistocene ed) do not cor Bedding	6 dunes (deflation ntain deflation Bg Color	All (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5	3/9/2003 ediately to the ea sols at this site. Structure Very Weak B.	Exposure RC ist. Diagenesis Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400	4944790 ope contact wit ne Fe-Ox staine Grain Size FU	416100 h Pleistocene ed) do not cor Bedding	6 dunes (deflation ntain deflation Bg Color	All (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5	3/9/2003 ediately to the ea sols at this site. Structure Very Weak B.	Exposure RC ist. Diagenesis Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N	416100 h Pleistocene ed) do not cor Bedding UTM-E	EPE (m) 6 dunes (deflation ntain deflation Bg Color EPE (m)	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m)	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date	Exposure RC ist. Diagenesis Fe-ortstein Exposure
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83	4944790 ope contact wit ne Fe-Ox staind Grain Size FU UTM-N 4944790	416100 h Pleistocene ed) do not cor Bedding UTM-E 416130	EPE (m) 6 dunes (deflation ntain deflation Bg Color EPE (m) 6	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols	EPE (m) 6 dunes (deflation ntain deflation Bg Color EPE (m) 6) directly east of f	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 S.	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols	EPE (m) 6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	EPE (m) 6 dunes (deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	EPE (m) 6 dunes (deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	EPE (m) 6 dunes (deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Ee-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBa	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 S. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBg PDCox	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110 110-220	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size FU	UTM-E 416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of F Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBg PDCox PDBq PDCox PDBq	2011e/NAD N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110 110-220 220-230	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size FU	416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBg PDCox PDBg PDCox	2011e/NAD N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110 110-220 220-230 230-350	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size FU FU	416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 S. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg	2011e/NAD N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110 110-220 220-230 230-350 350-370	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size FU	416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PDCox	N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110 110-220 220-230 230-350 350-370 370-500	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size FU FU	416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 s. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein Fe-ortstein
NEWP41 Site Notes: Site is The Holocene du Units HDA HDBW HDCox Dune Sheet NEWP42 Site Notes: Pleist Units PDA PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox	2011e/NAD N10/83 s adjacent to a sl nes (mid-Holoce Depth cm 0-10 10-35 35-400 Zone/NAD N10/83 ocene dunes (m Depth cm 0-10 10-60 60-100 100-110 110-220 220-230 230-350 350-370 370-500	4944790 ope contact wit ne Fe-Ox staine Grain Size FU UTM-N 4944790 ultiple deflation Grain Size FU FU	416100 h Pleistocene ed) do not cor Bedding UTM-E 416130 Bg paleosols Bedding	6 dunes (deflation ntain deflation Bg Color EPE (m) 6 directly east of H Color	Alt (m) 25 surface?) imm or other paleo P.kg/cm^2 1.5 Alt (m) 27 Holocene dune P.kg/cm^2 4.5	Jate 3/9/2003 ediately to the ea sols at this site. Structure Very Weak B. Date 3/9/2003 S. Structure Strong Blocky	Exposure RC ist. Diagenesis Fe-ortstein Exposure RC Diagenesis Fe-ortstein Fe-ortstein

Dune Sheet NEWP43	Zone/NAD N10/83	UTM-N 4944480	UTM-E 416040	EPE (m)	8	Alt (m)	35	Date 3/9/2003	Exposure RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-30							Weak	
PDBW	30-60						3.5	Blocky	
PDCox	60-200								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP44	10N/1983	4944420	416920		8		37	6/28/2000	RC
Site Notes: Lique	efaction Site east	hills of Newpor	t. Clastic dike	es 25, 30 an	id 40	cm wide.			
TL Sample (416	N) taken at 3.0 n	n depth.							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-5								
PDBw	5-35	VFL		7.5YR4/3					
PDCox	35-75	FU							
PDC	75-125	FU							
PDBg	1215-135								
PDBw	135-150		Fluidization						
PDCox	150-160		Fluidization						
PDC	160-460		XBdipNW						
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP45	N10/83	4944170	415990		9		33	3/9/2003	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-50	VFL						Woak	
PDBw	50-100						3.5	Blocky	
PDCox	100-200	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP46	10N/1983	4943750	417560		5		88	6/30/2000	SL
Site Notes: Newp	oort Middle Scho	ol, east parking	-lot bank cut,	tree seedlin	gs, gi	ass, and r	etted	stabilization.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDBtj	0-46	FVU		7.5YR4/6					
PDBw	46-66	FU							
PDCox	66-266	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP47	N10/83	4943470	415850		6		16	3/9/2003	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDCox	0-300						4	Blocky	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP48	N10/83	4943090	415660		14		19	5/26/2000	SC

Site Notes: Nye E	Beach, Newport.	Section taken a	about 100 m n	orth of beach	n acc	ess trail fr	om Da	ivis Park.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HA	0-10							Loose	
HDC	10-150	FU-ML					0.5	Loose	
HDBw	150-160			5YR5/8					
HDCox	160-270			10YR5/6			1		
НА	270-330								
LBw	330-360	Silt						Verv Weak B.	
								Weak	
PDBw	360-450	FL	Planar	10YR5/8			3.5	Blocky	
PDBg	450-456	FL							
	156 656		VDdinE					Very Weak	allonhano
	450-050		NDuipL					D.	allophane
PDBg	000-090	E 11 M	Planar	10/05//					
PDCox	696-946	FU-IML	XBaibF	10YR5/6					allophane
PDBg	946-988								
PDC	988-1068		Planar				4.5		
PS	1068-1128		Ripples						
PM	1128-1133	Cobbles							
PW	1133-1134								
Т	1134-1943								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP49	10N/1983	4942860	418060		11		73	6/30/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
LA	0-10	Silt							
LBw	10-35	Silt					2	Very Weak B.	
DDDH	25 50	E\/					15	Strong	
r DDij	50-50			7.5185/0			4.0	DIUCKY	
PDBW	38-78	FU						very weak b.	
PDCOX	78-228								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NFWP50a	N10/83	4942780	416490	()	6		39	3/9/2003	RC
Site Notes: This i	is a cut bank slor	ne on Hatfield S	treet south o	f community	cente	≏r	0,	01712000	110
Unite	Denth cm	Grain Sizo	Rodding	Color	conto	P ka/cm^	2	Structure	Diagonosis
Disturbod			Deduling	000		T.Ky/cm	2	Juduut	Diagenesis
DISIUIDEU	10,200								
PDC0X	10-200								
PDBW	200-230								
PDCox	230-300								
PDBw	300-310								
PDCox	310-400								
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NFWP50h	N10/83	4942620	415870		9	(///)	38	3/9/2003	RC
Site Notes This	site is located at	the eastern edd	ie of the Holo	rene dunes	, at th	o intorcort	ion of	7th Fall Ste	
Linite	Donth cm	Grain Sizo	Rodding		acun	D kalom^	2	Structuro	Diagonosis
UTIILO	Бератент		Beauing	000		т култ	۲	วแนะเนเซ	180

PDBw PDCox	0-50 50-300					4	Strong Blocky	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)	Date	Exposure
NEWP51	N10/83	4942540	415570	2 2	25	25	9/1/2001	SC
Site Notes: Site is	S SOUTH OF THE SF	Crain Size	Bodding	/ cm deptn).	or	D ka/cm^2	Structure	Diagonosis
Units HA		GI dill SIZE	Бецину	CUI	UI	P.Ky/CIII Z		Diagenesis
HD	5-137						Loose	
	0.01						Very Weak	
HDBw	137-187	FU		10YR	3/6	0.5	В.	
HDCox	187-1847		ХВ	10YR	5/6	0.5	Loose Verv Weak	
LA	1847-1877	Silt				1	B.	
I Bw	1977 1907	Silt				2.25	Very Weak	
LDW	1077-1077	JIII				2.23	Weak	
PDBw	1897-1922			10YR	5/8	4	Blocky	
PDBq	1922-1947					3	B.	
	10.17 0000						Very Weak	
PDBa	1947-2002	FU					В.	aliophane
PDBy	2002-2012					1		
PDBa	2012-2002					7		
PDCox	2072-2272	FU	Truncated			3.5		allophane
PM	2272-1368	Cobbles						
PW	1368-1369							
Т	1369-1379							
Dupa Chaat	Zana/NAD					Alt (m)	Data	Evipoouro
	2011e/INAD	011VI-IN 4042540	UTIVI-E /15600	EPE (III)	Б	Ait (III) 26	6/28/2000	si
Linits	Denth cm	Grain Size	Redding	Color	J	P ka/cm^2	Structure	Diagenesis
HAD	0-2		Dodding	00101		r ingronn 2		Diagonosis
HDCox	2-17							
PDBw	17-52			7.5YR4/6				
PDCox	52-202							
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)	Date	Exposure
NEWP53	10N/1983	4942530	415570	()	5	17	6/28/2000	SC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2	Structure	Diagenesis
HDA	0-5		-	10YR6/4		Ū		•
HCox	5-155			2.5YR6/6				
PDA	155-185							
PDBtj	185-105			5YR3/4				
PBw	105-135							
PBg	135-145							

PBw	145-155								
PCox	155-255								
PBq	255-275								
5									
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP54	N10/83	4942260	416090		6	. ,	35	3/8/2003	RC
Site Notes: This	site is on the NW	edae of the Ho	locene dunes	s that rimme	ed the	northern	bav mo	uth.	
Units	Depth cm	Grain Size	Beddina	Color		P.ka/cm	^2	Structure	Diagenesis
HDA	0-10						_		
	0.10							Weak	
HDBw	10-40							Blocky	
HDCox	40-400								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP55	N10/83	4942050	415640		4		26	3/8/2003	AU
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
	0.50						2 5	Weak	
PDDW	0-50						3.0	DIUCKY	
Duna Shaat	Zono/NAD	LITM_N		EPE (m)		Alt (m)		Dato	Evnosuro
NEWP56	N10/83	/0/1020	/15620		10	/ ((())	25	3/8/2003	
Site Notes: This	site is on the nor	th side of the Li	abt Houso na	rk noar tho	n vela	iround	25	5/0/2005	ΛU
Linite	Dopth cm	Crain Sizo	Bodding		piay y	D ka/cm	<u>^</u> ว	Structuro	Diagonosis
			Deuulity	COIOI		г ку/ст	Z	Siluciule	Diagenesis
	0-J Б 1Б						1	Von Wook P	
	15 100	EII					1		
TIDCOX	15-100	10						Weak	
PDBw	100-120						3.75	Blocky	
PDCox	120-230	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP57	N10/83	4941700	415540		10		18	6/22/2000	SC
Site Notes: This s	site is located be	low the parking	lot at Yaquina	a Point Stat	e Parl	k, just nor	th of th	e old lighthouse).
About 4 m of Hole	ocene dunes, wi	th multiple A ho	rizons and we	eak Bw hori	zons (overlie the	Pleisto	ocene dunes.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
HDA	0-10	FU					0	Loose	
HDC	10-60	FU		10YR6/2			0.5	Loose	
HDA	60-80						1.5	Loose	
HDBw	80-100			5YR5/8			1.5	Very Weak B.	
HDCox	100-200	FU					2	Loose	
HDBg	200-220						2.75		Fe-ortstein
HDC	220-260	FU		2.5Y5/4			2.5	Loose	
HDBw	260-285			2.5YR5/6			2.25		
HDC	285-395	FU		2.5Y6/6			2.5		
LA	395-465	Silt					2.75	Very Weak B.	
l Ba	465-520	Silty Sand	Truncated				3	vveak Blockv	
		2					0		

PDBw PDBg	520-640 640-655	FU		10YR5/8		4 3.5	Weak Blocky	
PDCox	655-675			10YR5/8		3.5		
PDBg	675-680			2.5Y6/1		4	Very Weak B.	
PDCox	680-690							
PDBg	690-700							
PDCox	700-730							
PM	730-735	ML						
PW	735-736	Cobbles						
Т	736-1155							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)	Date	Exposure
NEWP58	10N/1983	4940700	416510		5	13	6/30/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2	Structure	Diagenesis
HDA	0-3							
HDBw	3-8					1		
HDCox	8-75							
HDC	75-275	200	FU	XBdipSE				
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)	Date	Exposure
NEWP59	10N/1983	4940360	418340		7	9	6/24/2000	RC
Site Notes: Site is	s at edge of King	Slough.						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2	Structure	Diagenesis
LA	0-20	Silt					Loose	
LBw	20-40	Silt		7.5YR5/6			Loose	
PDCox	40-240	FU					Very Weak B.	
PDBw	240-290						Ĩ	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)	Date	Exposure
NEWP60	10N/1983	4940180	417990		10	37	6/27/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2	Structure	Diagenesis
LA	0-30	Silt					Loose	
LBw	30-100	Silt		7.5YR5/8			Loose	
PDBw	100-130	FU					Very Weak B.	
PDCox	130-230	ML						
PDCox	230-430		XBdipE					Fe-Humate
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)	Date	Exposure
NEWP61	10N/1983	4939720	416970		7	44	6/27/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^2	Structure	Diagenesis
LBtj	0-40	Silt		7.5YR4/4				
PDBw	40-60	FU						
PDCox	6-260	FU						
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)	Date	Exposure 183

NEWP62	10N/1983	4937970	417750		11		64	6/27/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²)	Structure	Diagenesis
Т		Mudstone							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP63	N10/83	4937540	415210		13		20	12/18/2000	SC
Site Notes: This :	site is the scarp f	face of a small s	slope failure ju	ust south of	Hend	erson Cree	k.		
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
HD	0-35							Loose	
LA	35-70	Silt						Very Weak B.	
LBg	70-100	Silty Sand						Very Weak B.	
PDBw	100-120			6.5YR4/6			4	Blocky	Fe-ortstein
PDCox	120-240		XBdipE					Very Weak B.	
PDBg	240-250							Very Weak B.	
PDCox	250-270					3	.75		
PDBg	270-300							Very Weak B.	
PDCox	300-360	ML	XBdipE	10YR6/8			4	-	allophane
PDBg	360-370	FL	Truncated	2.5Y6/1			2.5	Very Weak B.	
PDC	370-400								
PS	400-695	MU					4.5		
PM	695-795	Cobbles							
PW	795-796								
Т	796-1600								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP64	10N/1983	4937240	416460		11		50	6/25/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	<u>)</u>	Structure	Diagenesis
PDA	0-10			7.5YR4/6					
PDBtj	10-70						4		
PDBw	70-140								
PDCox	140-180	ML							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	
NEWP65	10N/1983	4937090	417680		4		99	6/27/2000	
Site Notes: Site i	s at eastern limit	of Pleistocene	dune sheet.						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	<u>)</u>	Structure	Diagenesis
PDA	0-30								
PDBw	30-73			7.5YR7/6					
PDCox	/3-103	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-F	EPE (m)		Alt (m)		Date	Exposure
NEWP66	10N/1983	4937010	417570		6		99	6/27/2000	RC
Units	Depth cm	Grain Size	Beddina	Color	~	P.kg/cm^2)	Structure	Diagenesis
LA	0-17	Silt	9					Very Weak B	
PDBti	17-60	VFL		7.5YR4/4			4	Weak	
U U									

PDBw	60-183	123	FU				4.5	Blocky Strong Blocky	
Dune Sheet NEWP67	Zone/NAD 10N/1983	UTM-N 4936980	UTM-E 416210	EPE (m)	4	Alt (m)	40	Date 6/27/2000	Exposure RC
Units PDCox	Depth cm 0-100	Grain Size	Bedding XB	Color		P.kg/cm^2	2	Structure	Diagenesis
PDC	100-150								gibbsite
Dune Sheet NEWP68	Zone/NAD 10N/1983	UTM-N 4936930	UTM-E 416800	EPE (m)	8	Alt (m)	63	Date 6/27/2000	Exposure RC
Sample 926N is a	a quartz-shard ri	ch lense (not as	sh) in Bg layer	⁻ (25-45 cm	depth	ı).			
Units PDBw PDBg	Depth cm 0-25 25-45	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDCox	45-150								Fe-ortstein
Dune Sheet NEWP69 Site Notes: This	Zone/NAD N10/83 site is 70 m sout	UTM-N 4936630 h of Grant Cree	UTM-E 415110 k.	EPE (m)	19	Alt (m)	12	Date 12/8/2000	Exposure SC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
LA	0-30	0.11							
LBg	30-45	Silt		2.5Y6/1				Very Weak B. Weak	
PDBw	45-65	FU		10YR5/8			4	Blocky Verv Weak	
PDBg	65-125		Truncated					B.	
PDCox	125-185	FU	XBdipE						
PDBg	185-200 200-390	FII		10VP6/3			1	Very Weak B.	
PM	390-400	Cobbles	Truncated	1011(0/5			7	VCI y WCak D.	
PW	400-401								
Т	401-1075								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP70	10N/1983	4936550	418230		7		122		RC
Units TBtj	Depth cm 0-100	Grain Size	Bedding	Color		P.kg/cm^:	2	Structure	Diagenesis
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP71	N10/83	4936420	415190		15		15	12/16/2000	SC
Site Notes: This :	site is located ab	out 250 m sout	h of Grant Cre	eek, beside	a rip-ı	rap installa	tion.		
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HD	0-15	FU						Loose	
LA	15-80	Silt						Very Weak B.	

PDBw PDCox	80-125 125-175	FU	Truncated	10YR5/8 2 5Y6/1		4	Weak Blocky	allophane
PDBa	175-205		Truncated	2.010/1			Verv Weak B	
PDBw	205-255		Truncatou				VCIY WCaR D.	Ea-ortstain
PDCov	205-255							allonhano
	200-310) E		allophane
PDBy	315-380			101/0//2	Ċ	5.0		
PDC0X	380-435			10Y R0/3				
PDBg	435-445							
PDCox	445-490	FL						Fe-ortstein
PDBg	490-505							
PS	505-615	ML						Fe-ortstein
PM	615-625	Cobbles						
PW	625-626							
Т	626-1300							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	Alt (m)		Date	Exposure
NEWP72	N10/83	4936130	415150	18		17	12/8/2000	SC
Site Notes: This s	site is located 0.5	5 km north of M	oore Creek.	The base of the s	ection conta	ins a	peat.	
Units	Depth cm	Grain Size	Bedding	Color	P.kg/cm^2		Structure	Diagenesis
LA	0-34	Silt					Very Weak B.	
LBg	34-60	VFL					Very Weak B.	
5							Strong	
PDBw	60-100	FU	Truncated	10YR5/8		4	Blocky	allophane
PDCox	100-200						Very Weak B.	
PDBg	200-310			2.5Y6/1			Very Weak B.	
PDCox	310-560	FU		10YR6/1		4		
PDBg	560-580							
PS	580-755	MU	Ripple XB		L	1.5		
PP	755-811							
PM	811-816	Cobbles						
PW	816-817							
Т	817-1416							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	Alt (m)		Date	Exposure
NEWP73	N10/83	4935750	415120	18	. ,	16	12/8/2000	SC
Site Notes: This s	site is just south	of Moore Creek	. The wave-c	ut platform (PW)	has a step (i	reocc	upied?).	
Units	Depth cm	Grain Size	Beddina	Color	P.kg/cm^2		Structure	Diagenesis
	0-25		Douding		1		Very Weak B	Diagonosis
L Ra	25 45					1	Vory Woak B	
LDg	25-45			7.5YR5/8		I	Weak	
PDBw	45-85	FU		w7.5YR4/6		4	Blocky	
PDCox	85-165	FU				4	Very Weak B.	
PDBg	165-185			2.5Y6/1			Very Weak B.	
PDCox	185-491	FU				3.5	2	
PDBa	491-501						Verv Weak B	
PDCox	501-750	FU			4	25	,	
		-						

PM	750-760
PW	760-761
Т	761-1370

NEWP74 N10/83 4935590 415130 17 12 Units Durits Carlie Gine Durits Carlie Gine Durits Carlie Gine Car	ate Exposure
Links Dank and Onein Cine Dadding Onland Di / 40 C	12/8/2000 SC
Units Depth cm Grain Size Bedding Color P.kg/cm ² 2 S	tructure Diagenesis
PDA 0-20	
DDRW 20.40 7.5VD4/6 4 R	/eak
PDCov /0.160 FII 3 V	iocky iony Woak B
PDBa 160.165 2.5V6/1 V	Cry Weak B.
DDCov 165 205 EII 10VD6/2 3.5	cry weak D.
DDRa 205 255 V	any Woak B
DS 255.625 MI 45	En ortetoin
FS 505-055 IVIL 4.5	Te-onstein
PW 050-050 T 424 1125	
1 030-1133	
Dune Sheet Zone/NAD LITM-N LITM-F EPF (m) Alt (m) D	ate Exposure
NEWP75 N10/83 4935560 416630 8 59	6/11/2002 TR/AU
Site Notes: This site is on the eastern margin of the Ferris Nurserv in the Lint Soil Series	0/11/2002 11(///0
Units Depth cm Grain Size Bedding Color Pkg/cm^2 S	tructure Diagenesis
IA = 0.40 Silt = 10YR3/2 = 0.5 V	erv Weak B
N 040 Silt 1011(3/2 0.5 V	veak
LBw 40-84 Silt 10YR3/3 2 B	locky
S DDbw 94.102 EII 10VD4/2 4 D	trong
FDDW 04-103 I U 101R4/3 4 D	IUCKY
PDC 103-105 F0 4	Fe-onsien
Dune Sheet Zone/NAD LITM-N LITM-F FPF (m) Alt (m) D	ate Exposure
NEWP76 N10/83 4935450 415080 18 11	12/8/2000 SC
Site Notes: This site is located 700 m north of Theil Creek local cliff slumping	12/0/2000 30
Units Depth cm Grain Size Bedding Color Pkg/cm^2 S	tructure Diagenesis
	erv Weak B
PDA 0-35 Truncated V	leak
PDA 0-35 Truncated V	
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B	юску
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B V PDCox 55-165 PB B	ery Weak Fe-ortstein
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B PDBa 165-195 FL V	iocky ery Weak . Fe-ortstein ery Weak B
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B V PDBg 165-195 FL V PDCox 195-355 MI PB 10YR6/3 3.5	iocky /ery Weak
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B PDBg 165-195 FL V PDCox 195-355 ML PB 10YR6/3 3.5 PS 255.405 MU 4 4	iocky /ery Weak
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B PDBg 165-195 FL V PDCox 195-355 ML PB 10YR6/3 3.5 PS 355-495 MU 4	iocky /ery Weak . Fe-ortstein /ery Weak B. Fe-ortstein
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B PDBg 165-195 FL V PDCox 195-355 ML PB 10YR6/3 3.5 PS 355-495 MU 4 4 PM 495-510 Cobbles 5	locky Very Weak 5. Fe-ortstein Very Weak B. Fe-ortstein
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B V PDBg 165-195 FL V PDCox 195-355 ML PB 10YR6/3 3.5 PS 355-495 MU 4 4 PM 495-510 Cobbles 4 PW 510-511 5 5 5	locky lery Weak 5. Fe-ortstein lery Weak B. Fe-ortstein
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B PDBg 165-195 FL V PDCox 195-355 ML PB 10YR6/3 3.5 PS 355-495 MU 4 4 PM 495-510 Cobbles 4 PW 510-511 1 1 1 T 511-1010 1 1 1	locky Very Weak 5. Fe-ortstein Very Weak B. Fe-ortstein
PDA 0-35 Truncated V PDBw 35-55 FU 7.5YR4/6 4 B PDCox 55-165 PB B V PDBg 165-195 FL V PDCox 195-355 ML PB 10YR6/3 3.5 PS 355-495 MU 4 4 PM 495-510 Cobbles 4 PW 510-511 T 5 T 511-1010 11TM-R EPE (m) Alt (m) D	locky lery Weak 5. Fe-ortstein Fery Weak B. Fe-ortstein

Units PDA	Depth cm 0-15	Grain Size	Bedding	Color 10YR3/1		P.kg/cm^	2 0.5	Structure Very Weak B.	Diagenesis
PDBtj	15-45			10YR4/6			4	weak Blocky	
PDBw	45-85			10YR4/4			3	Very Weak B.	
PDBg	85-100			10YR5/1			3.5		
PDC	100-200			10YR6/4			4		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP78	10N/1983	4934870	416570		6		18	6/25/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-10							Weak	
PDBw	10-50			10YR5/6				Blocky	
PDCox	50-150			10YR4/6				Very Weak B.	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP79	N10/83	4934810	415060		16		13	12/8/2000	SC
Site Notes: This s	site is located jus	st south of Theil	Creek beach	access trail					
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-5								
PDBw	5-50						4	Very Weak B.	
PDC	50-235	FU					3	Very Weak B.	
PDBw	235-250						2.25	Very Weak B.	
PDBg	250-272						3.5	Very Weak B. Weak	
PDBw	272-342			7.5YR4/6			4.5	Blocky	
PDC	342-382		XBdipE				3.5		allophane
PDBg	382-402	FL		2.5Y6/1			1.25		Fe-ortstein
PDC	402-497	FU		10YR6/3			3		allophane
PDBg	497-502	FL					2.5		
PS	502-612	ML		7.5YR4/6			4.5		Fe-ortstein
PM	612-637	Cobbles							
PW	637-638								
Т	638-957								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP80	10N/1983	4934810	416910		6		13	6/25/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
LA	0-10	Silt						Very Weak B.	
LBw	10-75	Silt						Very Weak B.	
PDBtj	75-110							Blocky	
PDCox	110-410	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP81	10N/1983	4934790	416430		10		26	6/25/2000	RC

Units LA LBw	Depth cm 0-13 13-50	Grain Size Silt Silt	Bedding	Color		P.kg/cm^	2	Structure Very Weak B. Very Weak B.	Diagenesis
PDBtj	50-68			10YR4/3			4	weak Blocky	
PDBw	68-138	FU		10YR5/8			3	Very Weak B.	
PDCox	138-538			10YR7/8			4.5	-	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP82	N10/83	4934630	414940		17		15	6/24/2002	SC
Site Notes: This s	site is located ne	ar Thiel Creek	(TL sample ta	ken at abou	ıt 2.5	m depth).			
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-15						0.5	Loose	
HD	15-115	FU					0.5	Loose	
HA	115-135						1	Loose	
HDBw	135-190			2.5YR5/6			1.5	Loose	
HDCox	190-325						2	Loose	Fe-ortstein
LA	325-380	Silt					1.5	Very Weak B.	
LBg	380-395	FL					3	Very Weak B.	
	205 405	E 11						Weak	- 11 - 12 - 12 - 12 - 12
PDBw	395-485	FU		7.5YR4/6			4	BIOCKY	aliopnane
PDBg	485-505	E 11		2.546/1			3 2 0 5	very weak B.	
PDCox	505-575	FU	XRaibinE				3.25		
PDBg	575-640	FL							
PS	640-960	ML					4.5		
PM	960-965	Cobbles							
PW	965-966								
Т	966-1345								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP83	N10/83	4934400	414860		19		12	12/7/2000	SC
Site Notes: This	site is south of TI	hiel Creek.							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HD	0-55								
LA	55-77	Silty					2		
LBg	77-137	FL	Convolute				3	Very Weak B.	
000	407.040							Weak	
PDBw	137-212			7.5YR4/6			4	Blocky	allophane
PDBg	212-230			2.5Y6/1				Very Weak B.	
PDCox	230-380	FU	XBdipNE	10YR6/3			3.25		allophane
PS	380-600	FU-ML	Wave-ripples	5			3.5		Fe-ortstein
PM	600-610	Cobbles							
PW	610-611								
Т	611-865								
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NEWP84	N10/83	4933950	414820	()	16	()	11	12/4/2000	SC

Site Notes: This	site is opposite t	he 116th St.							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-5							Loose	
HDC	5-30	FL						Loose	
LA	30-45							Very Weak B.	
LBg	45-55	FL						Very Weak B.	
								Weak	- 11 - 12 - 12 - 12 - 12
PDBW	55-90	-		5YR5/8			4	Вюску	aliopnane
PDBg	90-110	FL						very weak B.	
PDCox	110-222	FU	Planar				3	Vory Woak	allophane
PDBg	222-227	FL					1.25	B.	Fe-ortstein
PDCox	227-427	FU		2.5Y6/1			3.5		
PS	427-532	MU	Wave-ripples	6			4.5		Fe-ortstein
PM	532-537	Cobbles							
PW	537-538								
Т	538-712								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP85	N10/83	4933430	414800	~ /	13		13	12/6/2000	SC
Site Notes: This	site is located 75	i0 m north of Lo	st Creek.						
	Depth (m)	Photos							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-10		5			5		Loose	0
HDC	10-86							Loose	
LA	86-131	Silt						Verv Weak B.	
LBa	131-161		Truncated				2.5	Verv Weak B.	
5								Stong	Fe-
PDBw	161-256			5YR5/8			4	Blocky	humates
PDBg	256-291	FL		2.5Y6/1					gibbsite
PDCox	291-461	FU		10YR6/3			4		gibbsite
PDBa	161-186							Very Weak	allonhano
r DDy DS	401-400	MI					45	D.	Eo ortetoin
F 5 DM	400-070						4.5		
	704 707	CODDIE2							
PW T	700-707								
I	/0/-900								
Duna Shaat	Zono/NAD	LITM N		EDE (m)		Alt (m)		Dato	Evposuro
		1022000	414770		11	Ait (III)	10	12/5/2000	C
Site Notes: This	NTU/03	4733000	414770	Dark	14		10	12/3/2000	30
DC cample taker	she is ioldieu 44	cliff near this s	ita aquivalant	to 0.5 m da	onth in	loose opr	ichod	soil horizon	
	Donth cm		Rodding	Color	-pui il	D kalom	าเป็นเป็	Structuro	Diagonocia
		JI AILI JIZE	Dequility			r=.ĸy/cill	2	JUULUIE	Diagenesis
	U-4Z								
гвд	42-77							Weak	
PDBw	77-107	ML		5YR5/8			4	Blocky	allophane

PDCox	107-202	ML		2 576/1			3.5 2.5	Very Weak B.	allophane
F D By DS	202-214	MU	VB rinnlos	2.010/1			2.5		Fo ortstoin
PM	214-307	Cohbles	VD libbics				4.5		
PW	474-475	CODDICS							
т	475-649								
1	110 017								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP87	10N/1983	4933050	415570		11		47		SL
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
PDA	0-10			10YR3/2			1		
PDBtj	10-30			10YR5/6			3.75		
Сох	30-100			10YR7/8			4.5		
С	100-250			10YR7/8					
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP88	N10/83	4932410	414690		15		10	12/5/2000	SC
Site Notes: This s	site is located 30	0 m south of Lo	ost Creek.						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
HDA	0-5							Loose	
HDC	5-17	FL						Loose	
LA	17-51	Silt					2	Very Weak B.	
LBg	51-69						2.75	Very Weak B.	
PDBw	69-91			5YR5/8			4	Weak Blocky	Fe-ortstein
PDBg	91-103	FL						Very Weak B.	
PDBw	103-133						4.5		
PDCox	133-285	FU	Planar				2.5		allophane
PDBg	285-300	FL					3.5	Very Weak B.	
PS	300-455	ML		2.5Y5/3			4.5		gibbsite.
PM	455-465	Cobbles							Fe-ortstein
PW	465-466								
Т	466-680								
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NFWP89	N10/83	4931390	414560	2. 2 ()	10	, ()	12	4/14/2002	SC
Site Notes: This	site is about 1 kn	n north of Beav	er Creek.						
Units	Depth cm	Grain Size	Beddina	Color		P.ka/cm	^2	Structure	Diagenesis
HDA	0-10		g				_		
HD	10-180	FL	XBdipNE				0	Loose	
LA	180-205		. 1				1	Verv Weak B.	
LBg	205-230		Truncated				2	Very Weak B.	
PDBw	230-265			7.5YR4/6			3,5	Weak Blocky	allophane
PDCox	265-325						3		
PDBa	325-330						3.5	Verv Weak R	
9							2.0		191

PDCox	330-400	FL					3		_
PDBa	400-420						Δ	Very Weak R	Fe- humates
PS	420-632	MI	Planar				45	D.	nihhsite
PM	420 032	Cohbles	1 Idildi				4.5		gibbolic
	637 638	CODDICS							
т	638 877								
I	030-077								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP90	N10/83	4931110	414580		11		7	12/4/2000	SC
Site Notes: This s	site is located 80	0 m north of Be	aver Creek,	Holocene fo	oredur	ne seaward	d of we	tland.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-12								
HDCox	12-132			10YR8/2			0	Loose	
HDA	132-137			2.5Y6/2			0.5	Loose	
HDCox	137-212			10YR5/8			0.5	Loose	
HDA	212-217						0.5	Loose	
HDBw	217-262						1.5	Very Weak B.	
HDCox	262-272						1.5	Loose	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP91	10N/1983	4930500	415170		5		12	6/24/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDBw	0-50								
PDC	50-550								
Т	550-850								
Dura Chast	7					Alt ()		Data	F
Dune Sneet	Zone/NAD		UTIVI-E	EPE (M)	01	All (m)	17		Exposure
NEWP92	N 10/83	4929660	414320		21		16	12/24/2001	SC
Site Notes: Site I	s located 400 m	South of Ona B	each State Ca	ampround b	eacn	access tra	II. 0	<u>.</u>	
Units	Deptn cm	Grain Size	Beading	Color		P.kg/cm ²	2	Structure	Diagenesis
LA	0-10	Silt						Very Weak B.	
LBw	10-60	Silt							
LBg	60-75	FU	Iruncated					Very Weak B. Weak	
PDBw	75-90			7.5YR4/6			4	Blocky	Fe-ortstein
PDCox	90-270	FU					3	Very Weak B	allophane
PDBa	270-280						1 25	Verv Weak B	
PDCox	280-370						1.20	Very Weak D.	
PDBa	370-390								allonhane
PDCox	390-485	FI					25		anopriane
PDBa	185-510	1 L					۲.J 1		allonhano
	510 650						I		anopriane
	650 665								
F DBy PDCov									
	755 745	ΙU							
гиру	100-100								

PS	765-920	ML
PP	920-1060	
PM	1060-1070	Cobble
PW	1070-1071	
Т	1071-1166	

Dune Sheet NEWP93	Zone/NAD N10/83	UTM-N 4929650	UTM-E 414260	EPE (m)	10	Alt (m)	20	Date 7/9/2001	Exposure SC
Site Notes: Site is	s 10-30 m south	of north Ona B	each section.	Compare to	o NEV	VP92 (TL :	sample	at 1270 cm).	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	`2	Structure	Diagenesis
LA	0-20	Silt							
PDBtj	20-50			7.5YR5/8					
PDCox	50-200	FU		10YR8/8					
PDBg	200-230			2.5Y7/3					
PDCox	230-500								allophane
PDBg	500-520								Fe-ortstein
PDC	520-630								
PDBg	630-635								
PDCox	635-665								
PDC	665-790								
PDBg	790-810								allophane
PDC	810-930								
PDBg	930-935								
PDC	935-1240								Fe-ortstein
PDBw	1240-1260								
PDC	1260-1290								
PP	1290-1320								
PDBg	1320-1350								
PM	1350-1380								
PW	1380-1381								
Т	1381-1391								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP94	10N/1983	4929640	416550	. ,	10	. ,	23	5/11/2002	RC
Site Notes: Site is	s on west side of	f N. Beaver Cre	ek Rd (TL Sa	mple taken	at 2.5	m depth)			
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	`2	Structure	Diagenesis
LA	0-10	Silt	0			Ũ	1	Very Weak B.	Ũ
LBw	10-60	Silt		10YR5/3			2.25	Very Weak B.	
PDBt	50-90	FVL		10YR5/5			4.5	Stong Blocky Weak	
PDBw	90-120	FU					4.5	Blocky	
PDCox	120-180	FU					3.5		gibbsite
PDBw	180-240						4.5	Strong Blocky	
PDCox	240-490		XBdipNE	10YR6/3			4	-	gibbsite

4.5

Dune Sheet	Zone/NAD	UTM-N 4020470	UTM-E	EPE (m)	6	Alt (m)	12	Date	Exposure
Units	Depth cm	Grain Size	Bedding	Color	U	P.kg/cm^	2	Structure	Diagenesis
LBw	10-70	Silt		1011(1)3		:	2.75	Very Weak B.	
PDBt	70-110			10YR5/4			3.75	Strong Blocky Strong	
PDBw	110-170	FU	XB	10YR6/4			4.5	Blocky	gibbsite
PDC	170-245			10YR8/2			4.5		
PDCox	245-345			10YR6/6			4.5		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP96	N10/83	4928820	414200		21		11	12/10/2000	SC
Site Notes: Sea	cliff exposure ne	ar Deer Creek.	Site is located	1 50 m north	n of Pa	arkikng Lot	on H\	W101.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
LA	0-25	Silt Silt: Canal					2.6	Very Weak B.	
PDBW	25-200	Slity Sand						very weaк в. Weak	
PDBw	200-250	FU		7.5YR4/6			4	Blocky	
PDBg	250-135	FL						Very Weak B.	
PDCox	135-255	FU					2		
PDBg	255-275	FL							
PDC0x	275-370	FU					2.25		
PDBg	370-385	FL							
PS	385-635	ML/Pebbles					4.5		Fe-ortstein
PM	635-655	Cobbles							
PW	655-656								
Т	656-800								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Exposure	Date
NEWP97	10N/1983	4928790	416120		9		74	RC	6/24/2000
Site Notes: Easte	ern edge of dune	e cover.							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
LA	0-7			10YR3/2					
LBw	7-75	Silt		10YR4/3			3.5	Very Weak B. Weak	
UBtj	75-105			10YR4/6			3.75	Blocky	
UCox	105-205	FU		10YR5/6					
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP98	N10/83	4928580	414060		10		10	3/4/2001	SC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
LA	0-50						2.5	Very Weak B.	
LBg	50-75	FL		5Y4/1			2.5	Very Weak B. Weak	_
PDBw	75-160						4	Blocky	Fe-ortstein

PDBg PDC	160-210 210-300	FL						Very Weak B.	
PDBw PDCox PP PS PM PW T	300-310 310-510 510-540 540-590 590-610 610-611 611-820	FU FL FU Cobbles				1	4.5 2 .25 4.5	Very Weak B.	Fe-ortstein
Dune Sheet NEWP99	Zone/NAD N10/83	UTM-N 4927650	UTM-E 413800	EPE (m)	18	Alt (m)	12	Date 12/20/2000	Exposure SC
Site Notes: Site is	s in sea cliff loca	ted 300 m north	of Seal Rock	s State Parl	ζ.				
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
HDA	0-25	Shells					0.5	Loose	
PDA	25-55						2.5	Very Weak B. Weak	
PDBw	55-80						4	Blocky	allophane
PDBg	80-95		Truncated	2.5Y6/1				Very Weak B.	
PDBw	95-245						4	Blocky	
PDCox	245-305						3	,	
PDBg	305-315							Very Weak B.	
PDCox	315-445		PB						
PDA	445-470								
PDS	470-720		XB ripples						
PP	720-775								
PM	775-785								
PW	785-786								
Т	786-900								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	Б	Alt (m)	07	Date	Exposure
	Denth cm	Grain Size	Redding	Color	J	P ka/cm^2)	Structure	Diagenesis
PDBw	0-9		Douding	10YR5/4		r ingroin z	2	Verv Weak B.	Diagonosis
PDBq	9-22			10YR5/1			2		
PDBw	22-32			10YR5/8					
PDCox	32-132								
Site Notes: Seal	Rock midden site).						5.	-
Dune Sheet	Zone/NAD	UTM-N	UIM-E	ЕРЕ (M)	4	Ait (m)	17		Exposure
INEWP101	1011/1983 Donth cm	4927200 Crain Siza	41383U Rodding	Color	4	D ka/cm^2)	0/19/2000 Structure	Diagonocia
		Shall	Deuting			г.ку/сш^2	<u>-</u>	Siluciule	Diagenesis
HDC	5-105	M							
HDA	105-125	MI							
									195

LBw	125-140	Silt						Very Weak B.	
PDBti	140-170		Truncated				4	weak Blocky	
PDCox	170-1170	FU						j	
PM	1170-1270								
PW	1270-1370								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP102	10N/1983	4927070	415470		4		78	6/24/2002	RC/AU
Site Notes: This s	site is near the e	astern limit of d	unes. Loess c	leposits (0-30) cm	contain t	hree lay	yers).	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
LBw	0-30	Silt		10YR6/4			2.5	Very Weak B.	
PDCox	30-70	FVL					1.75	Very Weak B.	
PDBw	120-140	Silt					3	Very Weak B.	
PDBw	140-150	FVL					2.25	Very Weak B. Weak	
PDBtj	150-180	FU					3.5	Blocky	
	180-205	FII					1	Weak	
TBti	205-210	10					7	DIUCKY	
i Dij	203-210								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP103	N10/83	4926910	413830	1	17		12	1/6/2001	SC
Site Notes: This s	section is located	l about half a ki	lometer south	of Seal Rock	ks St	ate Park			
TL Samples (SEF	R1 at 7.5 m dept	h=beach backs	hore and SER	2 at top of P	leist	ocene du	ine sect	ion at 2.5 m de	pth).
TL Samples (SEF Units	R1 at 7.5 m dept Depth cm	h=beach backsl Grain Size	hore and SER Bedding	2 at top of P Color	leist	ocene dı P.kg/cm	ine sect ^2	ion at 2.5 m de Structure	pth). Diagenesis
TL Samples (SEF Units HDA	R1 at 7.5 m dept Depth cm 0-20	h=beach backsl Grain Size FL Shell	hore and SER Bedding	2 at top of P Color	leist	ocene dı P.kg/cm	ine sect ^2 1	ion at 2.5 m de Structure Loose	pth). Diagenesis
TL Samples (SEF Units HDA HDC	R1 at 7.5 m dept Depth cm 0-20 20-130	h=beach backsl Grain Size FL Shell	hore and SER Bedding	2 at top of P Color	leist	ocene dı P.kg/cm	ine sect ^2 1	ion at 2.5 m de Structure Loose Loose	pth). Diagenesis
TL Samples (SEF Units HDA HDC LA	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190	h=beach backsl Grain Size FL Shell	hore and SER Bedding	2 at top of P Color	leist	ocene du P.kg/cm	ine sect ^2 1 2.5	ion at 2.5 m de Structure Loose Loose	pth). Diagenesis
TL Samples (SEF Units HDA HDC LA LBg	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205	h=beach backsl Grain Size FL Shell FL	hore and SER Bedding Truncated	2 at top of P Color	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2	ion at 2.5 m de Structure Loose Loose Very Weak B. Weak	pth). Diagenesis
TL Samples (SEF Units HDA HDC LA LBg PDBw	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265	h=beach backsl Grain Size FL Shell FL	hore and SER Bedding Truncated	22 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4	ion at 2.5 m de Structure Loose Loose Very Weak B. Weak Blocky	pth). Diagenesis Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335	h=beach backsl Grain Size FL Shell FL FU	hore and SER Bedding Truncated	22 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B.	pth). Diagenesis Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350	h=beach backsl Grain Size FL Shell FL FU Silt	hore and SER Bedding Truncated	2 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5 2	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440	h=beach backsl Grain Size FL Shell FL FU Silt FU	hore and SER Bedding Truncated	2 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5 2 4	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470	h=beach backsl Grain Size FL Shell FL FU Silt FU	hore and SER Bedding Truncated	2 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5 2 4 2 4 2 4 2	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 470-680	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M.	hore and SER Bedding Truncated	2 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5 2 4 2 4 2 4.5	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 470-680 680-740	h=beach backsl Grain Size FL Shell FL Silt FU ML and H.M. Cobbles	hore and SER Bedding Truncated	2 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ne sect ^2 1 2.5 2 4 3.5 2 4 2 4.5	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM PW	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 440-470 470-680 680-740 740-741	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles	hore and SER Bedding Truncated	2 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5 2 4 2 4.5	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM PW	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 440-470 470-680 680-740 740-741	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles	hore and SER Bedding Truncated	22 at top of P Color 7.5YR4/6	leist	ocene du P.kg/cm	ine sect ^2 1 2.5 2 4 3.5 2 4 2 4.5	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM PW Dune Sheet NEWP104	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 440-470 470-680 680-740 740-741 Zone/NAD 10N/1983	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles UTM-N 4926900	UTM-E	22 at top of P Color 7.5YR4/6 EPE (m)	<i>A</i>	ocene du P.kg/cm Alt (m)	ne sect ^2 1 2.5 2 4 3.5 2 4 2 4.5	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B. Very Weak B.	pth). Diagenesis Fe-ortstein Fe-ortstein Exposure
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PS PM PW Dune Sheet NEWP104 Units	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 470-680 680-740 740-741 Zone/NAD 10N/1983 Depth cm	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles UTM-N 4926900 Grain Size	hore and SER Bedding Truncated UTM-E 414130 Bedding	22 at top of P Color 7.5YR4/6 EPE (m) Color	4	ocene du P.kg/cm Alt (m)	ne sect ^2 1 2.5 2 4 3.5 2 4 2 4.5 39 ^2	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B. Very Weak B. Date 6/19/2000	pth). Diagenesis Fe-ortstein Fe-ortstein Exposure RC Diagenesis
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM PW Dune Sheet NEWP104 Units PDBw	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 470-680 680-740 740-741 Zone/NAD 10N/1983 Depth cm 0-200	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles UTM-N 4926900 Grain Size	hore and SER Bedding Truncated UTM-E 414130 Bedding	22 at top of P Color 7.5YR4/6 EPE (m) Color 7.5YP3/3	leist	ocene du P.kg/cm Alt (m) P.kg/cm	ne sect ^2 1 2.5 2 4 3.5 2 4 2 4.5 39 ^2 3 25	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B. Very Weak B. Date 6/19/2000 Structure	pth). Diagenesis Fe-ortstein Fe-ortstein Exposure RC Diagenesis
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM PW Dune Sheet NEWP104 Units PDBw PDCox	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 440-470 440-470 440-470 440-470 740-741 Zone/NAD 10N/1983 Depth cm 0-200 200-400	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles UTM-N 4926900 Grain Size	hore and SER Bedding Truncated UTM-E 414130 Bedding	22 at top of P Color 7.5YR4/6 EPE (m) Color 7.5YR3/3	4	ocene du P.kg/cm Alt (m) P.kg/cm	ne sect ^2 1 2.5 2 4 3.5 2 4 2 4.5 39 ^2 3.25	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B. Very Weak B. Date 6/19/2000 Structure	pth). Diagenesis Fe-ortstein Fe-ortstein Exposure RC Diagenesis
TL Samples (SEF Units HDA HDC LA LBg PDBw PDCox PDBg PDCox PDBg PS PM PW Dune Sheet NEWP104 Units PDBw PDCox	R1 at 7.5 m dept Depth cm 0-20 20-130 130-190 190-205 205-265 265-335 335-350 350-440 440-470 470-680 680-740 740-741 Zone/NAD 10N/1983 Depth cm 0-200 200-400	h=beach backsl Grain Size FL Shell FL FU Silt FU ML and H.M. Cobbles UTM-N 4926900 Grain Size	hore and SER Bedding Truncated UTM-E 414130 Bedding	22 at top of P Color 7.5YR4/6 EPE (m) Color 7.5YR3/3	4	ocene du P.kg/cm Alt (m) P.kg/cm	ne sect ^2 1 2.5 2 4 3.5 2 4 2 4.5 39 ^2 3.25	ion at 2.5 m de Structure Loose Very Weak B. Weak Blocky Very Weak B. Very Weak B. Very Weak B. Date 6/19/2000 Structure	pth). Diagenesis Fe-ortstein Fe-ortstein Exposure RC Diagenesis

NLVF105	10N/1983	4926120	417100				132	6/23/2000	RC
Site Notes: Easte	ernmost limit of F	leistocene dun	e sheet, near	cemetery or	n ridge	Э.			
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
LA	0-5								
LBw	5-70	Silt					2	Very Weak B. Stong	
PDBtj	70-95	FVU		7.5YR5/6			4.5	Blocky Weak	
PDBw	95-100	FU						Blocky	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP106	N10/83	4926060	413880		10		9	6/24/2002	SC/CC
Site Notes: Rece	ssed sea clif at s	mall creek valle	ey. Sand/rew	orked loess	(wasł	n) drapes	the cre	ek valley wall.	
RC sample in sa	ndy loess (150 d	m depth).							
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
HDC	0-35	FU	Truncated				0	Loose	
LBw	35-125	Silt		10YR4/4			2	Very Weak B.	
LBw	125-175	Silt		7.5YR5/4			2.5	Very Weak B.	
PDA	175-205	VFL		10YR3/2			1.75	Very Weak B.	
PDC	205-305	FU					3.75		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP107	N10/83	4926010	413850		12		8	12/10/2000	SC
Site Notes: This	section is located	l just north of Q	uail Street, so	outh of Seal	Rock	S.			
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
						0			
HDA	0-20	FU	0					Loose	0
HDA HDC	0-20 20-50	FU	5				2.5	Loose Very Weak B.	0
HDA HDC HDA	0-20 20-50 50-60	FU	0				2.5	Loose Very Weak B. Very Weak B.	0
HDA HDC HDA LBg	0-20 20-50 50-60 60-80	FU	0				2.5	Loose Very Weak B. Very Weak B. Very Weak B.	Fe-ortstein
HDA HDC HDA LBg	0-20 20-50 50-60 60-80	FU	J				2.5	Loose Very Weak B. Very Weak B. Very Weak B. Weak	Fe-ortstein
HDA HDC HDA LBg PDBw	0-20 20-50 50-60 60-80 80-165	FU	J	7.5YR4/6			2.5	Loose Very Weak B. Very Weak B. Very Weak B. Weak Blocky Very Weak	Fe-ortstein Fe-humate
HDA HDC HDA LBg PDBw PDCox	0-20 20-50 50-60 60-80 80-165 165-265	FU	J	7.5YR4/6			2.5 4 3	Loose Very Weak B. Very Weak B. Very Weak Blocky Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg	0-20 20-50 50-60 60-80 80-165 165-265 265-290	FU	J	7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385	FU		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Very Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390	FU	J	7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Very Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475	FU FL		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Very Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485	FU FL		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PDCox	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485 485-595	FU FL ML		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PS PM	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485 485-595 595-610	FU FL FU ML Cobbles		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PS PM PW	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485 485-595 595-610 610-611	FU FL FU ML Cobbles		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PS PM PW T	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485 485-595 595-610 610-611 611-630	FU FL FU ML Cobbles		7.5YR4/6			2.5 4 3 4	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PS PM PW T	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485 485-595 595-610 610-611 611-630	FU FL FU ML Cobbles	UTM-E	7.5YR4/6 EPE (m)		Alt (m)	2.5 4 3 4	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B.	Fe-ortstein Fe-humate allophane Exposure
HDA HDC HDA LBg PDBw PDCox PDBg PDCox PDBg PDCox PDBg PDCox PDBg PS PM PW T	0-20 20-50 50-60 60-80 80-165 165-265 265-290 290-385 385-390 390-475 475-485 485-595 595-610 610-611 611-630 Zone/NAD 10N/1983	FU FL FU ML Cobbles	UTM-E 416640	7.5YR4/6 EPE (m)	5	Alt (m)	2.5 4 3 4 4.5	Loose Very Weak B. Very Weak B. Weak Blocky Very Weak B. Very Weak B. Date 6/23/2000	Fe-ortstein Fe-humate allophane Exposure RC

LA LBw	0-20 20-40	Silt Silt					1.5	Very Weak B.	
DDRti	10 55			10VD5/2			3 5	Weak	
PDBw	40-33 55-60	FU		10YR6/4			3.5 2	DIUCKY	
PDC	60-125	10		1011(0/1			3		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)	1	Alt (m)		Date	Exposure
NEWP109	N10/83	4925180	413950	20	0		13	12/17/2000	SC
Dune Sheet: This	s section is locate	ed about 1.5 km	n north of Drift	wood State Pa	ark.				Diagonocio
Units	Depth cm	Grain Size	Bedding	Color	I	P.kg/cm'	`2	Structure	//Other
HD	0-190		Ū			Ū		Loose	
LA	190-205	Silt						Very Weak B.	
LBw	205-275	Silt					2	Very Weak B.	
PDBw	275-325	FU					4	Weak Blocky	
PDA	325-380						2.5	Verv Weak B.	
								Weak	
PDBw	380-530	FU		7.5YR4/6			4.5	Blocky	Fe-ortstein
PDBg	530-550	FL						Very Weak B.	
P3	550-800	IVIL							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP110	N10/83	4924330	414000	Ę	5		20	8/16/2002	SC
Site Notes: This s Groundwater see Holocene.	site is located ab eps at the base o	out just north o f the	f Driftwood Pa	ark Access.					
FeOx stains mod	lern beach sands	s in front of the s	sea cliff.						
Units	Depth cm	Grain Size	Bedding	Color	I	P.kg/cm'	`2	Structure	Diagenesis
HDA	0-5							Loose	
HDC	5-100	FU						Loose	
HDBw	100-120						2.25	weak Blocky Very Weak	
HDCox	120-500		XBdipN					B.	Fe-ortstein
PDBw	500-570		Truncated				3.75	weak Blocky Weak	
PDC	570-1270	FU	PB					Blocky	
PDBw	1270-1320								
PDC	1320-1470								Fe-ortstein
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NEWP111	N10/83	4924210	414060	16	6	()	21	12/17/2000	SC
Site Notes: This	section is located	d just north of D	riftwood State	e Park (compar	re to	previous	s sectio	on NEWP110).	-
Units	Depth cm	- Grain Size	Bedding	Color	I	P.kg/cm′	`2	Structure	Diagenesis
HD	0-500		-			-		Loose	-
HDA	500-515							Very Weak B.	

HDCox PDA	515-590 590-615	FU		10YR6/2			2.5	Very Weak B. Very Weak B.	
PDBw PDCox	615-765 765-1065	FU					4	Blocky	Fe-ortstein
עסט	10/5 1115						4 5	Weak	
PDBW	1000-1110	EU					4.5 2.5	Вюску	
	1110-1000						ວ.ວ 1 ລ⊑		
PDBy	1000-1090						1.20		
	1090-1000						4		
73	1000-1790	IVIL					4		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP112	10N/1983	4924020	414030		10		12	6//00	SC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-5								
HDBw	5-15								
HDCox	15-115								
PDBtj	115-155								
PDBw	155-191								
PDCox	191-253								
PDC	253-278								
PDBg	278-288								
PDC	288-338								
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NEWP113	10N/1983	4924010	414290	()	7		12	6//00	RC
Site Notes: Easte	ern pinchout of H	olocene sand c	over.		-		. –		
Units	Depth cm	Grain Size	Beddina	Color		P.ka/cm^	2	Structure	Diagenesis
HDBw	0-10					<u>9</u>			
PDBw	10-50			10YR5/6					
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP114	N10/83	4923540	414060		12		11	12/17/2000	SC
Site Notes: This s	section is just so	uth of Bucley C	reek or about	500 m sout	th of D	Priftwood S	tate Pa	ark.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-10							Loose	
HDC	10-210	FU						Loose	
HDA	210-225							Loose Verv Weak	
HDBw	225-255			2.5YR6/6	w2.5Y	'R5/6		B.	Fe-ortstein
HDCox	255-375	FU						Very Weak B.	
LA	375-400	Silt					2.5	Very Weak B.	
PDBw	400-465	FVI		7.5YK5/8 w7.5YR4/4	6		4	vveak Blocky	
PDCox	465-520				-		3	2100113	
PDBq	520-545	FL					2.5	Very Weak B.	

PDCox	545-625		XBdipS						
PDBg	625-627	FL							
PDCox	627-707	FL					3		allophane
PDBg	707-712								·
PS	712-792						4.5		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP115	10N/1983	4923020	416270		7		104	6/23/2000	SL
Site Notes: Easte	ernmost limit of d	une sand (patc	hes 0-30 cm i	n thickness)).				
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
PDBw	0-30							Very Weak B.	
TBtj	30-90							Strong Blocky	
Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
NFWP116	N10/83	4922890	4139000	LI L (III)	18	, ut (iii)	11	12//00	SC
Site Notes: This	site is just north (of the north hea	ich access fro	m Bay Shor	ro i o	duo wos	t of Hid	don Vallov Laki	20
	Donth cm	Grain Sizo	Rodding	Color	10, 1.0	D ka/cm	1011110 ^つ	Structuro	Diagonosis
		Grain Size	Deuuiny	COIDI		г.ку/ст	Z		Diagenesis
	0-0 E 01E	ГЦ					0 5	LUUSE	
	0-210 01E 040	FU					0.0	LUUSE	
PDA	215-240	EU					2.5	Weak Weak	
PDBw	240-200						4	DIUCKY	
PDBg	205-270	FL					2	very weak B.	- 11 - 11 - 11 - 11 - 1
PDC	270-305	FU					2		allopnane
PDBg	305-330	FL					1.25		
PDC	330-530	FU					2.5		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP117	10N/1983	4922700	414600		13		25	6/23/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
LA	0-6	Silt	, i i i i i i i i i i i i i i i i i i i						-
LBw	6-56	Silt		10YR6/6			2	Very Weak B.	
PDBw	56-86	FU					3 75	Weak Blocky	
PDCox	86-224	10					5.75	Diocky	
1 DC0x	00-224								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP118	10N/1983	4922470	414880	. ,	9	. ,	54	6/23/2000	RC
Units	Depth cm	Grain Size	Beddina	Color		P.ka/cm	^2	Structure	Diagenesis
PDA	0-11	0101110120	Douding	00101			-		Diagonioolo
PDRw	11-98			7 5VR5/6					
	08 228			7.511(5/0					
r DC	70-220								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP119	10N/1983	4922440	41570		6		77	6/23/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis

LA LBw LBw PDCox	0-5 5-50 50-105 105-205	Silt Silty Sand Silty Sand 200	FU	10YR6/4			2.5	Very Weak B. Very Weak B.	
Dune Sheet NEWP120 Site Notes: Trend	Zone/NAD N10/83 thes dua by deve	UTM-N 4921660 eloper for reside	UTM-E 414550 ential develop	EPE (m) ment, NW Pi	8 ne C	Alt (m) rest Way.	59	Date 9/2/2001	Exposure TR
Units Fill	Depth cm 0-26	Grain Size	Bedding	Color		P.kg/cm [^]	2	Structure	Diagenesis
PDE PDBtj PDBw PDCox	26-30 30-45 45-120 120-150		Truncated	7.5YR 5/6 7.5YR 5/4			3.75 4.5 4	Weak Blocky Strong Blocky	
Dune Sheet NEWP121	Zone/NAD N10/83	UTM-N 4921650	UTM-E 414560	EPE (m)	5	Alt (m)	62	Date 9/2/2001	Exposure TR
Units Fill PDA	Depth cm 0-30 30-35	Grain Size	rest developm Bedding	ient (compar Color	eto	P.kg/cm [^])). `2	Structure	Diagenesis
PDBtj	35-45			7.5YR 5/6			4.5	Strong Blocky	
PDBw	45-65			7.5YR 6/4			3	Very Weak B.	
PDCox	65-130			10YR 7/6			2.5		
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP122	10N/1983	4921610	414500		19		43	6//00	RC
Site Notes: Site in Units	n slump headwa Depth cm	ll on US101, no Grain Size	rth of Alsea B Bedding	ay wayside (Color	RC S	Sample tal P.kg/cm ²	ken in l '2	PP at 5.8m). Structure	Diagenesis
PDA	0-15		5			J			J
PDBtj	15-53			10YR3/6			4	Weak Blocky	
PDBW	03-97 97-247		XB				45	Very Weak B.	
PDBtj	247-269		10	10YR5/6			3	Very Weak B.	
PDBw	269-279							Very Weak B.	
PDCox	279-579		XB				4.5		
PP	579-601			101 (110)			0.5		
PDBg PDCox	601-701 701-731			1Gley6/104			0.5		
Dune Sheet NEWP123 Site Notes: North	Zone/NAD 10N/1983 end of Alsea Ba	UTM-N 4920730 av bridge (waysi	UTM-E 414470 ide-turnout ac	EPE (m)	7	Alt (m)	25	Date 6/23/2000	Exposure BC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm [^]	2	Structure	Diagenesis 201

HDBw 3-27 HDCxx 27-227 PDBw 227-277 PDBw 277-277 PDCxx 277-477 PDBw 577-597 PDBw 77-807 PDB 797-807 PDCx 807-907 PDB 907-957 PDC 957-1157 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) NEWP124 N10/83 4920050 413790 10 12/26/200 Sc Site Notes: This site is the foreune at Bay Shore split, north of Waldport. 100 6/22/2000 Sc Sc Nume Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 100 6/22/2000 Sc Nume Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 100 6/22/2000 Sc Nume Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 100 6/22/2000 Sc PDA 0-5 225 225 225 225 225 225 225 222 22 <		0-3								
HDCox 27-27 7-5YR6/8 PDCw 227-271 7.5YR6/8 PDCw 277-477 PDBw 577-597 PDCx 497-707 PDBw 907-957 PDCw 907-957 PDBw 907-957 PDC 807-907 PDC 957-1157 Dune Sheet Zone/NAD UTM-N MEWP124 N10/83 4920050 413790 NEWP124 N10/83 4920050 413790 Site Notes: This: Site Is the fore-une at Bay Shore spli, north of Waldort. 18 10 12/26/2000 SC Site Notes: This: Site Is the fore-une at Bay Shore spli, north of Waldort. 10YR6/2 0.5 Loose Diagenesis Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 10 6/22/2000 SC Site Notes: East-remote limit of une sand above bedrock terrace. 0nis Depth cm Grain Size Bedding Color 10 6/22/2000 FC PDC 55 5 2.25 2.25 2.25 2.25 2.25 2.25	HDBw	3-27								
PDBw 227-277 7.5YR6/8 PDCox 277-477 PDBw 577-597 PDCox 497-797 PDBy 797-807 PDC 807-907 PDC 807-907 PDC 807-907 PDC 807-957 PDC 957-1157 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) 18 Alt (m) Date Scource NEWP124 N10/83 4920050 413790 18 10 12/26/2000 Sc Nums Depth cm Grain Size Bedding Color 18 10 12/26/2000 Sc Nume Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 10 6/22/2000 Ligenesis NEWP125 10N/1983 4920230 416400 6 10 6/22/2000 Ligenesis PDA 0-5 Sc 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2	HDCox	27-227								
PDCox 277-477 PDBw 577-597 PDCox 497-797 PDBg 797-807 PDC 807-907 PDC 907-957 PDC 957-1157 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) 18 Al (m) Date Exposure Site Notes: This: Site is the foredure at Bay Shore spit, north of Waldpot. 10YR7/8 10YR6/2 18 Al (m) Date Exposure HDC 0-400 FL 10YR6/2 6 10 6/22/2000 Scies Site Notes: Lastermost limit of dune sand above bedrotex terrace. Units Depth cm Grain Size Bedding Color P. kg/cm*2 Structure Diagenesis PDA 0-5 2.25 2.25 P. kg/cm*2 Structure Diagenesis PDBW 5-55 5 5 2.25 2.25 P. kg/cm*2 Structure Diagenesis PDBW 5-5155 5 5 5 2.25 P. kg/cm*2	PDBw	227-277			7.5YR6/8					
PDBw 577-597 Fe-ortstein PDCox 497-797 PDBy 797-807 PDC 807-907 PDBw 907-957 PDC 957-1157 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) 18 At (m) Date Exposure Site Notes: This site is the foredure at Bay Shore spit, north of Waldpen. Unins Depth cm Grain Size Bedding Color Pkg/cm*2 Structure Diagenesis NUMS Depth cm Grain Size Bedding Color Pkg/cm*2 Structure Diagenesis Nums Depth cm Grain Size Bedding Color Pkg/cm*2 Structure Diagenesis PDA 0-5 PDA 0-5 2.25 2.25 PL22 PL22 PL32-115 PL32-115 <td< td=""><td>PDCox</td><td>277-477</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PDCox	277-477								
PDCox 497.797 PDBg 797-807 PDC 807-907 PDBw 907.957 10'R7/8 PDC 807-907 PDBw 907.957 10'R7/8 PDC 807-907 PDBw 907.957 10'R7/8 PDC 807-907 18 Alt (m) Date Exposure Stie Notes: This stle is the foredume at Bay Shore spit, north of Waldport. 18 Alt (m) Date Exposure Units Depth cm Grain Size Bedding Color 18 Alt (m) Date Colore Date Loose Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 Alt (m) Date Date Structure Diagenesis Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) 6 Alt (m) Date Color P.kg/cm'2 Structure Diagenesis PDE S55 Structure Grain Size Bedding Color 3 Alt (m)	PDBw	577-597								Fe-ortstein
PDBg 797-807 PDC 807-907 PDBw 907-957 10YR7/8 PDC 957-1157 10YR7/8 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP124 N1083 4920050 413790 18 Alt (m) Date Exposure Site Notes: This site is the foredure at Bay Shore spit, north of Waldport. Inst 0-400 FL 18 Alt (m) Date Exposure Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Alt (m) Date Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Alt (m) Date Alt (m) Date Alt (m)	PDCox	497-797								
PDC 807-907 PDBw 907-957 10YR7/8 PDC 957-1157 10YR7/8 Alt (m) Date Exposure NEWP124 N10/83 4920050 413790 18 10 12/26/2000 SC Site Notes: This site is the foredume at Bay Shore spit, north of Waldport. Units Depth cm Grain Size Bedding Color P.kg/cm*2 Structure Diagenesis HDC 0-400 FL UTM-N UTM-E EPE (m) Alt (m) Date Structure Diagenesis NEWP125 10N/1983 4920230 416400 6 10 6/22/2000 Structure Diagenesis PDA O-400 FL EPE (m) Alt (m) Date Alt (m) Date RC Diagenesis PDA 0-5 Ste Notes: Eastermost limit of June sand above bedrock terrace. P.kg/cm*2 Structure Diagenesis PDA 0.5 Structure Structure Diagenesis Alt (m) Date KC RC Diagenesis	PDBg	797-807								
PDBw PDC907-957 957-1157UTM-N 4920050UTM-E 413790EPE (m) 413790Alt (m) 18Date 12/26/2000Exposure SCNume Sheet Netwer124Zone/NAD N1083UTM-N 4920050UTM-E 413790EPE (m) 10YR6/218Alt (m) 12/26/2000Date ScExposure SCUnits NEWP125Depth cm 4000Grain Size FLBedding 416400Color 10YR6/26Alt (m) 6Date 12/26/2000Date ScDiagenesis LooseDune Sheet NEWP125Zone/NAD 10N/1983UTM-N 4920230UTM-E 416400EPE (m) 416400Alt (m) ColorDate 6/22/2000Date 	PDC	807-907								
PDC957-1157Dune Sheet NEWP124Zone/NAD N10/83UTM-N 4920050UTM-E 413790EPE (m) 18Alt (m) 12/26/2000Date 12/26/2000Exposure SCNite Notes: This site is the fored-use at Bay Shore split, northWaldport. 10/R62Pkg/cm^22StructureDagenesisUnitsDepth cm 4000Grain SizeBedding 416400Color 10/R6/2Alt (m) 6Date 16/22/2000Date 16/22/2000DagenesisDune Sheet NEWP125Zone/NAD 10/N1983UTM-N 4920230UTM-E 416400EPE (m) 6Alt (m) 16/22/2000Date 6/22/2000Date 6/22/2000Nuever125 PDA PDA 1015Depth cm 555 55 57Grain SizeBedding 416400Color 5Pkg/cm^22Structure 6/22/2000Dagenesis 6/22/2000Dune Sheet NEWP126Zone/NAD 10/N1983UTM-N 4919560UTM-E 415540EPE (m) 10YR4/4Alt (m) 414400Date 6/22/2000Exposure RC Pkg/cm*2Dune Sheet PDE A DCoxZone/NAD 6/32700UTM-N 4919560UTM-E 415540EPE (m) 10YR4/4Alt (m) 4114400Date 6/22/2000Exposure RC Pkg/cm*2Dune Sheet PDE DCoxZone/NAD 6-3270UTM-N 4919560UTM-E 4114400EPE (m) 10YR/4Alt (m) 4114400Date 6/22/2000Exposure RC RC Pkg/cm*2Dune Sheet PDE DCoxZone/NAD 6-3270UTM-N 4919560UTM-E 4114400FPE (m) 6Alt (m) 6Date 6/22/20	PDBw	907-957			10YR7/8					
NewP124Zone/NAD N10/83UTM-N 4920050UTM-E 413790EPE (m) 413790Alt (m) 18Date 12/26/2000Exposure SCUnitsDepth cm 0-400Grain Size FLBedding 416400Color 10YR6/2P.kg/cm*2 0.5Structure LooseDiagenesis LooseDune Sheet NEWP125Zone/NAD 10N/1983UTM-N 4920230UTM-E 416400EPE (m) 416400Alt (m) 6Date 10/198Date 12/26/2000Date ScDate 12/26/2000Date ScDune Sheet NEWP125Zone/NAD 10N/1983UTM-N 4920230UTM-E 416400EPE (m) 416400Alt (m) 22/2000Date 6/22/2000Date 6/22/2000Date 6/22/2000Date 6/22/2000Dune Sheet PDA O-5Depth cm 55.5Grain Size 41919560Bedding 415540ColorP.kg/cm*2 3Structure 41Date 6/22/2000Exposure RC DiagenesisDune Sheet NEWP126Zone/NAD 10N/1983UTM-N 4919560UTM-E 415540EPE (m) 10YR4/4 10YR4/4Alt (m) 41Date 6/22/2000Exposure RC DiagenesisDune Sheet A DEW PDCox AZone/NAD 5-70UTM-N 4919560UTM-E 41560EPE (m) 10YR4/4 10YR4/4Alt (m) 2Date 6/22/2000Exposure RC DiagenesisDune Sheet PDCox A A DDE DUTSZone/NAD 4919650UTM-F 4114400EPE (m) 10YR4/4 10YR6/4Alt (m) 2Date 6/22/2000Exposure RC DiagenesisDune Sheet PDC	PDC	957-1157								
Dune Sheet NEWP124Zone/NAD N10/83UTM-N 4920050UTM-E 413790EPE (m) 413790Alt (m) 18Date 12/26/2000Exposure SCUnitsDepth cm 0-400Grain Size FLBedding 10YR6/2Color 10YR6/2P.kg/cm*2 0.5Structure LooseDiagenesis LooseDune Sheet NEWP125Zone/NAD 10N/1983UTM-N 4920230UTM-E 416400EPE (m) 10YR6/2Alt (m) 6Date 100Date 6/22/2000Date 6/22/2000Dune Sheet NEWP125Zone/NAD 10N/1983UTM-N 4920230UTM-E 416400EPE (m) 6Alt (m) 6Date 6/22/2000Date 6/22/2000Date 6/22/2000Dune Sheet PDA PDA 0-5Depth cm 55.5Grain Size 41919560Bedding 415540ColorP.kg/cm*2 415540Structure 6/22/2000Date 6/22/2000Dune Sheet NEWP126Zone/NAD 10N/1983UTM-N 4919560UTM-E 415540EPE (m) 415540Alt (m) 4191960Date 6/22/2000Exposure RC DiagenesisDune Sheet A DEW DEW LOSZone/NAD 411580UTM-N 411540UTM-E 10YR4/4 10YR4/4Alt (m) 10YR4/4Date 6/22/2000Exposure RC DiagenesisDune Sheet A DEW DEW DEW LOSZone/NAD 4114400UTM-N 4114400UTM-R 4114400Alt (m) 6Date 6/22/2000Exposure RC Alt (m) P.kg/cm*2Exposure 6/22/2000Dune Sheet PDAZone/NAD 4191855UTM-N 4114400UTM-R 4114400 <td></td>										
NEWP124N10/834920050413790181012/26/2000SCSite Notes: This site is the foredune at Bay Shore spit, north of Waldport.UnitsDepth cmGrain SizeBeddingColorP.kg/cm^22StructureDiagenesisHDC0-400FL10YR6/20.5LooseDiagenesisDiagenesisDiagenesisDune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)Date6/22/2000FLNEWP12510N/198349202304164006106/22/2000FLDiagenesisDune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateDiagenesisPDA0-50-5SeddingColorP.kg/cm^2StructureDiagenesisPDEw5-55552.25StructureDiagenesisPDEw5-5155552.25StructureDiagenesisQuine SheetZone/NADUTM-NUTM-EEPE (m)3Alt (m)DateExposureNEWP12610N/198349195604155403P.kg/cm^2StructureDiagenesisA0-150-1510YR4/410YR6/410YR6/410YR6/410YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureA0-1510YR4/410YR6/410YR6/4Alt (m)DateExposureRCDune SheetZone/NADUTM-NUTM-EEPE (m)Alt	Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
Site Notes: This site is the foredure at Bay Shore spit, north of Waldport.UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisHDC0-400FL10YR6/20.5LooseDiagenesisDiagenesisDiagenesisDune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)Date6106/22/2000Site Notes: Easternmost limit of dure sand above bedrock terrace.UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-5StructureStructureDiagenesis2.252.25DiagenesisDiagenesisPDBw5-555-155552.252.252.25DiagenesisRCDune SheetZone/NADUTM-NUTM-EEPE (m)341t (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColor3446/22/2000RCDune SheetZone/NADUTM-NUTM-EEPE (m)3Alt (m)DateExposurePDBw15-6510YR4/410YR6/410YR6/410YR6/410YR6/410YR6/410YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCU	NEWP124	N10/83	4920050	413790		18		10	12/26/2000	SC
UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisHDC0-400FL10YR6/20.5LooseDiagenesisDune SheetZone/NADUTM-NUTM-EEPE (m)6106/22/2000Site Notes:Easterrmost limit of dure sand above bedrock terrace.6106/22/20005/22/2000Dune SheetDopth cmGrain SizeBeddingColor6106/22/2000PDA0-50-5StructureDiagenesis2.252.2510/10/10/10/10/10/10/10/10/10/10/10/10/1	Site Notes: This	site is the fored	une at Bay Shor	e spit, north c	of Waldport.					
HDC0-400FL10YR6/20.5LooseDune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateNEWP12510N/198349202304164006106/22/2000Site Notes: Easterrmost limit of dune sand above bedrock terrace.P.kg/cm^2StructureDiagenesisUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-52.252.252.252.25PDCox55-1552.252.252.25Dune SheetZone/NADUTM-NUTM-EEPE (m)3Alt (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColor3446/22/2000DiagenesisA0-1510YR6/4-64156/22/2000RCDune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposurePDGox65-270-10YR6/4-6456/22/2000RCDune SheetZone/NADUTM-NUTM-EEPE (m)6Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RC10agenesisNEWP12710N/198349186504144006456/22/2000RC10ag	Units	Depth cm	Grain Size	Beddina	Color		P.ka/cm^	2	Structure	Diagenesis
Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateNEWP12510N/198349202304164006106/22/2000Site Notes: Eastermost limit of dune sand above bedrock terrace.0.5P.kg/cm^2StructureDiagenesisPDA0.50.52.252.252.252.25PDCox55-1552.252.252.252.25Dune SheetZone/NADUTM-NUTM-EEPE (m)341 (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCDiagenesisUnitsDepth cmGrain SizeBeddingColor9.kg/cm^2StructureDiagenesisA0.150.1510YR4/4P.kg/cm^2StructureDiagenesisPDBw15-6510YR4/410YR6/47Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColor6456/22/2000RCDune SheetZone/NADUTM-NUTM-EEPE (m)6Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0.50.51044006456/22/2000RC14400	HDC	0-400	FI	Douding	10YR6/2		i nigroni	0.5	Loose	Diagonicolo
Dune Sheet NEWP125Zone/NAD 10N/1983UTM-N 4920230UTM-E 416400EPE (m) 416400Alt (m) 6Date 6/22/2000Site Notes: Eastermost limit of June sand above bedrock terrace.Depth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-55-552.25 <td>1100</td> <td>0 100</td> <td></td> <td></td> <td>1011(0/2</td> <td></td> <td></td> <td>0.0</td> <td>20030</td> <td></td>	1100	0 100			1011(0/2			0.0	20030	
NEWP125 10N/1983 4920230 416400 6 10 6/22/2000 Site Notes: Eastermost limit of dune sand above bedrock terrace. Units Depth cm Grain Size Bedding Color P.kg/cm^2 Structure Diagenesis PDA 0-5 PDBw 5-55 T 155-1155 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP126 10N/1983 4919560 415540 3 444 6/22/2000 RC Units Depth cm Grain Size Bedding Color P.kg/cm^2 Structure Diagenesis A 0-15 PDBw 15-65 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure A 0-15 PDBw 15-65 10YR4/4 PDCox 65-270 10YR4/4 PDCox 65-270 4918650 414400 6 Alt (m) Date Exposure NEWP127 10N/1983 4918650 414400 6 Alt (m) Date Exposure NEWP127 10N/1983 4918650 414400 6 Yekg/cm^2 Structure Diagenesis PDA 0-5	Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	
NetworkIterationIterationIterationIterationIterationIterationSite Notes: Eastermost limit of dune sand above bedrock terrace.UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-52.252.25PDCox55-1552.252.25PDCox55-155T105-1155T105-1155105-1155105-1155105-11553446/22/2000RCDune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisA0-150.1510YR4/410YR6/410YR6/410YR6/4EPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50.5104006456/22/2000RC	NFWP125	10N/1983	4920230	416400	E1 E (11)	6	<i>i</i> (iii)	10	6/22/2000	
UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-52.252.252.252.252.250.5<	Site Notes: Faste	ernmost limit of	dune sand abov	e hedrock ter	race	Ū		10	0/22/2000	
PDA 0-5 PDBw 5-55 PDCox 55-155 T 155-1155 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP126 10N/1983 4919560 415540 3 44 6/22/2000 RC Units Depth cm Grain Size Bedding Color P.kg/cm^2 Structure Diagenesis A 0-15 PDBw 15-65 PDCox 65-270 10YR6/4 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP127 10N/1983 4918650 414400 6 45 6/22/2000 RC UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP127 10N/1983 4918650 414400 6 45 6/22/2000 RC Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP127 10N/1983 4918650 414400 6 45 6/22/2000 RC Units Depth cm Grain Size Bedding Color P.kg/cm^2 Structure Diagenesis PDA 0-5	Units	Denth cm	Grain Size	Bedding	Color		P ka/cm^	2	Structure	Diagenesis
PDBw 5-55 PDCox 55-155 T 155-1155 Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure NEWP126 10N/1983 4919560 415540 3 444 6/22/2000 RC Units Depth cm Grain Size Bedding Color P.kg/cm^2 Structure Diagenesis A 0-15 PDBw 15-65 PDCox 65-270 10YR4/4 PDCox 65-270 EPE (m) Alt (m) Date Exposure RC 10YR4/4 PDCox 65-270 EPE (m) Alt (m) Date Exposure RC 10YR4/4 PDCox 65-270 EPE (m) Alt (m) Date Exposure RC 10YR6/4 Date Color P.kg/cm^2 Structure Diagenesis Alt (m) Date Exposure RC Dune Sheet Zone/NAD UTM-N UTM-E EPE (m) Alt (m) Date Exposure RC NEWP127 10N/1983 4918650 4114400 6 45 6/22/2000 RC Units Depth cm Grain Size Bedding Color P.kg/cm^2 Structure Diagenesis		0-5	Ordin Oize	Dedding	00101		T .kg/cm	2	Structure	Diagenesis
PDCox5.5555-155T155-1155Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisA0-150.1510YR4/410YR6/410YR6/410YR6/410YR6/410YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50-50-50-700-70-70-70-7	PDBw	5-55						2 25		
T155-1155Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisA0-150-1510YR4/410YR6/410YR6/410YR6/410YR6/410YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50-50-50-50-70-70-70-70-7	PDCox	55-155						2.20		
Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisA0-150.1510YR4/410YR6/410YR6/410YR6/410YR6/410YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50.50.50.50.50.50.50.50.5	Т	155-1155								
Dune Sheet NEWP126Zone/NAD 10N/1983UTM-N 4919560UTM-E 415540EPE (m) 415540Alt (m) 5400Date 6/22/2000Exposure RC DiagenesisA0-15 PDBw0-15 15-65 PDCox15-65 65-27010YR4/4 10YR6/4DiagenesisStructureExposure RC DiagenesisDune Sheet NEWP127Zone/NAD 10N/1983UTM-N 4918650UTM-E 414400EPE (m) 414400Alt (m) 6Date 6/22/2000Exposure RC Date 6/22/2000Exposure RC DiagenesisDune Sheet NEWP127Zone/NAD 10N/1983UTM-N 4918650UTM-E 414400EPE (m) 6Alt (m) 6Date 6/22/2000Exposure RC DiagenesisDune Sheet NEWP127Zone/NAD 10N/1983UTM-N 4918650UTM-E 414400EPE (m) 6Alt (m) 6Date 6/22/2000Exposure RC Date 6/22/2000Dune Sheet NEWP127Zone/NAD 10N/1983UTM-N 4918650UTM-E 414400EPE (m) 6Alt (m) 6Date 6/22/2000Exposure RC DiagenesisDunits PDADepth cm 0-5Grain SizeBedding 6ColorAlt (m) 6Date 6/22/2000Exposure RC Diagenesis		100 1100								
NEWP12610N/198349195604155403446/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisA0-150-1510YR4/410YR6/410YR6/410YR6/410YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50-50-150-150-150-150-150-15	Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisA0-150-1510YR4/40400000000000000000000000000000000000	NFWP126	10N/1983	4919560	415540	E1 E (11)	3	<i>i</i> at (11)	44	6/22/2000	RC.
A0-15PDBw15-65DUne SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-5		Denth cm	Grain Size	Bedding	Color	0	P ka/cm^	2	Structure	Diagenesis
PDBw15-6510YR4/4PDCox65-27010YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50-10000-10000-10000-10000-10000-1000	Δ	0-15		Dodding	00101		1	-	olidolaio	Diagonosis
PDCox65-27010YR6/4Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50-50-100000000000000000000000000000000000	PDBw	15-65			10YR4/4					
Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-5	PDCox	65-270			10VR6/4					
Dune SheetZone/NADUTM-NUTM-EEPE (m)Alt (m)DateExposureNEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-50-50-50-10000-10000-10000-10000-1000	1 DOOM	05 270			1011(0/4					
NEWP12710N/198349186504144006456/22/2000RCUnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-5	Dune Sheet	Zone/NAD	UTM-N	UTM-F	FPF (m)		Alt (m)		Date	Exposure
UnitsDepth cmGrain SizeBeddingColorP.kg/cm^2StructureDiagenesisPDA0-5	Dune Sheet	10N/1983	4918650	414400		6	7 40 (11)	45	6/22/2000	RC
PDA 0-5	NFWP127	Denth cm	Grain Size	Bedding	Color	Ū	P ka/cm^	2	Structure	Diagenesis
	NEWP127 Units		Orun Dizo	Dedding	00101		r .kg/cm	2	Olidetare	Diagenesis
PDBw 5.80 10VP//7	NEWP127 Units PDA	0-5								
$PDC_{ov} = 80.240$	NEWP127 Units PDA PDBw	0-5 5-80			10VR4/7					
	NEWP127 Units PDA PDBw PDCox	0-5 5-80 80 240			10YR4/7					
Dune Sheet Zone/NAD UTM-N UTM-F FPF (m) Alt (m) Date Exposure	NEWP127 Units PDA PDBw PDCox	0-5 5-80 80-240			10YR4/7					
NEWP128 10N/1983 4918010 414060 10 22 6/20/2000 RC	NEWP127 Units PDA PDBw PDCox Dune Sheet	0-5 5-80 80-240 Zone/NAD	UTM-N	UTM-F	10YR4/7 FPF (m)		Alt (m)		Date	Fxposure
Units Denth cm Grain Size Bedding Color P ka/cm^2 Structure Diagenesis	NEWP127 Units PDA PDBw PDCox Dune Sheet NEWP128	0-5 5-80 80-240 Zone/NAD	UTM-N 4918010	UTM-E 414060	10YR4/7 EPE (m)	10	Alt (m)	22	Date 6/20/2000	Exposure RC
PDA 0-20	NEWP127 Units PDA PDBw PDCox Dune Sheet NEWP128 Units	0-5 5-80 80-240 Zone/NAD 10N/1983 Depth.cm	UTM-N 4918010 Grain Size	UTM-E 414060 Bedding	10YR4/7 EPE (m) Color	10	Alt (m) P.ka/cm^	22	Date 6/20/2000 Structure	Exposure RC Diagenesis

PDBw PDCox PDBw PDCox	20-45 45-95 95-115 115-265								Fe-ortstein
Dune Sheet NEWP129 Units PDCox PDC PDBg PDC PDBg	Zone/NAD 10N/1983 Depth cm 0-100 100-190 190-195 195-215 215-257	UTM-N 4916620 Grain Size	UTM-E 413970 Bedding	EPE (m) Color 10YR6/4	10	Alt (m) P.kg/cm^2	25 2 2.5	Date 6/20/2000 Structure	Exposure RC Diagenesis
PDC	257-557		XBdipE	10YR6/6					
Dune Sheet NEWP130 Units PDA PDBti	Zone/NAD 10N/1983 Depth cm 0-10 10-60	UTM-N 4916610 Grain Size	UTM-E 413880 Bedding	EPE (m) Color	10	Alt (m) P.kg/cm^2	22 2	Date 6/20/2000 Structure	Exposure RC Diagenesis
PDC	60-410		XBdipE				.20		
Dune Sheet NEWP131 Units	Zone/NAD 10N/1983 Depth cm	UTM-N 4916220 Grain Size	UTM-E 413520 Bedding	EPE (m) Color	6	Alt (m) P.kg/cm^2	13 2	Date 6/21/2000 Structure	Exposure RC Diagenesis
PDA PDBw PDCox PDBg PDCox PDBg PDC	5-35 35-85 85-95 95-145 145-155 155-355			10YR7/3 10YR7/6		2	2.25	cohesive	
Dune Sheet NEWP132 Easternmost exte	Zone/NAD 10N/1983 ent of Pleistocene	UTM-N 4916200 e sand	UTM-E 415330	EPE (m)	24	Alt (m)	25	Date 6/27/2000	Exposure RC
Units PDCox T	Depth cm 0-10	Grain Size	Bedding	Color		P.kg/cm ²	2	Structure	Diagenesis
Dune Sheet NEWP133 Units	Zone/NAD 10N/1983 Depth cm	UTM-N 4915470 Grain Size	UTM-E 413960 Bedding	EPE (m) Color	10	Alt (m) P.kg/cm^2	36 2	Date 6/20/2000 Structure	Exposure RC Diagenesis
PDA PDBw	0-10 10-80			10YR6/6			2.5	Very Weak B.	

DCox	80-180		XBdipE						
PDBg	180-190								
PDC	190-290		XBdipE						
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP134	10N/1983	4915300	414800		10		67	6/22/2000	RC
Site Notes: Easte	rmost limit of du	ne sheet in area	а.						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
PDBw	0-50							Channel	
TBtj	50-100						4.5	Blocky	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP135	10N/1983	4914930	413210		6		10	6/21/2000	SL
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
HDA	0-2		· ·			-			Ū
HDCox	2-72								
PDA	72-79								
								Weak	
PDBw	/9-114			7.5YR5/3			3.75	Blocky	
PDCox	114-159						3.25	Very Weak B.	
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP136	10N/1983	4914090	413770		7		15	6/21/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
PDA	0-5		-			-			-
PDBw	5-35			7.5YR5/4			3		
PDBg	35-50								
PDC	50-335								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP137	N10/1983	4914090	413790		8		20	5/12/2002	RC
Site Notes: Reyno	olds Creek area	(TLSample 088	N at 4.3 m de	pth).					
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
LA	0-10	Silt	Ũ			Ū			0
PDBw	10-35	VFL					3	Very Weak B.	
PDBg	35-50	VFL					4	Very Weak B.	
PDCox	50-500	FU					3.25	2	
								. .	_
Dune Sheet	Zone/NAD	UIM-N	UIM-E	EPE (m)	_	Alt (m)		Date	Exposure
NEWP138	10N/1983	4913950	414010		5		20	6/27/2000	RC
Site Notes: Topso	oil Btj horizon de	veloped on silt of	colluvium abo	ve beach de	eposit	s above \	wavecut	platform.	
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
LA	0-5	Silt					1	Very Weak B.	
LBw	5-45	Silt					2	Very Weak B.	
PSBtj	45-65			7.5YR7/8			4	Blocky	

PSBw	65-95		5				3.5	Weak Blocky	
PSCox	95-195	CL	Beach lamin	ae			3		
PM	195-145	Cobbles							
PW -	145-155								
T	155-200	Mudstone							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP139	10N/1983	4913930	413700		13		20	6/21/2000	RC
Site Notes: Site is	s at eastern limit	of Pleistocene	dune sheet.						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-5								
PDBw	5-55	FU							
Т	55-97								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP140	N10/83	4912890	413330		20		10	6/12/2000	SC
Site Notes: This	section is located	d 200 m south c	of Tillicum Sta	te Park wall	kway	to the bead	ch.		
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-5							Loose	
HDC	5-30	FL					0.5	Loose	
PDA	30-60							Loose	
PDBw	60-110	FU		10YR5/8			4	weak Blocky	
PDBa	110-155	10		2 5Y6/1			3	Verv Weak B	
PDCox	155-270	FU		2.010/1			35	Tory Would D.	allophane
PDBa	270-280						0.0	Verv Weak B.	anophano
PDCox	280-335			10YR6/3			3.5	rong mount br	allophane
PDBa	335-385								
PDC	385-445	FU							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP141	10N/1983	4912770	413370		7		13	6/21/2000	RC
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDA	0-5		5			5			5
PDBw	5-25						2		
PDCox	25-55								
PDBw	55-65								
PDBg	65-80								
PDBw	80-120								
PDBg	120-135						1.5		
T	135-160								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP142	10N/1983	4909890	412370		25		10	6/18/2000	SC
Site Notes: Sites	is north of Yach	ats.							

Units HDA HDC HDA	Depth cm 0-5 5-35 35-65	Grain Size	Bedding	Color		P.kg/cm^	2	Structure Loose Loose Loose	Diagenesis
PDBtj PDBw PDCox	65-80 80-95 95 135	М	Truncated Truncated				4	Weak Blocky Very Weak B.	
PDBg PDBw PDCox PDBg PDCox	135-155 155-180 180-220 220-230 230-250	ML.	Truncated					Very Weak B.	
PDBg	250-265		Truncated					Weak	
PDBw PDBg PDCox	265-285 285-305 305-345							Blocky	Fe-ortstein
PDBw	345-365							Very Weak B.	
Dune Sheet NEWP143 Units	Zone/NAD 10N/1983 Depth.cm	UTM-N 4909660 Grain Size	UTM-E 412500 Bedding	EPE (m)	11	Alt (m)	26	Date 6/21/2000 Structure	Exposure RC
PDA	0-10	Grain Size	Dedding			r .kg/cm	2	Structure	Diagenesis
PDBw PDCox PDC	10-70 70-130 130-450			/.5YR6/6			2.75		
Dune Sheet NEWP144	Zone/NAD 10N/1983	UTM-N 4909280	UTM-E 412840	EPE (m)	4	Alt (m)	31	Date 6/21/2000	Exposure RC
Units PDA	Depth cm 0-8	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDB PDCox PDC	8-28 28-98 98-248			10YR7/6			4.5		
PDBg	248-268								Fe-ortstein
Dune Sheet NEWP145 Units	Zone/NAD 10N/1983 Depth cm	UTM-N 4908780 Grain Size	UTM-E 412580 Bedding	EPE (m) Color	9	Alt (m) P.kg/cm^	34 2	Date 6/21/2000 Structure	Exposure SL Diagenesis
PDA PBw PDCox PDBtj PM	0-5 5-50 50-105 105-110 110-150		3.75						

Dune Sheet NEWP146	Zone/NAD N10/83	UTM-N 4908460	UTM-E 412320	EPE (m)	22	Alt (m)	22	Date 9/12/2000	Exposure SC
Sile Notes: This s	are now being tr	uncated (nost-F	INGIE Creek, N INA RC samm	orin of Yacr No dato 1 Ok	iais (i ra) ind	ticating no	t littors	100 cm depin).	
Units	Denth cm	Grain Size	Bedding	Color		P ka/cm^	2	Structure	Diagenesis
HU	0-100		Dodding	00101		r ing/offi	_ 0	Loose	Diagoniosis
HDA	100-120						Ū	20030	
PDA	120-140								
PDBa	140-160							Verv Weak B.	
								Weak	
PDBw	160-326			10YR4/6			4	Blocky	allophane
PDBg	326-391						3	Very Weak B.	
PDCox	391-421							Very Weak B.	
Cover									
Duno Shoot	Zono/NAD	LITM N		EDE (m)		Alt (m)		Dato	Exposuro
	10NI/1083	1007870	/12120		10	Ait (III)	21	6/23/2000	
Inite	Donth cm	Grain Sizo	Bodding	Color	10	D ka/cm^	יר כי	Structuro	Diagonosis
DLIBW	Беріп сіп БО		Deuulity	COIOI		г ку/стт	2	Siluciule	Diagenesis
	50								
100	50								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP148	10N/1983	4907400	411580		5		12	6/20/2000	SC
Site Notes: Pleist	tocene dunes ab	ove reoccupied	wave-cut plat	tform (N. Ya	chats	s) multiple	trunca	ted Bw, Bg laye	rs.
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
HDA	0-2								
HDBw	2-10								
PDBtj	10-25			10YR6/6			3.25		
PD	25-325								
PM	325-475								
Т	475-525								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP149	N10/83	4907350	411600		4		12	9/2/2001	SC
Site Notes: This s	section is located	115 m north of	park bench at	turnout on	Sea (Cliff in Yacl	hats.		
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm^	2	Structure	Diagenesis
PDBw	0-15			7.5YR 7/8			3.25	Blocky	
PDCox	15-80	FU		10YR 6/1			2.5	Very Weak B.	
								Very Weak	
PDBg	80-90							В.	Fe-ortstein
PDCox	90-155							Weak	
PDBw	155-165							Blocky	
PDCox	165-270							-	allophane
PDBw	270-280							Very Weak B.	
PDCox	280-320							-	

PDBw	320-322							Very Weak B.	
PDCox	322-340								
PDC	340-580	ML					3.25		gibbsite
РР	580-600								
PSBtj	600-640								
PS	640-680	MU					4.5		
PM	680-710	Cobbles							
PW	710-711								
Т	711-751								
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP150	N10/83	4907310	411620		7		12	9/2/2001	SC
Site Notes: This s	site is located 30	m south of the	bench at the	park.					
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	n^2	Structure	Diagenesis
PDA	0-20						2.5	Very Weak B.	
PDBw	20-65			5VR 5/1			35	Weak Blocky	
PDCox	65-90	FU		10YR 6/6			3	Verv Weak B	
1 D COX	00 /0	10		10111 0/0			U	Weak	
PDBtj	90-120						3.75	Blocky	
PDCox	120-180						3.25		
PDBg	180-185							Very Weak B.	
PDCox	185-270								allophane
PDBw	270-275		Truncated					Very Weak B.	
PDCox	275-350								
PDBg	350-355		Truncated					Very Weak B.	
PDC	355-570								Fe-ortstein
PP	570-650								
PM	650-670	Cobbles	Truncated						
PW	670-671								
Т	671-700	Basalt							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP151	N10/83	4906560	411960		5		10	6/25/2002	SC
Site Notes: This s RC sample from m.	site is located on base of Holocen	the south side e dune 0.8	of the Yachat	s River mou	th, ju:	st east of	the bea	ach access stair	r way.
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	n^2	Structure	Diagenesis
HDA	0-25	Shells		2.5Y2.5/1			0.25	Loose	
HDC	25-29	FU Shells		2.5Y7/4			0.5	Loose	
HDA	29-55						1	Loose	
HDC	55-58	FU Shells		2.5Y7/3			0	Loose	
HDA	58-70			5Y3/1			0.25	Very Weak B.	
Fire Pit	70-80	Shells		10YR6/6			1.5	Weak	
LBw	80-120	Silt		10YR3/4			2	Blocky	
PUBw	120-125	Pebbles		10YR5/6			3.5	Strong	

								Blocky	
PSBw	125-160	MU		10YR7/8			4.5	Blocky	
PM	160-200	Cobbles					4.5		
PW	200-201								
Т	201-500	Basalt							
Dune Sheet	Zone/NAD	UTM-N	UTM-E	EPE (m)		Alt (m)		Date	Exposure
NEWP152	N10/83	4888720	410460		17		21	2020	SC
Site Notes: This	site is 500 m no	orth of Hobbit tra	il at Heceta H	lead.					
RC Sample from	n base of Holoce	ene dunes (HDA	1070 cm).						
Units	Depth cm	Grain Size	Bedding	Color		P.kg/cm	^2	Structure	Diagenesis
HDA	0-15								
HDC	15-1065		XB					Loose	
HDA	1065-1085							Loose	
HDC	1085-1385							Loose	
PDA	1385-1440							Loose Strong	
PDBw	1440-1680	FU					4	Blocky	
PDBg	1680-1780							Very Weak B.	

Appendix B: Geotechnical Hand Auger Boring Logs

Consistence		·····	····	FIELD C	LASSIFIC/	ATION		301
Consistence color,				SOIL DES	CRIPTION F	ORMAT		
) color,	Y,				(10)	structure.		
					(11)	cementation.		
grain size,					(12)	reaction to H	CL,	
classificatio	on name (secc	ondary PRIMAR	r additiona	9;	(13)	ogor,	1000200	
plasticity of	fines				115	Caving	seepage,	
oradation.					(16)	(unit name a	nd/or origin}	
angularity,					(17)	(till zone/top	soil and root zone).	
shape,					For Re	ock and Intern	nediate Materials, se	e pages 3 and 4.
a; Bolded item:	s are the mini	mum required a	elements for	a soil descri	otion. Example	s are on back	of sheet.	
			1. C	ONSISTEN	ICY · COARS	SE-GRAINE	D	
		D&M	D&	M				
TERM	04049	SAMPLER	Samp	LER		Esco	Teer (neme Vancu	(94930
1 LAM	HAMMER)	{140·LB.	{300-	LB.		1 1010	1031 (0300 72-6000	(LOAR)
Man lance		HAMMER)	HAMM	ER)' [nonotrato d'ul	an analysis of he	hard	
Very Kouse	4.10	11.26	4 1	4 Easin A Fasih	penetrated wit	en pusheo by	hen nucled by hard	1
Sedium dense	10 - 30	26 - 74	10 -	30 Easily	to moderately	Denetrated w	hen driven by 5-pou	nd hammer
Dense	30 - 50	74 - 120	30 -	47 Pene	trated 1-foot wil	th difficulty w	hen driven by 5-pou	nd hammer
Very dense	>50	>120	>47	7 Pene	trated only few	inches when	friven by 5-pound h	ammer
			1.	CONSIST	ENCY - FINE	GRAINED		
		D&M 1	D&M [1			
*****	SPT	SAMPLER	SAMPLER	POCKET	Terroret		r.,	i e Trove
I ERM	(140-LB,	(140-1.6.	(300-L8.	PEN. ²	I DRVANE.		78	10 1151
	rotwatery	HAMMER)' 1	HAMPLER)1		L			
Very soft	<2	<3		<0.25	<0.13	Easily per	etrated several inch	es by fist
Soft	2-4	3-6	2-5	0.25 - 0.5	0.13 - 0.25	Easily per	etrated several inch	es by thumb
edium stitt	4 - 8	- 12 	3-9	0.50 - 1.0	0.25 - 0.5	Can be be	netrateo several inc	nes by thumb with moderate en
Still Voor stiff	8-15	25 - 65	9-19	20-40	10.20	Readily in	dented by thumboa	a penetrateo only with great en
Mard	13-30 3	>65	13-37	2.0 - 4.0	52.0	Difficult to	a indent by thumba	
nconfined comp ndrained shear :	ressive strength strength with to	sen ison coonty, c with pocket pene rvane (tsf).	James & Moor strometer; in t	e (D & M) samj ons per square	ler, number of bli foot (tsf). 2. COLOR	ows/ft for last 1	2" and 30" drop,	
nconfined comp ndrained shear 2 common col 2ckled, not mo	vessive strength strength with to ors. For comb atted, you ma	syn ixow coonty, c i with pocket pene rvane (tsf). Dinations use hy y add that infor	pames & Moor strometer; in te phens. To te mation at th	e (D & M) samp ous per square describe tint e end of the	bler, number of ble foot (tsf). 2. COLOR use modifiers: p soil description	ows/It for last 1 Dale, light, da Mottles and	2" and 30" drop. rk. For color variatic speckles mean two	ons use "mottles". If something i different things. Soil color char
nconfined comp ndrained shear e common col- eckled, not mo y be required	vessive strength strength with to ors. For coml ottled, you ma by client. Exa	print pocket pene rvane (tsf). Dinations use hy y add that infor mples: red-brow	pames & Moor strometer; in to phens. To o mation at th vn; brown-g	e (D & M) samp ons per square describe tint e end of the ray SILT with	oler, number of bli foot (tsf). 2. COLOR use modifiers: p soil description orange mottles	ows/ft for last 1 Dale, light, da Mottles and ; or dark brou	2" and 30" drop. rk. For color variatic speckles mean two yn.	ns use "mottles", If something i different things. Soil color char
nconfined comp ndrained shear e common col- eckled, not mo y be required 4	vessive strength strength with to ors. For comt ottled, you ma by client. Exa I. CLASSIFI	printions use hy add that infor mples: red-brow	ophens. To o mation at th vn; brown-g	e (D & M) samp cons per square describe tint e end of the ray SILT with	oler, number of bin foot (tsf). 2. COLOR use modifiers: p soil description orange mottles	ows/ft for last 1 pale, light, da Mottles and ; or dark bro	2" and 30" drop. rk. For color variation speckles mean two vn. 3. GRAIN SI	ons use "mottles", If something i different things. Soil color char ZE
nconfined comp ndrained shear common col- ckled, not mc y be required 4 AME AND MOI	oressive strength strength with to ors. For comb ottled, you ma by client. Exa I. CLASSIFI	binations use hy y add that infor mples; red-brow CATION NA	pames & Moor strometer; in to mation at th vm; brown-g ME*	e (D & M) samp cors per square describe tint e end of the ray SILT with	oler, number of bli foot (tsf). 2. COLOR use modifiers: p soil description orange mottles Description	ows/It for last 1 Dale, light, da Mottles and ; or dark brow	2" and 30" drop. k. For color variatic speckles mean two vn. 3. GRAIN SI Steve*	ons use "mottles". If something different things. Soil color char ZE OBSERVED SIZE
confined comp ndrained shear common col ckled, not me y be required 4 AME AND MOD	vessive strength strength with to ors. For comit titled, you ma by client. Exa by client. Exa bliffer Terms	Dinations use hy y add that infor mples: red-brow CATION NA CONSTITUENT PERCENTAGE	vanes & Moor strometer; in tr mation at th wn; brown g ME ² CONSTI	e (D & M) samp ons per square describe tint e end of the ray SILT with TUENT FE	Jer, number of blin foot (tst). 2. COLOR use modifiers: p soil description orange mottles DescRip bouk	wws/ft for last 1 Dale, light, dat . Mottles and ; or dark brow PTION lets	2" and 30" drop. rk. For color variatic speckles mean two vn. 3. GRAIN SI. Sieve*	ns use "moltiles". If something i different things. Soil color char ZE Observed Size 212".
confined comp drained shear common col ckled, not me y be required 4 AME AND MOI CORN FS	verssive strength strength with to ors. For comt stilled, you ma by client. Exa I. CLASSIFI DIFIER TERMS SAND, BOULDERS	sh skyw county, twith pocket pene ovane (IsI). Sinations use hy y add that infor mples: red-brow CATION NA CONSTITUENT PERCENTAGE >50%	panes & Moor strometer; in tr mation at th wn; brown g ME ² Constri PRIM	e (D & M) samp cons per square describe tint e end of the ray SILT with TUENT FE	oler, number of bli foot (tst). 2. COLOR use modifiers: p soil description orange mottles DESCRI bouk cobb	wws/ft for last 1 bale, light, dat . Mottles and ; or dark brow PTION lers les	2" and 30" drop. (k. For color variatic speckles mean two vn. 3. GRAIN SI Steve* 24. 2"	ons use "mottles", If something different things. Soil color char ZE Observed Size >12" 3" 12" 3" 12"
confined comp drained steer common col ckled, not mc y be required 4 AME AND MOI GRAVEL, COBBLES, sandy, or	vessive strength strength with to ors. For comit by client. Exa by client. Exa by client. Exa bt, CLASSIFF DIFFER TERMS SAND, ROULDERS avelby.	vith pocket pere rvane (tsf). Difiations use hy y add that infor mples: red-brox CATION NA CONSTITUENT PERCENTAGE >50%	phens. To o mation at th vn; brown-g ME* Consti PRIM	e (D & M) samp ons per square describe tint e end of the ray SILT with TUENT FE	oler, number of bli foot (ts). 2. COLOR use modifiers: p soil description orange mottles Descriv bould cobb	ows/ft for last 1 pale, light, da Mottles and ; or dark brow prion lers les Coarse fine	2" and 30" drop. k. For color variatic speckles mean two vn. 3. GRAIN SI Steve* 4 3" 4 3"	ns use "mottles". If something i different things. Soil color char ZE OBSERVED SIZE >12" 3'-12" 3'-12" 0.19" 3"
comfined comp drained shear common col ckied, not mc y be required 4 AME AND MOI GRAVEL, COBBLES, sandy, gr cobbley,	vessive strength strength with to ors. For comit oxtled, you ma by client. Exa by client. Exa by client. Exa by client. Exa SAND, ROULDERS avelly, bouldery	vith pocket pene rvane (tsf). sinations use hy y add that infor mples: red-brow CATION NA CONSTITUENT PERCENTAGE >50% 30 - 50%	phens. To complete the second	e (D & M) samp cris per square describe tint e end of the ray SILT with TUENT FE ARY	oler, number of bli foot (ts). 2. COLOR use modifiers: p soil description orange mottles DESCRI bould cobb	wis/ft for last 1 bale, light, da . Mottles and ; or dark bron PTION lers coarse fine Coarse	2" and 30" drop. tk. For color variatic speckles mean two vi. 3. GRAIN SI. Steve? 4. 3. GRAIN SI. 5. 4. 4. 3. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	ZE OBSERVED SIZE >12" 3" 12" 3" 12" 0.19" 32" 0.029" - 0.19"
confined coms drained shear common col ckled, not me y be required AME AND MOI GRAVEL, COBBLES, sandy, gr cobbley, silly, clay	vessive strength strength with to ors. For comt xttled, you ma by client. Exa by client. Exa L. CLASSIFI DIFIER TERMS SAND, ROULDERS avely, bouldery ey"	vith pocket pene rvane (tsf). Dinations use hy add that infor mples: red-brox CATION NA CONSTITUENT PERCENTAGE > 50% 30 - 50%	phens. To o mation at th ym; brown-g ME* Constri PRIM secon	describe tint e end of the ray SILT with TUENT FE	Dier, number of blir foot (tsh). 2. COLOR use modifiers: p soil description orange mottles Description Description bould cobb gravel sand	ows/ft for last 1 bale, light, da . Mottles and ; or dark bro PTION lers Coarse fine coarse medjum	2" and 30" drop. (k. For color variatic speckles mean two vn. 3. GRAIN SI Steve* 4 3" #4 - 3" #10 - 34 #10 - 3410	Observe Soil color char ZE
common col common col ckled, not me v be required 4 AME AND MOI COBBLES, sandy, gr cobbley, silty, clay some (gr	vessive strength strength with to ors. For comt by client. Exa by client. Exa L. CLASSIFF DIFER TERMS SAND, ROULDERS avely, avely, sand, avely, sand, southors)	SP JSW Could, Y with pocket pene rvane (tsf). Dinations use hy y add that infor mples; red-brow CATION NA CONSTITUENT PERCENTAGE > 50% 30 - 50% 15 - 50%	meters & Moor eterometer; in to mation at th wn; brown g ME* CONSTI TY PRIM secon	e (D & M) samp cris per square describe tint e end of the ray SILT with TUENT FE ARY	oler, number of bli foot (ts). 2. COLOR use modifiers: p soil description orange mottles Description cobb gravel sand	ous/It for last 1 bale, light, da Mottles and or dark brow PTION lers Coarse fine Coarse medium fine	2" and 30" drop. *k. For color variatic speckles mean two vn. 3. GRAIN SI Steve*	Observed Soil color char ZE Observed Size >12" 3" - 12" 3" - 12" 3" - 12" 0.19" - 3" 0.19" - 3" 0.079" - 0.19" 0.079" 0.0029" - 0.017" 0.017"
confined coms drained shear common col ckied, not mo y be required 4 AME AND MOI GRAVEL, COBBLES, sandy, gr cobbley, some (gr, cobbles, some (gr, some (gr, cobbles, some (gr, cobbles)) (gr, cobbles, some (gr, cobbles)) (gr, cobbles)) (gr, co	vessive strength strength with to ors. For comit xttled, you ma by client. Exa by client. Exa the CLASSIFI DIFIER TERMS SAND, ROULDERS avelly, bouldery eyr ² avel, sand, boulders) t clau? ²	sh ixiw Could, v with pocket pene ryane (tsf). Dinations use hy y add that infor mples: red-brox CATION NA CONSTITUENT PERCENTAGE > 50% 30 - 50% 15 - 50%	phens. To i rphens. To i mation at th wn; brown-g ME ² Constri TY PRIM secon	e (D & M) samp nas per square lescribe tint e end of the e and of the russ start with TUENT FE ARY dary	DESCRIPTION COLLOR 2. COLLOR USE modifiers: p soil description orange mottles DESCRIPTION bould cobb gravel sand fine	aws/ft for last 1 bale, light, dat Mottles and ; or dark bro PTION lers Coarse fine Coarse medium fine 5	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vn. 3. GRAIN SI. Sieve* 4. 3" #4. 3" #4. 4" #10. #4 #40. #10 #200 #4200	Observed
confined comp drained shear common col kkied, not me y be required 4 AME AND MOI GRAVEL, COBBLES, sandy, gr cobbley, silty, clay some (gr cobbles, some (gr	vessive strength strength with to ors. For comin xtiled, you ma by client. Exa by client. Exa by client. Exa by client. Exa SAND, ROULDERS avelly, hourdery ey'' avel, sand, boulders) t, clay)** wel, sand	Sinations use hy with pocket pene vane (tsf). Sinations use hy y add that infor mples: red-brox CATTION NA CONSTITUENT PERCENTAGE >50% 30 - 50% 15 - 50% 15 - 30% 5 - 15%	production of the second secon	e (D & M) Samp ons per square lescribe tint e end of the end of the ray SILT with TUEMT FE ARY idary onal	Dec. number of blin foot (tsh).	wws/ft for last 1 bale, light, da Mottles and or dates an	2" and 30" drop. rk. For color variatic speckles mean two 3. GRAIN SI . Siteve* 3. GRAIN SI . Siteve* 3. GRAIN SI . 3. GRAIN SI .	All States and States
common col ckied, not mc y be required AME AND MOI CRAVEL, COBBLES, sandy, gr cobbley, some (gr cobbles, some (sif trace (gr	vessive strength strength with to ors. For comb by client, Exa by client, Exa by client, Exa by client, Exa client, Exa client, Exa client, Sand, boulders) t, clay)* wel, sand, boulders) t, clay)*	Ser Jsów Coulity - with pocket pene rvane (tsf). Dinations use hy y add that infor mples: red-brow CATION NA CONSTITUENT PERCENTAGE > 50% 30 - 50% 15 - 30% 5 - 15%	rphens. To i mation at th matio	e (D & M) samp ons per square describe tint e end of the e end of the ray SLT with TUENT FE ARY onal	Dier, number of blir foot (ts). 2. COLOR use modifiers: p soil description orange mottles Descriv Doug cobb gravel sand sand use of #200 fr	ows/ft for last 1 bale, light, da Mottles and ; or dark brow fers les coarse fine coarse fine coarse fine sid sieve encou	2" and 30" drop. (k. For color variatic speckles mean two vn. 3. GRAIN SI Sieve* 3. GRAIN SI 5. Color variatic 3. GRAIN SI 5. Color variatic 4. Color variat	Observe Soil color char ZE ObserveD Size 3".12" 3".12" 3".12" 3".12" 0.19".24" 0.079"-0.19" 0.017" - 0.079" 0.0029" - 0.19" 0.0029" - 0.17" <0.0025"
common col ckied, not mc y be required AME AND MOD GRAVEL, COBBLES, sandy, gr cobbley, silly, clay some (gr cobbley, some (gr cobbles, trace (silt	vessive strength strength with to ors. For comil bttled, you ma by client. Exa by client. Exa the CLASSIFI DIFFER TERMS SAND, BOULDERS avely, BOULDERS avely, BOULDERS avely, avel, sand, boulders) t, clay)**	Solution of the second	phens. To c phens. To c mation at th mation at the mation at	e (D & M) samp ons per square lescribe tint e end of the ray SILT with TUEMT FE dary onal	DESCRU COLLOR 2. COLLOR USE modifiers: p soil description orange mottles DESCRU DOESCRU bould colbb gravel sand fine "Use of #200 fi	aves/It for last 1 bale, light, dat Mottles and or dark brow PTION PTION COarse fine Coarse fine 5 coarse c	2" and 30" drop. 2" and 30" drop. 15. For color variation 15. For color variation 15. GRAIN SI 3. GRAIN SI 3. GRAIN SI 3. GRAIN SI 3. GRAIN SI 44 32 44 32 45 32 45.	ZE OBSERVED SIZE >12" 3"-12" 3"-12" 3"-12" 3"-12" 3"-12" 3"-12" 0.017" -0.079" 0.017" -0.079" 0.0029" -0.017" <0.0029" -0.017"
comfined comp drained shear common col ckied, not mc y be required 4 AME AND MOI GRAVEL, COBBLES, sandy, gr cobbley, some (gr cobbles, some (gr cobbles, some (gr cobbles, some (gr cobbles, some (gr cobbles, some (gr cobbles, some (gr trace (gra Cobbles, some (gr trace (gra Cobbles, some (gr) trace (gra Cobbles, some (gr) trace (gra Cobbles, some (gr) trace (gra Cobbles, some (gr) trace (gr)	vessive strength strength with to ors. For comin xtiled, you ma by client. Exa by client. Exa by client. Exa strength, sAND, ROULDERS avelfy, soutders) t, clay)** wel, sand, bouiders) t, clay)** wel, sand, bouiders) t, clay)**	Sinations use hy with pocket pene vane (tsf). Sinations use hy y add that infor mples: red-brox CATION NA CONSTITUENT PERCENTAGE >50% 30 - 50% 15 - 50% 15 - 30% 5 - 15% <50%	Ames & Moor trometer; in to phens. To c mation at th mation at th secon	e (D & M) Samp ons per square lescribe tint e end of the ray SILT with TUEMT FE ARY idary onal	Dec. number of bin foot (ts). 2. COLOR use modifiers: p soil description orange mottles DESCRI DESCRI boult cobb gravel sand fine "Use of #200 fi	wos/ft for last 1 bale, light, da Mottles and or dark brown PTION lets Coarse fine Coarse fine Coarse fine coarse fine coarse fine coarse fine coarse fine coarse fine coarse fine coarse fine fine to so	2" and 30" drop. 14. For color variatic speckles mean two vi. 3. GRAIN SI. Sieve* 4 3 #4 4 - 4 - 40 #10 #200 - #40 - 4200 raged. 5. MOISTUE	Ans use "moltiles". If something i different things. Soil color char ZE 3'-12" 3'-12" 3'-12" 0.19" - 3" 0.079" - 0.19" 0.0079" - 0.19" 0.0079" - 0.19" 0.0029" - 0.19" 0.0029" - 0.17"
common col ckied, not mc y be required AME AND MOI GRAVEL, COBBLES, sandy, gr cobbley, some (sift trace (sift CLAY, SII silly, clay	ressive strength strength with to ors. For comb btled, you ma by client. Exa by client. Exa by client. Exa t. CLASSIFI DIFIER TERMS SAND, ROULDERS avely, boulders) t, clay)**	spin solve Contin, V viniti pocket pene rvane (tsf). pinations use hy y add that infor mples; red-brow CATION NA CATION NA CONSTITUENT Percentage >50% 30 - 50% 5 - 15% <50%	rphens. To c mation at th wn: brown-g ME* Constri PRIM secon additi	e (D & M) samp ons per square describe tint e end of the e end of the ray SLT with TUENT FE ARY onal ARY	Dec. number of blin foot (ts). 2. COLOR use modifiers: p soil description orange mottles Description Description Description Description Description Description Gravel Gravel Sand Fine Use of #200 fi	oves/ft for last 1 bale, light, da Mottles and or dark brow PTION les Coarse fine Coarse fine 5 state encou M	2" and 30" drop. (k. For color variatic speckles mean two vn. 3. GRAIN SI Steve* 3. GRAIN SI 5. WOISTUE 5. MOISTUE	Image: Solid color charged different things: Solid color charged ZE 3"-12" 3"-12" 3"-12" 3"-12" 0.19"-X" 0.017"-0.079" 0.0029"-0.19" <0.0029"-0.017"
common col ckied, not mc y be required AME AND MOD GRAVEL, COBBLES, sandy, gr cobbley, silly, clay some (gr cobbles, trace (gilt CLAY, SII, silly, clay sandy, gr	vessive strength strength with to ors. For comil stitled, you ma by client. Exa by client. Exa t. CLASSIFI DIFFER TERMS SAND, BOULDERS avelly, boulders boulders boulders t, clay)** wel, sand, boulders boulders clay** T** ey**	Solve Control of the second se	panes & Moor trometer: In to phens. To commission at the mation at the mation at the mation at the presence of the secon secon secon secon	e (D & M) Samp ons per square lescribe tint e end of the ray SILT with TUEMT re dary onal ARY onal	DESCRUTE COLLOR 2. COLLOR USE modifiers: p Soil description orange mottles DESCRUTE DESCRUTE DESCRUTE Sand Sand fine "Use of #200 fi	aves/It for last 1 bale, light, dat Mottles and or dark brow PTION PTION COarse fine Coarse fine Coarse fine State State Coarse fine State State Coarse fine State State Coarse fine State	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vit. 3. GRAIN SI Sieve* 4. 3 4. 3 5. MOISTUI 4. 4. 4. 10 5. MOISTUI 5. MOISTUI	ZE OBSERVED SIZE VIC DISC Solid Color char ZE OBSERVED SIZE VIC DISC VIC DISC OBSERVED SIZE VIC DISC VIC DISC VI
common col ckied, not me y be required AME AND MON GRAVEL, COBBLES, cobbley, saily, clay some (sar cobbles, some (sar cobbles, trace (sar cobbles, trace (sar cobbles, some (sar some (sar some (sar	vessive strength strength with to ors. For comin xtiled, you ma by client. Exa by client. Exa by client. Exa systems sAND, ROULDERS avelly, houtdery ey": avel, sand, boulders) , clay)** wel, sand, boulders) , clay)** avel, sand, boulders) , clay)**	Sinations use hy vith pocket penervane (tsf). sinations use hy y add that informples: red-brow CATION NA CONSTITUENT PERCENTAGE > S0% 30 - 50% 15 - 50% 5 - 15% < 52%	Ames & Moor trometer; in to phens. To c mation at th mation at th mation at th mation at th mation at th mation at th mation at the mation at	e (D & M) Samp ons per square lescribe tint e end of the end of the ray SILT with TUENT FE ARY dary onal ARY dary	Description Sand Sand Ter	aves/It for last 1 bale, light, dat Mottles and or dark brown PTION lets Coarse fine Coarse fine Coarse fine coarse fine coarse fine to so coarse fine fine to so coarse fine fine fine to so coarse fine fine fine fis so coarse fine fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fine fis so coarse fis so coarse fis so coarse fine fis so coarse fis fis coarse fis so coarse fis fis coarse fis fis coarse fis fis fis coarse fis fis fis fis fis fis fis fis fis fis	2" and 30" drop. 2" and 30" drop. 14. For color variatic speckles mean two 3. GRAIN SI. Steve* 34 - 3 #4 - 4 #4 - 4 #	Ans use "molties". If something different things. Soil color char ZE 212" 3"-12" 3"-12" 0.19"-3" 0.079"-0.19" 0.0029"-0.017" 0.0029"-0.017" 0.0029" 20029"-0.017" 20029"
AME AND MOI COBBLES, Sandy, gr Cobbles, Some (sil Clays), clay Some (sil Sily, clay Some (sil Clays), clay Some (sil Some (sil Clays), clay Some (sil Some (sil Some (sil Some (sil Some (sil Some (sil Some (sil Some (sil So	ressive strength strength with to ors. For comf by client, Exa by client, Exa by client, Exa client, Exa client, Exa client, Exa client, Sand, boulders) t, clay)** t, clay)** t, clay)** t, clay,** Ta** ey** avely, clay,** Ta* ey** avely, clay,** Ta*	spin skyw could, v with pocket penery with pocket penery y add that informalies; red-brow CATION NA CONSTITUENT PERCENTAGE > 50% 30 - 50% 5 - 15% < 50%	rphens. To c mation at th wn: brown-g ME* Constri PRIM secon additi	e (D & M) samp ons per square jescribe tint e end of the e end of the ray SILT with TUENT FE ARY onal ARY onal	Dec. number of bin foot (tsh).	oves/ft for last 1 bale, light, da Mottles and or dark browners coarse madium fine s eld sieve encou el sieve encou s el sieve encou	2° and 30° drop. 2° and 30° drop. (k. For color variatic speckles mean two vn. 3. GRAIN SI: 5. Evere ³ 44 - 3° 44 - 3° 40 - 3° 4	All Second Secon
AME AND MOD CRAVEL, COBBLES, Sandy, gr COBBLES, Sandy, gr Cobbles, Some (Sil CLAY, SIL Sily, Clay Some (Sil CLAY, SIL	vessive strength strength with to ors. For comil stiled, you ma by client. Exa by client. Exa t. CLASSIFI DIFIER TERMS SAND, ROULDERS avelly, BOULDERS avelly, BOULDERS avelly, boulders) t, clay)** avelsy avelsy avelsy avelsy avelsy avelsy t, clay)** avelsy avelsy avelsy avelsy d, gravel, boulders) t, clay)**	spin skyw coulin, ywith pocket peni ryane (tsf). pinations use hy yadd that infor mples: red-brox CATION NA CONSTITUENT PERCENTAGE >50% 30 - 50% 15 - 30% 50 - 50% 30 - 50% 15 - 30% 30 - 50% 15 - 30% 15 - 30%	panes & Moor trometer: In to phens. To c mation at th wn: brown-g ME* Constr PRIM secon additi PRIM secon additi	e (D & M) Samp ons per square lescribe tint e end of the ray SILT with TUEM FE ARY onal	DESCRU COLLOR 2. COLLOR 2. COLLOR USE modifiers: p Soil description orange mottles DESCRU DOESCRU DOESCRU DOESCRU Sand fine "Use of #200 fi TEF dr mo we	aves/It for last 1 bale, light, dat Mottles and or dark brow PTION PTION COarse fine Coarse fine Coarse fine Set di sieve encou M Y X St t	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vit. 3. GRAIN SI Sieve* 4. 3 4. 3 4. 3 4. 4 4. 3 4. 3 4. 4 4. 3 4. 4 4. 4 4. 4 4. 4 4. 4 5. MOISTUE very low moisture damp, whisture visible free water,	ZE OBSERVED SIZE OBSERVED SIZE >12" 3".12" 3".12" 3".12" 3".12" 0.017" - 0.079" 0.017" - 0.079" 0.0029" - 0.017" <0.0029" -
AME AND MO COBILES, CONSTRUCT COMMON COLOR CORAVEL, COBBLES, COBBLES, COBBLES, COBBLES, COBBLES, Some (gri Cobbley, silly, clay some (silly, clay some (silly)	vessive strength strength with to the strength with the strength with strength builders builders) , clay)** wel, sand, bouiders) , clay)** wel, sand, bouiders) , clay)** the strength builders) , clay)** the strength builders) the strength builders) the strength builders) the strength builders) the strength stren	spinations use hy vith pocket penervane (tsf). sinations use hy y add that informples: red-brow CATION NA CONSTITUENT PEACENTAGE > 50% 30 - 50% 15 - 30% 5 - 15% - 50% 30 - 50% 5 - 15% - 50% 15 - 30% 15 - 30% 15 - 30% 15 - 30%	phens. To c phens. To c mation at th mation at th mation at th mation at th mation at th PRIM Secon PRIM secon additi	e (D & M) Samp ons per square lescribe tint e end of the e end of the ray SILT with TUENT FE ARY dary onal ARY ional	Server and a server a ser	aves/ft for last 1 bale, light, dat Mottles and or dark browner erricon les coarse fine coarse medium fine ss eld sieve encou y y st t t t t t	2° and 30° drop. 2° and 30° drop. 18. For color variatic speckles mean two 19. 3. GRAIN SI. Steve* 3. GRAIN SI. Steve* 4. 3° 44. 4° 44. 4°	Ans use "motifies". If something different things. Soil color char ZE 3'12" 3'-12" 3'-2" 0.079" - 0.19" 0.017" - 0.079" 0.0029" - 0.19" 0.0029" - 0.19" 0.0029" - 0.19" 0.0029" - 0.19" 0.0029" Colory
AME AND MOI CORRECT STATES AME AND MOI CRAVEL, CORRES, Sandy, gr Cobbles, Some (sil trace (silt CLAY, Silly, Clay Some (sil trace (silt CLAY, Silly, Clay Some (silt trace (silt CLAY, Silly, Clay Some (silt trace (silt CLAY, Silly, Clay Some (silt trace (silt cobbles, cobbles, trace (silt trace (silt))	ressive strength strength with to ors. For comf btled, you ma by client. Exa by client. Exa client. Ex	spin stow could, visit, pocket penery, with pocket penery, with pocket penery, and that informalies; red-brownait, red-	rphens. To i mation at th mation at the mation at the ma	e (D & M) samp ons per square jescribe tint e end of the e end of the ray SILT with TUENT FE ARY onal ARY ional	Dier, number of bin foot (tsh). COLOR use modifiers: p soil description orange mottles DESCRI DESCRI Dusc cobb gravel sand fing '' Use of #200 fi TEFAM	oves/ft for last 1 bale, light, da Mottles and or dark brown for d	2" and 30" drop. tk. For color variatic speckles mean two vi. 3. GRAIN SI. Steve* 34 - 3" #4 - 3" #4 - 3" #4 - 3" #10 - #10 #200 - #40 =4200 raged. 5. MOISTUE very low moisture damp, without vis visible free water, PLASTICITY O Fire	All Second Secon
confined comp normalized shear common col ckled, not me y be required 4 AME AND MOI GRAVEL, COBBLES, sandy, gr cobbles, some (sil ccbbles, trace (sil cLAY, SIL sily, clay some (sil cLAY, SL sing, clay some (sil clay, clay some (sil trace (sat cobbles, some (sat)	vessive strength strength with to ors. For comil stiled, you ma by client. Exa by client. Exa to classific scales, and boulders, classific savely, avels, sand, boulders, classific boulders, classific sources, classific sou	spinations use hy viith pocket penervane (tsf). pinations use hy yadd that informalies; red-browned (tsf). CATION NA CONSTRUENT PERCENTAGE >50% 30 - 50% 15 - 50% 5 - 15% 30 - 50% 15 - 30% 5 - 15% 50 - 100%	panes & Moor trometer: In to phens. To c mation at th mation at the mation at t	e (D & M) Samp ons per square lescribe tint e end of the ray SILT with TUEM FE dary onal ARY ional ARY	COLOR Sand German Sand Sand TERM TERM	aves/ft for last 1 bale, light, da Mottles and or dark brow PTION lets Coarse fine Coarse fine Coarse fine coarse fine state di sieve encou state state fi fine to secon coarse fine fi fi fi fi fi fi fi fi fi fi fi fi fi	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vit. 3. GRAIN SI Sieve* 4. 3" #4. 3"	ZE OBSERVED SIZE SIZE OBSERVED SIZE SIZE SIZE OBSERVED SIZE SIZE SIZE SIZE OBSERVED SIZE SIZE SIZE SIZE SIZE ODSP ODS
AME AND MOL COMMON COLL COMMON COLL COMMON COLL COMMON COLL COMMON AME AND MOL COMMON COMMON COMMON COMMON COMMON COMMON Sandy, gr Cobbles, some (sill cobbles, trace (sill some (sill cobbles, cobbles, some (sill trace (sill cobbles, some (sill trace (sill trace (sill trace (sill trace (sill tr	vessive strength strength with to ors. For comin xtiled, you ma by client. Exa by client. Exa system system source strength bourders t, clay)** wel, sand, bourders) t, clay)** wel, sand, bourders) t, clay)** wel, sand, bourders) t, clay)** source strength bourders) t, clay)** source strength bourders) t, clay)** source strength bourders) t, clay)** source strength bourders) t, clay)** source strength bourders) t, clay)** source strength bourders) t, clay)**	spinations use hy viniti pocket penervane (tsf). pinations use hy y add that informalies: red-browned (tsf). CATION NA CONSTITUENT PERCENTAGE > 50% 30 - 50% 15 - 50% 5 - 15% < 53%	phens. To c phens. To c mation at the Proven gradient of the PRIM Secon Additi PRIM Secon	e (D & M) samp ons per square section of the e end of the e end of the ray SILT with TUEMT FE dary onal dary ional dary dary	DESCRUTE COLOR Solid description orange motifiers: p DESCRUTE DESCRUTE DESCRUTE DESCRUTE Sand TERM nonplastic	wos/ft for last 1 bale, light, dat Mottles and or dark brown erst coarse fine coarse fine coarse fine coarse fine dium fine s coarse fine coarse fine coarse fine fine fine fine fine fine fine fin	2" and 30" drop. 2" and 30" drop. tk. For color variatic speckles mean two vi. 3. GRAIN SI. Steve* 4. 3 #4. 4 #4. 4 #4	Affree The server of the serve
AME AND MOD CRAVEL, COBBLES, Sandy, gr Cobbles, Some (sil Clavel, sily, clay Some (sil Clavel, sil, Clavel, sil, Clavel, sil Clavel, sil, Clavel, sil Clavel, sil Clav	ressive strength strength with to ors. For comf btled, you ma by client. Exa by client. Exa client. Ex	spin solve Contin, F spin store Continuent vinitip occleate peneric vanie (tsf). binations use hy y add that informalies; red-browned (tsf). CATION NA CONSTITUENT Percentrace > 50% 30 - 50% 5 - 15% - 50% 5 - 15% 5 - 15% 5 - 15% 5 - 100% 5 - 15% 5 - 100%	rphens. To in mation at the ma	e (D & M) samp ons per square jescribe tint e end of the end of the ray SILT with TUENT FE ARY onal ARY ional ARY ional ARY ional	COLOR Sand Color Co	aves/ft for last 1 bale, light, dat Mottles and order to dark brow PTION	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vi. 3. GRAIN SI. Steve* 3. GRAIN SI. Steve* 4. 3" 4. 4. 3" 4. 4. 3" 4. 4. 4" 4. 10 - #10 #200 - #40 4. 40 - #10 #200 - #40 (aged. 5. MOISTUI very low moisture damp, without vis visible free water, PLASTICITY O Fits: n ball falls apart easily crushe:	All Section 2015 A section of the se
AME AND MOD CRAVEL, COBBLES, Sandy, gr Cobbles, Sandy, gr Sandy, gr	vessive strength strength with to ors. For comit stilled, you ma by client. Exa I. CLASSIFI DIFIER TERMS SAND, ROULDERS avely, avel, sand, boulders) clay)** avel, sand, boulders) clay)** avel, sand, boulders) clay)** avel, sand, boulders) clay)** sol, clay)** sol, aravel, boulders) t, clay)** sol, aravel, boulders) t, clay)** sol, aravel, boulders) t, clay)** sol, aravel, boulders) t, clay)** sol, aravel, boulders) t, clay)** sol, aravel, boulders) t, clay)**	spin store Spin store viniti pocket penervane (tsf). Spin store pinations use hy add that informalies; red-browned valid that informalies; red-browned Solve CATION NA Construction CONSTITUENT Percentrace >SOW 30 - SOW 30 - SOW 15 - SOW S - 15% SOW 30 - SOW 30 - SOW S - 15% SOW S - 15% SOW S - 15% SO	panes & Moor trometer; in to phens. To c mation at th wn; brown-g ME* Constr PRIM secon additi PRIM secon additi	e (D & M) Samp ons per square lescribe tint e end of the ray SILT with TUEMT FE dary onal dary ional dary ional	Control Contr	aves/ft for last 1 bale, light, dat Mottles and or dark brow PTION PTION COATSE Files COATSE CO	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vit. 3. GRAIN SI Sieve* 4. 3 4. 4 4. 40 - 410 4200 - 440 4200 - 440 - 4200 caged. 5. MOISTUE very low moisture very low moisture very low moisture very low moisture very low moisture very low moisture of any, without vis visible free water, PLASTICITY O Figure n ball falls apart ca- ture, m ball casily crusher with some difficulty	The set of
AME AND MOI COBBLES, Some Gar Cobbles, Some Gar Some Gar Som	versive strength strength with to ors. For comi- matted, you ma- by client. Exa by client. Exa I. CLASSIFI DIFFER TERMS SAND, ROULDERS avelly, hourdery ey'* avel, sand, bourders) t, clay)** wel, sand, bourders) t, clay)** mel, gravel, bourders) t, clay)** sourders) t, clay)** t, clay)** sourders) t, clay)** sourders) t, clay)** sourders) t, clay)** sourders) t, clay)** sourders) t, clay)** sourders) t, clay)** sourders) t, clay)** t, clay)** sourders) t, clay)** t, clay)* t, clay)*	sprinker sprinker vikiti pocket penervane (tsf). pinations use hy y add that informalies: red-browned CATION NA CONSTITUENT PERCENTAGE >50% 30 - 50% 15 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 30 - 50% 50 - 100% 5 - 15%	phens. To c mation at the mation at the ME* Constru- PRIM secon additi PRIM secon additi	e (D & M) Samp ons per square lescribe tint e end of the end of the ray SILT with TUEMT FE dary onal dary onal ARY dary ional	COLOR Solid Control of bin foot (ts). COLOR Solid Control Color Col	aves/ft for last 1 hale, light, dat Mottles and or dark brown fine coarse fine coarse fine coarse fine coarse fine coarse fine fine fine fine fine fine fine fin	2" and 30" drop. 2" and 30" drop. 4. For color variatic speckles mean two vi. 3. GRAIN SI Steve? 4. 3 4. 4 4. 3 4. 4 4. 4	The set of

plasticity testing are performed to determine site and/or clay constituent percentage (see Describing fine-Grainod Sail page 2). Confirmation requires laboratory testing (Atterberg Limits and hydrometer). GEODESIGN≚ 15575 SW Sequoia Parkway, Suite 100, Portland, OR 97224 (503) 968-8787

Page 1

FIE	LD CLAS	SIFICATIO	N			<u>SOILS</u>	
7. GRADATION - COARSE-GRAINED	16. (UNIT NAME/ORIGIN)						
TERM OESERVATION well graded Full range and even distribution of grain sizes poorty graded Narrow range of grain sizes present uniformly graded Consists of predominantly one grain size gap graded Within the range of grain sizes present, one or more sizes are missing		Name of stratigraphic unit (e.g. Willamette Sitt), formation name (e.g. Cowlitz Formation) or origin of deposit (Alluvium, Collovium, Restidual, Loess, fill, etc.). 17. (THLL ZONE/TOPSOIL AND ROOT ZONE)					
8. ANGULARITY		Describe the	thicknesses of	tillzone, tops	oil, and/or root z	one layers.	
			DESCRIBING FINE-GRAINED SOIL				
() rounded () 🛛 🚺 🚺 angula	V	T	Field Test				
🖉 subrounded 🗋 🥥 subangular	Q	NAME	Ory Strength (a below)	DILATANCY REACTION (B BELOW)	TOUGHNESS OF THREAD (C BELOW)	PLASTICITY (PAGE 1 ITEM S)	
: 		SILT	none, low	rapid	low	low	
9. SHAPE		SILT with some clay	low, medium	rapid, slow	low, medium	low	
TERM		clayey SILT	medium	slow	medium	low, mediur	
elongated particles with width/thickness ratio >3 elongated particles with length/width ratio >3		silty CLAY	medium, high	slow, none	medium, high	medium	
flat and elongated : particles meet criteria for both flat and elongated		CLAY with some silt	high	none	high	high	
IU. SIRUCIURE		CLAY	very high	none	high	high	
TERM OBSERVATION stratified alternating layers > 1 cm thick, describe variation		organic SILT	low, medium	slow	low, medium	nonplastic low	
faminated alternating layers <1 cm thick, describe variation fissured contains shears and partings along planes of weakness		organic CLAY	medium to very high	none	medium, high	medium, high	
slickensides partings appear glossy or striated		A. DRY STRENGTH					
lensed contains pockets of different soils, describe variation		TERM OBSERVATION					
homogenous same color and appearance throughout		none	of handling.				
11. CEMENTATION		low	pressure.				
Term Field Test		medium	considerable finger pressure.				
weak breaks under light finger pressure moderate breaks under hard finger pressure		high	Dry specimen can not be broken with finger pressure. Will break into pieces between thumb and a hard surface				
strong will not break with finger pressure		very high	Dry specimen can not be broken between thumb and a hard surface.				
12 REACTION TO HEL (HYDROCHLORIC ACID)		B. DILATANCY REACTION					
		TERM	OBSERVATION				
none no visible reaction weak bubbles form slowly		slow	Water appears slowly on surface of specimen during water appears slowly on surface of specimen during shaking and doesn't disappear or disappears slowly up				
13. ODOR		tapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing.				
			C. TO	UGHNESS C	of Thread		
Describe odor as organic: or potential non-organic*		TERM	1	Oa	SERVATION	0 aba ab /	
		low	Univ slight hand pressure is required to roll the thread near the plastic limit. The thread and lump are weak and soft.				
Describe occurrence (soil horizon, fissures) and rate: slow (<1 gpm); moderate (1 - 3 gpm); rapid (>3 gpm)		niedium	Medium pressure is required to roll the thread to near th plastic limit. The thread and lump have medium stiffness.				
15. CAVING	high	Considerable hand pressure is required to roll the thread to near the plastic limit. The thread and lump have very high stiffness.					
15. CAVING Describe occurrence (depths, soils) and amount Test Pits minor (<1 ft?) moderate (1-3 ft?) sev Borings minor moderate (1-3 ftrear ft) (> (-3 ftrear ft) (-3 ftrear ft) (>	ere (>3 ft') severe 3 lincar ft)	high	to near the high stiffne	Plastic limit. 1	The thread and h	imp ha	

Examples: Stiff, brown SILT (Villamette Silt); or Loose, brown, fine, silty SAND; poorly graded, subrounded, weak cementation, no reaction to HCL (Alluvium); or Very dense, brown, silty GRAVEL with some sand; wet, nonplastic, angular (Colluvium). Field log should also include: interpreted contacts (based on samples, cuttings, drilling rate/changes), drillers comments (hardness, changes, lost circulation, etc.), interpreted unit descriptions (interbedded, gradational changes, etc.), and water level observations.

ITEODESIGNE 15575 SW Sequeia Parkway, Suite 100, Pontland, OR 97224 (503) 968-8787

Page Z

DEPTH	CRAPHIC LOG	MATER	IAL DESCRIPTION	ELEV DEPTH	TESTING	SAMPLE	A RLOW COU O MOISTURE [[]] RQD% [] 5	NT CONTENT % CORE REC% 0 1	INST) C	ALLATION AND COMMENTS
0		Medium dense, with some silt; r some fine orgar topsoil removed Medium dense	dark brown, fine SAND moist, uniformly graded, tics (upper portion of during grading). to dense, orange-brown, to uniformly graded	3.9						
5		Medium dense, fine SAND with organics; moist Paleosol/deflati Medium dense	dark brown to brown, trace silt and fine , uniformly graded (weak on plain). to dense, light orange- ne SAND: moist.	5.1	SIEV FP		Ø		PMT1 at 9 9200 - 1 FP - 9.5 t	5' 9% \$[
10 -		uniformly grade	d(Paleodune sand).		PP PP				PMT2 at 9 PP == 4.34 PP == 2.4 1	શ છ
15 -	San Shan									
20 -		Medium dense, moist, uniform Dense, red-brow to some silt; m moderately cen pan). Medium dense fee S AND	brown, silty, fine SAND; y graded (Paleosol?), wn, fine SAND with trace oist, uniformly graded, nented with Fe-oxide (iron to dense, light brown, to wiffer brown,	19.5 20.5 22.5					_	
25 ~		(Paleodune san	d).						-	
- 06 - 06		Boring termina	ted at 33.5 feet below	33.5						
DESIGN.GOT PRINT C		ground surface							-	
40 - 6				<u> </u>			0	50	100	
HOUSE	Þ	RILLED BY-	ODMC HETHOR	1.0	GCED	BY: CI	VC		COMPLET	ED: 3709/05
OG ONA	20		ONA HOUSE				BUNNE	ORING HA-	2	
BORING 1	575 5W 5 1001 1001 1001	Lノとろしい芝 ng 0 (ng xx 972) 100 ng 1 (ng xx 972) 100 ng 1 (ng xx 972) 1001	FEBRUARY 2005				DAN MACABES SEAL ROCK	HOUSE		FIGURE A-5

Appendix C: Direct Shear Data From Renee Summers, Civil Engineering,

PSU

Shear Stress vs. Normal Stress

Ona-C at Depth 41 feet

Appendix D: Laboratory Test Summaries for Geotechnical Samples

	SITE LOCATION	nid	e 1/Pine 2			Pine 3			Pine 4			Pine 5			Pine 6	
	Field Description	House S brow	site, PMT 1; n, fine SAN	Red-	Hwy 101 SANE	roadcut; Tar); foreset bec	1, fine ds	Hwy 101 brown, silt	roadcut; Ora y fine SANE staining	ange- O: FeO	Hwy 101 r	adcut; Ligh ne SAND	t brown,	Hwy 101 ro olive-brow s	adcut; Light n, sandy SiL ome clay	gray to T with
	Exploration Method	T	and auger		Ö	ab Sample		5	ab Sample		ō	ab Sample		ັບ	ab Sample	
Depth belc	ow ground surface (ft)		5.75			ω			16			22			29.5	
	USCS Group Name	Poor	ly graded sand	2	Pood	ty graded sand			Sity sand		Pool	ly graded san	đ	Elast	c silt with sanc	7
	USCS Group Symbol		SP			SP			SM			ЧS			HW	
	Percent Moisture ¹		14.9			17.0			47.8			15.2			38.2	
	Wet density (pcf)		107.0			107.6			9 9.3			116.4			106.9	
	Drv density (pcf) ¹		93.2			92.0			67.4			101.0			77.4	
	Plasticity Index		tonplastic		-	Vonplastic			18.0		_	Vonplastic			44.0	
Percent pas	sing #200 (0.075mm)		3.1			0.7			49.0			0.5			52.8	
	Specific gravity		2.68			2.683			2.656			2.692			2.650	
	In-situ Void ratio (e) ¹		0.79			0,83			1.47			0.67			1.16	
	Porosity (n) ¹		0.44			0.45			0.59			0.40			0.54	
	Deoree of saturation ¹		50.1			56.4			86.1			62.2			88.3	
	Permeability (cm/s)		4.40E-03 (3)			6.36E-04			6.21E-04			9.36E-04			2.03E-05	
Triaxial Com	pression Test Method							Consolid	dated Undre	uned	Consol	dated Undra	ained	Conso	idated Drain	ped
1 thimste	Soli Shear Strendth		0'1-0'3	Δu _{ut}		ơ'₁-ơ'₃	Δu _{ult}		o' ₁ -o' ₃	Δu _{uh}		o';-o'3	Δu _{ult}		o'-c 3	Δενοί
		o' ₃ (psf)	(Jsd)	(bsf)	o' ₃ (psf)	(psf)	(psf)	o' ₃ (psf)	(jsd)	(psf)	σ' ₃ (psf)	(psf)	(psf)	o' ₃ (psf)	(psf)	(%)
		•		,		•	,	936	3625	1079	7467	7141	-7107	721	2109	-0.159
		1	, ,		• •	• •		1019 1055	4372 4576	422 -314	10031 14118	9957 13271	-8877 -13397	- 1441	4335	1.34
o ology	of internal frintian /2/12				-		Ī		38.5			17 7			32.7	
, aifin	Cohesion (p.c)					, ,			0			178			0	
			o'-o',	Δu		σ',-σ' ₃	Δu		σ' ₁ -σ' ₃	Δu		°'1-°'3	٩u		o'-0'3	Δε _{νοί}
Peak	soil Shear Strength	מ', (psf)	(bsf)	(Jsd)	o', (psf)	(bsf)	(psf)	o' _a (psf)	(bsf)	(jsd)	o' ₃ (psf)	(jsd)	(lsd)	o' ₃ (psf)	(Jsd)	(%)
					, , ,			857	3639	1158	7390	7175	-7030	717	2409	-0.14
		•	•		,	•	1	958	4644	-217	9412	11659	-8258	1438	5082	-1.55
		1	•	-	•	-	,	8101	43/2	774	12304	0000	-12102	,	1 10	,
Angle o	of internal friction (§)		•			,			31.2			1.1.2			0. 10. 0.	
	Conesion (psi)		•			•		Î	>]		>	-		>	
Maximur	n Soil Shear Strenoth ³	Dire	ct Shear Te:	st	Dire	ct Shear Te		Dire	ct Shear Te	st	Dire	ct Shear Te	st	Dire	ot Shear Tes	te
Angle	of internal friction (ϕ_{p})		42.6			42			36.1			20.5			AN	
	Cohesion (psf)		270			335			568			568			NA	
Max. Cement	tation Shear Strength ³	Dire	ct Shear Te:	st	Dire	ot Shear Te:		Dire	ct Shear Te	st	Dice	ct Shear Te	st	Dire	ot Shear Tes	st
Angle	e of internal friction (§')		6.1			23			80			A S			A Z	
	Cohesion (psf)		211			106			0			AN .			AN	
23(icates suspect value "." Indicates no value	1) Average v: 2) Subscrip	alue from triax t "r' = residu	and perm ! lal; "p" = p	esting teak	3) From Sun	imers (200	£)			Dist	urbed Sam	0je			
0																

SITE LOCATION	Š	Ona-1A/1B			Ona-A			Ona-B			Ona-C	
Field Description	Tan to red-t	rown, fine SA Indation-PMT	ND; house	Beach sea brown	cliff; Dense, I silty fine SAN	olack to tD;	Beach sea	a cliff; Dense, SAND;	tan fine	Beach sea	l cliff; Dense, SAND:	tan fine
Exploration Method		fand auger		Ģ	ab sample		Θ	rab sample		Ū	ab sample	
Depth below around surface (ft)		5.5			62			55.8			41	
USCS Group Name	Pool	rly graded SA	ON		-		Poor	ly graded SAt	Ģ	Poorl	y graded SAM	g
USCS Group Symbol		SP	-		1			SP			SP	
Percent Moisture ¹		14.0	-		44.1			9.3			17.6	
Wet density /nch ¹		104.5			99.3			109.5			119.2	
Por density (por)		91.8			68.7			100.1			101.7	
Dig deficity (per)		Nonplastic			,			Vonplastic			Vonplastic	
Percent passing #200 (0.075mm)		1.9			-			0.1			0.4	
Snecific gravity		2.629						2.644			2.674	
In-situ Void ratio (e) ¹		0.80						0.65			0.64	
Porosity (n)		0.44			1			0.39			0.39	
Decree of saturation ¹		46.1			-			38.3			72.2	
Permeability (cm/s)		3.77E-03			-			4.41E-04			5.54E-04	
Triaxial Compression Test Method	Cons	olidated Dr	ained				Conse	olidated Dra	ined	Consc	lidated Dra	ned
		σ ' -σ' ₃	$\Delta \epsilon_{vol}$		σ'-0'3	Δu _{uk}		σ'1-σ' ₃	$\Delta \epsilon_{vol}$		0'1-0'3	$\Delta \epsilon_{vol}$
Ultimate Soil Snear Strength	o' ₃ (psf)	(psf)	(%)	o' ₃ (psf)	(bsf)	(psf)	o' ₃ (psf)	(psf)	(%)	o's (psf)	(jsd)	(%)
"-" Indicates no value	722	2289	-4.6	1	•	•	721	1630	-5.9 6.4	350 771	802 2421	ο ν ν ν
	1 1	, 1	1 1	• •	1 (t 1		0000	t. 	1441	4496	5.2 - 2.2
Angle of internal friction (\overline{t}') ²								<u> 8</u> о			33.2 0	
		<u>م</u> '۵',	Δενοι		σ',-σ',	۸ų		0'1-0'3	$\Delta \epsilon_{vot}$		σ' ₁ -σ' ₃	$\Delta \epsilon_{vol}$
Peak Soil Shear Strength	ι σ', (psf)	(jsd)	(%)	o' ₃ (psf)	(psf)	(psf)	o' ₃ (psf)	(psf)	(%)	σ' ₃ (psf)	(psf)	(%)
"." indicates no value	731	2889	-0.3	•	1	,	753	2565 4427	-1.8 - 4	353 720	1178	4. 4. 4.
		÷ 1	1 8	• •	• •			-	- 	1445	6833	i 8. 9
Angle of internal friction (4'.) ²		-						32			38.4	
Cohesion (psf)		·			-			108			0	
Maximum Soil Shear Strenoth	Dir	ect Shear 7	Test	Dire	ct Shear Ti	est	Dire	ect Shear T	est	Dire	ict Shear T	est
Anote of internal friction (4'.)		40			AN			35			20	
Cohesion (psf)		236			AN			384			1343	
Max. Cementation Shear Strength	Dir	ect Shear	Test	Dire	ct Shear T	est	Dire	ect Shear T	est	Dire	sct Shear T	est
Angle of internal friction (o)		NA			AN .			¥2			A N	
Cohesion (psf		NA 		L norm tooti	NA	2) Cuber	vint "r" = re	NA seidual: "n"	a no ak	3) From Si	INA Immers (20	05)
indicates suspect value	D AVEI AU	e value iloi	TT USAX and		2	10000 (2		ימסחופי	502	5 = 5 - t / S	· - · · · · · · · · · · ·	

ອົ -2

1 												,,,,,,
SITE LOCATION		Woah-1			Woah-2			Woah-3			Woah-4	
Field Description	Canary Roac	Froadcut; Gre SAND	ty, silty fine	Canary Ro	ad roadcul; ' SAND	fan, fine	Canary Roa f	ld roadcut; Gi ine SAND	ray, silty	Canary Roac	I roadcut; Red ine SAND	-brown,
Exploration Method	0	rab Sample		Ū	rab Sample		ß	ab Sample		5 G	ab Sample	
Denth helow provind surface (ft)		60			52			35			30	
USCS Group Name		Silty SAND		Poor	ly graded SA	Q	~	Silty SAND		Poorly	/ graded SANI	
LISCS Group Symbol		SM			SP			SM			сs	
Derront Moisture ¹		20.3			10.3			22.2			12.6	
Viat density (non ¹		129.8			120.0			134.5			122.0	
Der density (DCP)		107.9			108.8			113.9			108.4	
Diguesticity (DC)		7.0			Vonplastic		2	Jonplastic		Z	lonplastic	
Percent rassing #200 (0 075mm)		43.0		-	0.1			43.4			0.2	
Control Passang #200 (0.01 of the passang the passang pa Passang passang passa		2.680			2.668			2.569			2.683	
		0.55			0.53			0.41			0.55	
Dorocity (0)		0.36			0.35			0.29			0.35	
Local of advisor		98.6			51.6			120.1			61.4	
Dermosbility (cm/c)		1.63E-06			6.28E-04			1.25E-05			5.53E-04	
Triaxial Compression Test Method	Consol	idated Und	rained	Consc	olidated Dra	ained	Consoli	dated Undr	ained	Consol	lidated Drain	ned
		0 ¹ -0 ¹ 3	Δu _{ub}		σ'1-σ' ₃	$\Delta \epsilon_{vol}$		o':-0'3	Δu _{ut}		ơ' ₁ -ơ' ₃	Δε _{νοί}
Ultimate Soil Shear Strength	σ' ₃ (psf)	(bsf)	(psf)	o' ₃ (psf)	(bsf)	(%)	σ'₃ (psf)	(psf)	(psf)	σ' ₃ (psf)	(psf)	(%)
"-" Indicates no value	2945	7790	1053	357	866	-8.4	2053	7577	-973	363	1063	0.0
	5894	14889	-3878	724	1771	8.4 4.0	2882	8807	-2522	724	2189	φ v v
	ı	,	t	1441	3369	-5.2	3530	10082	1197-	1441	3024	
Angle of internal friction (4',) ²		28.6			28.8			25.4			29.6	
Cohesion (pst)		181			55			1207		-	84	
		م'،-م'،			o'1-0'3	$\Delta \epsilon_{vol}$		σ' ₁ -σ'₃			ơ'1-ơ' ₃	$\Delta \epsilon_{vol}$
Peak Soil Shear Strength	o', (psf)	(bsf)	Au (psf)	o', (psf)	(bsf)	(%)	σ'₃ (psf)	(psf)	Au (psf)	σ'3 (psf)	(psf)	(%)
"." Indicates no value	2862	8038	1137	401	1651	-2.7	2053	7577	-973	370	2884	-2.6
	5849	14907	-3833	754	3200	-2.4	2882	8807	-2522	755	3608	-0.1
	•	,	,	1449	4338	-2.1	3511	10351	-2791	1458	5326	-0.7
Anole of internal friction (¢ ¹ ,) ²		29.4			30.7			27			29.3	
Cohesion (psf)		383			217			1016			525	
Maximum Soil Shear Strength ³	Din	ect Shear T	est	Dire	ect Shear 1	est	Dire	ct Shear Te	est	Dire	ct Shear Te	st
Angle of internal friction (0 ^c .)		37			43			36			37	
Cohesion (psf)		248			0			519			124	
Max Cementation Shear Strength ³	Ĩ	ect Shear 1	est	Dire	ect Shear 1	est	Dire	ct Shear T	est	Dire	ct Shear Te	st
Angle of internal friction (o)		6.7			31			58 58			27 165	
Cohesion (psf)		338		t norm toot	0 2) Sitheori	04 0.0 IL 100	iduel: "n" =	20 noak	3) From	Summers (2	005)	

Appendix E: Triaxial Test Results

Axial Strain (%)

-10

Axial Strain (%)

Appendix F: Pressuremeter Test Results

Appendix G: ODOT Borehole Logs

Compilation of Geotech Data from Drill Holes in Oregon Coastal Dune Sheets

Drill Hole position as reported by HW101 Mile Post, distance in ODOT decimal miles. UTM coordinates estimated from USGS 1:24,000 Map Series. Elevation of colar (in decimal feet or meters) above mean sea level (NGVD1927 orWGS83). Depth below drilling surface in decimal feet or meters below colar. Soil Type: Unified Soil Clasification: Sand (S), Gravel (G) Silty Fines (M), Clay (C), Organics (0), >90% Organics (PT) Grading: Well Graded (W) Poorly Graded (P): Fine-grained >50 liquid limit (H) < 50 liquid limit (L). Moisture: Wet/Dry, Moist, Percent Natural (%) Unit Age: Holocene (H), Pleistocene (P), Tertiary Shale, Siltstone, of Sandstone, Modern Fill (Fill) Unit Facies: Dune (D), Paleosol (Ps), Iron Oxide (Fe), Wetland (Peat), Loess (L), Lacustrine (Pond) Beach/Shelf Shoreface (S), Lagoon/Estuary Mud (Bay), Alluvial, Colluvial, Other (*named)

Project	HW 101 MP	Date		Burns and Thommer	ı (1988)	
Alder Creek	2.3	1988				
Drill Hole	UTM-N	UTM-E	Elevation			
1-87	5114200	428100	~15 (ft)			
Sample	Depth	Size/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/12"
N1	5				Fill	2
N2	10	S/P			H/D	5
N3	15	S/P			H/S	30
N4	20	S/P			H/S	42
N5	25	S/P			H/S	58
Project	HW 101 MP	Date		Reference: Kleutsch	(1992)	
West Lake	12.1-16.3	1992				
Drill Hole	UTM-N	UTM-E	Elevation			
DH1-91	5102100	429400	19.8 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	5-6.5	Peat	68	Non-Plastic	H/P	1-1-1
N2	9-10.5	S/P	40	Non-Plastic	H/D	1-3-3
N3	10.5-12	S/P	36	Loose	H/D	2-5-5
N4	12-13.5	S/P	38	Medium Dense	H/D	4-7-9
N5	15-16.5	S/P	29	Medium Dense	H/D	4-6-12
N6	17-18.5	S/P	26	Dense	H/S	6-13-18
N7	20-21.5	S/P	29	Dense	H/S	3-10-18
N8	22-23.5	S/P	30	Dense	H/S	10-16-32
N9	25-26.5	G-S/P	19	Very Dense	H/S	7-19-34
N10	27-28.5	S/P	26	Dense	H/S	6-22-25
N11	30-31.5	S/P	27	Dense	H/S	9-18-21
N12	32-33.5	S/P	34	Medium Dense	H/S	5-10-10
N13	35-36.5	S/P	32	Dense	H/S	8-13-15
N14	37-38.5	S/P	31	Dense	H/S	9-12-13

N15 N16 N17 N18 N19 N21	38.5-40 42-43.5 45-46.5 47-48.5 50-51.5 65-65.5	S/P S/P S/P S/P S/P	26 27 22 21 36	Dense Dense Very Dense Dense Dense	H/S H/S H/S H/S H/S Shale	10-18-25 7-14-18 13-24-30 8-12-28 6-14-23 50/5"Refusal
Project	HW 101 MP	Date		Reference: Kleutsch (10	92)	
WestLake	12 1-16 3	1002			/2)	
Drill Hole	IITM-N	IITM_F	Flevation			
DH2-91	5105600	429200	14 6 (ft)			
Sample	Denth	Soil/	Moisture	Structure	Linit Age	Resistance
Sumple	(ff)	Grading	% natural		/Facies	/6"
N1	5-65	S/P	30		H/D	2-2-2
N2	10-11 5	S/P	27	Dense	H/D	5-7-9
N3	15-16 5	S/P	29	Medium Dense	H/S	6-10-14
N4	20-21 5	SM	28	Dense	H/S	8-12-19
N5	25-26.5	SM	31	Dense	H/S	6-10-15
N6	30-31 5	SM	34	Medium Dense	H/S	6-9-13
N7	35-36 5	S/P	35	Dense	H/S	7_12_18
N8	40-41 5	S/P	33	Dense	H/S	8-13-18
N9	45-46 5	SM	30	Medium Dense	H/S	4-4-8
N10	50-51 5	S/P	30	Dense	H/S	12-20-29
N10	55-56 5	Peat	94	Medium Stiff	H/Peat	2-2-3
N12	66-66 5	CH	41	Medium Stiff	H/Bay	2-2-3
N12	75-76 5	СН	30	Stiff	H/Bay	4-4-6
N14	85-86 5	СН	41	Stiff	H/Bay	3-4-6
N15	95-96 5	СОН	57	Medium Stiff	H/Bay	2-2-3
N16	105-106 5	СН	64	Stiff	H/Bay	5-6-7
N17	115-116 5	PT	44		H/Bay	4-9
N18	125-126			LUUSC	Shale	12-50/6"
	120 120				Shale	12 30/0
Project	HW 101 MP	Date		Reference: Kleutsch (19	92)	
West Lake	12.1-16.3	1992				
Drill Hole	UTM-N	UTM-E	Elevation			
DH3-91	5105100	428900	37.6 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	5-6.5	PT	39	Very Loose	H/Peat	2-1-1
N2	10-11.5	PT	32	Loose	H/Peat	1-2-3
N3	15-16.5	S/P	23	Dense	H/D	4-5-7
N4	20-21.5	S/P	29	Dense	H/D	3-5-7
N5	25-26.5	S/P	27	Dense	H/S	6-10-12
N6	30-31.5	S/P	23	Dense	H/S	10-18-18
N7	35-36.5	S/P	25	Dense	H/S	11-15-20
N8	40-41.5	S/P	21	Dense	H/S	17-24-26
N9	45-46.5	S/P	27	Dense	H/S	12-20-25
N10	50-51.5	S/P	25	Dense	H/S	12-20-24

N11 N12	60-61.5 70-70.8	S/P	30	Dense	H/S Shale	10-13-21 50/4"Refusal
Project	HW 101 MP	Date		Reference: Interdepa	rtmental Correspo	ondence (1969)
Neacoxi Ck		1992				
Drill Hole	UTM-N	UTM-E	Elevation			
1	5100600	428800	~15 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/12"
N1	10	S/P			H/S	24
N3	20	S/P			H/S	30
N4	25	S/P			H/S	48
N5	30	S/P			H/S	48
Project	HW 101 MP	Date		Reference: Joint Geo	ology/Geotechnica	l Report (1991)
Neahkahnie	41.5-43.7	1992				
Drill Hole	UTM-N	UTM-E	Elevation			
6-92	5063300	427800	107 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	4-5.5	S/P		Very Loose	H/D	1-1-1
N2	9-10.5	S/P		Very Loose	H/D	2-2-2
N3	14-15.5	S/P		Loose	H/D	2-3-4
N4	19-20.5	S/P		Loose	H/D	2-3-3
N5	24-25.5	S/P		Loose	H/D	3-3-6
N6	29-30.5	S/P		Loose	H/D	2-3-6
N7	44-45.5	S/P	Wet	Loose	H/D	2-3-5
Project	HW 101 MP	Date		Reference: Joint Geo	ology/Geotechnica	l Report (1991)
Neahkahnie	41.5-43.7	1992				
Drill Hole	UTM-N	UTM-E	Elevation			
7-92	5063100	427800	109.3 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	5-6.5	S/P		Loose	H/D	2-2-3
N2	10-11.5	S/P		Loose	H/D	2-3-3
N3	15-16.5	S/P		Loose	H/D	1-2-3
N4	20-21.5	S/P		Medium Dense	H/D	5-5-7
Project	HW 101 MP	Date		Reference: Joint Geo	ology/Geotechnica	l Report (1991)
Neahkahnie	41.5-43.7	1992				
Drill Hole	UTM-N	UTM-E	Elevation			
10-92	5063200	428200	71.6 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	6.5-8	S/P	28	Loose	H/D	2-3-5
N2	11.5-13	S/P	23	Medium Dense	H/D	6-7-10
N3	16.5-18	S/P	24	Medium Dense	H/D	5-9-12

N4	21.5-23	ML	35	Medium Stiff	Regolith	5-3-3
Project Neahkahnie	HW 101 MP 41.5-43.7	Date 1992	Flouotion	Reference: Joint Geo	logy/Geotechnica	l Report (1991)
	011VI-IN 5063200	011VI-E 428100	27 6 (ft)			
Samplo	Donth	420100 Soil/	Moisturo	Structuro	Lipit Ago	Posistanco
Sample	(ff)	Grading	% natural	Siluciule	/Facios	/6"
N1	(ii) 6-7 5	S/P	70 Haturai 26			70 3_2_1
N2	11-12 5	S/P	20		H/D	J-Z-1 1_1_1
N2 N3	16-17.5	C	54	Soft	Regolith	1-1-1
N4	26-27.5	C	56	Medium Plasticity	Regolith	4-6-8
	20-27.3	0L	50	Medium rasticity	Regular	4-0-0
Project	HW 101 MP	Date		Reference: Stephens	(1999)	
Neahkahnie	41.5-43.7	1999				
Drill Hole	UTM-N	UTM-E	Elevation			
B-01-99	5063000	427900	326 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	2.5-4	S/P		Medium Dense	Fill	7-13-15
N2	5-6.5	S/P			H/D	5-6-5
N3	7.5-9	S/P	Wet	Loose	H/D	5-8-9
N4	10-11.5	S/P		Loose	H/D	3-3-3
N5	12.5-14	S/P			H/D	2-2-3
N6	15-16.5	S/P			H/D	2-2-3
N7	17.5-19	S/P-SM			H/D	2-2-3
N8	20-21.5	S/P-SM		Loose	H/D	2-3-4
N9	22.5-24	S/P			H/D	2-3-4
N10	25-26.5	S/P		Loose	H/D	5-7-8
N11	27.5-29	S/P-SM			H/D	3-5-8
N13	32-33.5	S/P-SM		Loose	H/D	3-3-5
N14	34-35.5	CL			Regolith	4-4-6
N17	38.7-40.2	CL-M		Stiff	Siltstone	12-18-22
Project	H\\/ 1∩1 MD	Dato		Poforonco: Podzinski	(1073)	
Snanish Head		1973			(1773)	
Drill Hole	LITM-N	LITM-F	Flevation			
73-1	4976100	419200				
Sample	Denth	Soil/	Moisture	Structure	Linit Age	Resistance
Sample	(ft)	Grading	% natural	Siructure	/Facies	/6"
N1	5-7.0	Grading	70 Hatarai		P/D	8-11-14
N2	10-12.0				P/D	9-11-13
N3	15-17.0				P/D	10-13-18
N4	20-22.0				P/D	12-13-16
Project	HW 101 MP	Date		Reference: Rodzinski	(1973)	
Spanish Head		19/3				
Urill Hole	UTM-N	UIM-E	Elevation			

73-2	4976100	419200	27 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
,	(ft)	Grading	% natural		/Facies	/6"
N1	5-7.0	5			P/D	8-12-16
N2	10-12.0				P/D	9-12-14
N3	15-17.0				P/D	12-15-18
N/	20-22.0				P/D	10-15-20
NE	20-22.0				ם/ח ח/ח	10-13-20
NG N4	20-27.0					0 10 14
INO	30-32.0				P/D	9-10-14
Project	HW 101 MP	Date		Reference: Carmel Knoll	(1985)	
Carmel Knoll	135	1985			()	
Drill Hole	LITM-N	IITM-F	Elevation			
1-85	4951700	416200	~60 (ft)			
Samplo	Denth	Soil/	Moisturo	Structure	Linit Age	Posistanco
Sampic	(ff)	Grading	% natural	Structure	/Facios	/12"
NI1	(11)	Grauing	70 Haturai			7
	10-11.0					7
NZ NO	13-14.0				H/D	5
N3	16-17.0				P/D	21
N4	22-23.0				Siltstone	34
Project	HW 101 MP	Date		Reference: Howard, Nee	dles. Tammen ar	d Beraendoff (1986)
Alsea Bridge		1986				
Drill Hole	LITM-N	IITM-F	Flevation			
B-113	4920700	/1//600	02 (ft)			
Samplo	Ponth	Soil/	72 (it) Moisturo	Structuro	Linit Ago	Dosistanco
Sample	(fft)	Crading	% patural	Judule	/Encios	
NI1	(11)	Sidulity S/D	70 Haturai	Vory Donco		14 20 24
	5 10	S/F		Very Dense		14-20-34
	10	3/P		Very Dense		14-20-44
N3	15	S/P		Very Dense	P/D	19-38-51
N4	20	S/P		Very Dense	P/D	24-60/5.5
N5	25	S/P	Moist	Very Dense	P/D	22-39-60/4
N6	30				Siltstone	60/5
Project	HW 101 MP	Date		Reference: Howard, Nee	dles. Tammen ar	d Bergendoff (1986)
Alsea Bridge		1986				
Drill Hole	LITM-N	IITM-F	Flevation			
B-112	4920600	414600	85 9 <i>(</i> ft)			
Samplo	Denth	Soil/	Moisturo	Structure	Linit Age	Posistanco
Sampic	(ff)	Crading	% patural	Structure	/Encios	
NI1	(11)	Sidulity S/D	70 Haturai	Donco		70 10 12 10
	0 10	3/P	Maint	Dense Vari Danaa	P/D	10-13-10
NZ NO	10	S/P	IVIOISI	Very Dense	P/D	12-15-35
IN3	15	5/P		very Dense	P/DFe	10-31-41
N4	20	5/P		very Dense	P/D	10-20-38
N5	25	S/P		Very Dense	P/DFe	24-56-60/3
N6	30	SCG		Very Dense	Regolith	19-26-22
N7	35	С		Very Stiff	Regolith	6-6-7
N8	40				Siltstone	60/4

Project	HW 101 MP	Date		Reference: Howard, Nee	edles, Tammen ar	nd Bergendoff (1986)
Alsea Bridge		1986				
Drill Hole	UTM-N	UTM-E	Elevation			
B-111	4920600	414600	87.9 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	5	S/P		Medium Dense	P/D	2-7-16
N2	10	S/P		Very Dense	P/D	14-26-36
N3	15	S/P		Very Dense	P/D	21-42-95
N4	20	S/P		Very Dense	P/D	25-48-60/5"
N5	25	S/P		Very Dense	P/D	25-48-60/5"
N6	30	S/P		Very Dense	P/DFe	35-60/4"
N7	35	S/P		Very Dense	P/D	38-60/4"
N8	40	S/P		Very Dense	P/D	26-42-44
N9	45	S/P		Verv Dense	P/DFe	16-38-60/5"
N10	50	S/P		Very Dense	P/D	56-60/2"
N11	55				Siltstone	56-60/2"
N12	60				Siltstone	58-60/3"
	00				Christonic	00 00/0
Project	HW 101 MP	Date		Reference: Howard, Nee	edles, Tammen ar	nd Bergendoff (1986)
Alsea Bridge		1986				0
Drill Hole	UTM-N	UTM-E	Elevation			
B-114	4920500	414600	14.2 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	5	S/P	/o natural	Loose	Fill	2-3-3
N2	10	S/P		Very Dense	Р/D	9-22-33
N3	15	0/I			Siltstone	60/3
					Cillotorio	00/0
Project	HW 101 MP	Date		Reference: Bolander (19	87)	
Sutton Creek		1987		() () () () () () () () () ()		
Drill Hole	UTM-N	UTM-F	Flevation			
87-1	4878200	412200	44 9 (ft)			
Sample	Denth	Soil/	Moisture	Structure	Unit Age	Resistance
Campio	(ft)	Grading	% natural		/Facies	/6"
N1	0-2	S	Moist	Medium Dense	Fill	3-7-6-6
N2	55.75	S	Wolst	Medium Dense	н. Н/D	8-8-10-10
N3	10 5-12 5	S/P	\M∕⊖t	Medium Dense	H/D	8-12-14-12
N/	15.5 12.5	50	Wet		H/DPond	2-2-1-5
N5	20 5 22 5	50 S/D	WCI	Modium Donso		2-2-4-5 1 8 13 20
NG N6	20.3-22.3	5/F S/D		Vory Donso		17 20 12
	20.0-27.0	3/F C/D		Very Dense		17-20-42
N0	30.7-32.7 25 5 27 5	3/F C/D		Dence		Z 1-33-23-22 E 14 11 2E
	30.0-37.0	5/F S/D		Dense		0-14-11-20 0 10 00 01
N10	4U.0-4Z.0	3/P		Dellise		2-10-20-31 24 42
	0.0-01./	5/P		Very Dense		20-43
		5/P		very Dense	r/D	43
IN I Z	10.5-12.5	SIVIU		wealum Sulf	Р/Вау	23-18-11-9 757
						251

N13 N14 N15	80.5-82.5 90.5-91.5 100-101	S/P S/P S/P		Loose Very Dense Very Dense	Collapse P/Bay P/Bay	2-3-3-4 19-40 9-26-40
Project Clear Lake Drill Hole	HW 101 MP 218-219 UTM-N	Date 1995 UTM-E	Elevation	Reference: Narkiewicz (1	995)	
Sample	483200 Depth (ft)	Soil/ Grading	Moisture % natural	Structure	Unit Age /Facies	Resistance /6"
N1	5	ordunig	/o nata ai	Loose	H/D	3-4-4
N2	10			Loose	H/D	3-3-4
N3	15			Loose	H/D	2-2-2
N4	20			Damp	H/D	1-1-1
N5	25			Wet	P/D	4-12-50/6
Project	HW 101 MP	Date		Reference: Kobernick (19	999)	
Wildwood	220.6	1999				
Drill Hole	UTM-N	UTM-E	Elevation			
9087-07	4829200	404700	67.5 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	1.4-1.8	SM	61	Very Loose	P/DL*	1-1-2
N2	2.9-3.4	С		Medium Stiff	P/DPsL*	1-1-1
N3	4.2-4.9	М		Medium Stiff	P/DL*	2-1-4
N4	5.9-6.4	М		Medium Stiff	P/DL*	3-4-4
N5	7.5-7.9	М		Medium Stiff	P/DL*	2-2-4
N6	9.0-9.4	Μ	59	Medium Stiff	P/DL*	2-2-3
N7	10.5-11.0	М		Medium Stiff	P/DL*	3-4-7
N8	12-12.5	М		Stiff	P/DL*	4-6-6
N9	13.5-14	М	51	Very Stiff	P/DL*	5-10-13
N10	15.1-15.5	М		Very Stiff	P/DL*	6-6-7
*Loess in Colluvium	I					
Project	HW 101 MP	Date		Reference: Kobernick (19	999)	
Wildwood	220.6	1999				
Drill Hole	UTM-N	UTM-E	Elevation			
9087-11	4829100	404700	55.6 (m)			
Sample	Depth (ft)	Soil/ Grading	Moisture % natural	Structure	Unit Age /Facies	Resistance /6"
N1	0-1.2	M			Fill	1-3-3
N2	2.0-2.4	S/P			H/D	1-1-3
N3	2.7-3.2	S/P	Moist	Loose	H/D	1-2-2
N4	4.2-4.7	S/P	Wet	Loose	H/D	1-2-2
N5	5.8-6.2	S/P			H/D	2-3-9
N6	7.3-7.8	S/P		Loose	H/D	5-1-1
N7	9.1-9.6	Μ		Very Stiff	P/D/PsL	3-8-11
N8	10.6-11.1	Μ		Very Stiff	P/D/PsL	5-7-10

N9	12.1-12.6	Μ		Very Stiff	P/D/PsL	5-10-12
N10	13.7-14.2				Mudstone	16-17-19
Project	HW 101 MP	Date		Reference: Bellin (1988)		
Tenmile	223.2	1988				
Drill Hole	UTM-N	UTM-E	Elevation			
1	4825300	403800	~25 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
·	(ft)	Grading	% natural		/Facies	/6"
N1	0-2	SG			Fill	7-4-3-3
N2	4-6	S	46		H/D	1-1-1-1
N3	9-11	S			H/D	1-1-1-1
N4	14-16	S			H/D	3-4-6-11
N5	19-21	S	49.5		H/D	6-10-6-11
N6	24-26				Siltstone	16-28-30-33
Project		Dato		Deference: Pollin (1090)		
Tonmilo		1000		Nelelelice. Dellill (1900)		
	LITM-N		Flovation			
2	4825300	103800	~ 25 (ft)			
Samolo	Ponth	Soil/	Moisture	Structure	Linit Age	Rosistanco
Sampic	(ff)	Grading	% natural	Structure	/Facios	/6"
N1	0-2	SG	70 Haturai		Fill	1-5-6-5
N2	2-1	SM	573		н/D	4-5-0-5 1_1_1_2
N2	2-4 0_11	S	14.6		H/D	2-5-5-6
NJ	7-11 1/116	5	14.0			2-J-J-0
N5	14-10	5			H/D	2_1_1_7
N6	24-26	S			H/D	6-10-10-11
N7	29-31	S			H/D	1-2-2-3
N8	34-36	S			H/D	3-3-4-8
110	51 50	5				0010
Project	HW 101 MP	Date		Reference: Turner (1994))	
Bullards	259.5	1994				
Drill Hole	UTM-N	UTM-E	Elevation			
94-1	4778100	386500	9 (ft)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(ft)	Grading	% natural		/Facies	/6"
N1	5-7	S/P	Wet	Medium Dense	H/D	10-8-5-3
N2	11-13	S/P	Wet	Medium Dense	H/D	5-7-8-8
N3	15-17	S/P		Medium Dense	P/D	3-7-12-12
N4	20-22	S/P		Medium Dense	P/D	10-11-17-26
N5	25-27	S/P		Dense	P/D	0-15-17-20
N6	30-32	S/P		Very Dense	P/D	16-22-28-36
N7	35-37	S/P		Very Dense	P/D	17-24-27-31
Project	HW 101 MP	Date		Reference: Bounds (200	D)	
Nesika	320-328	2000				
Drill Hole	UTM-N	UTM-E	Elevation			

10817-01	4705800	38400	37.1 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(m)	Grading	% natural		/Facies	/6"
N1	0.7-1.2	S/P	12.4	Dense	Fill	14-17-21
N8	6.9-7.3	SM	Damp	Medium Dense	P/D/PsL	6-7-8
N9	7 6-8 1	SM	18.8	Loose	P/D/Psl	6-5-4
N10	8 4-8 8	SM		Medium Dense	P/D/Psl	8-10-10
N11	91-96	SM	27.9	Loose	P/D/Psl	3-3-5
N12	9.9-10.4	SM	21.7	Loose	P/D/Psl	1-2-5
N13	10 7-11 2	SM	29.8	Very Loose	P/D/Psl	1_1_2
N14	11 4-11 9	PT	27.0	Very Loose	P/Peat	1-4-4
N15	12 2-12 6	CL	42.6	Soft	P/Psl	0-0-0
1115	12.2-12.0	0L	42.0	5011	1/1 3L	0-0-0
Proiect	HW 101 MP	Date		Reference: Bounds (200	0)	
Nesika	320-328	2000		· · · · · · · · · · · · · · · · · · ·		
Drill Hole	UTM-N	UTM-F	Elevation			
10817-02	4705800	38400	36.3 (m)			
Sample	Denth	Soil/	Moisture	Structure	LInit Age	Resistance
Sample	(m)	Grading	% natural	Siructure	/Facies	/6"
N3	(iii) 2 3-2 7	S/D	11 5	Madium Dansa	Fill	/0 6-0-10
NO	2.3-2.7	S/I C/D	0.7	Donso		10 16 17
N10	7601	SM	7.7	Modium Donso		256
N10 N11	7.0-0.1		114	Medium Dense		0 0 10
	0.3-0.0	3/P C/D	14.0	Medium Dense	P/D	0-9-10
NIZ	9.1-9.0	5/P	24.4	Medium Dense	P/D D/D	/-12-12 0.10.10
NI3	9.9-10.4	S/P	24.4	Medium Dense	P/D	8-12-13
N14	10.7-11.1	ML	Moist	Stiff	P/D/PsL	3-6-9
N15	11.4-11.9	S/P	27.5 Wet	Dense	P/D	/-14-19
N16	12.1-12.6	S/P		Very Dense	P/D	17-50
Project	HW 101 MP	Date		Reference: Bounds (200	0)	
Nesika	320-328	2000		·	,	
Drill Hole	UTM-N	UTM-E	Elevation			
10817-03	4705400	383900	40.3 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Aae	Resistance
· · ·	(m)	Grading	% natural		/Facies	/6"
N2	1.5-2.0	S/P		Very Loose	Fill	3-2-2
N6	4.6-5.0	S/P	18.3	Medium Dense	P/D	5-8-5
N7	5 3-5 8	MI	41.3	Verv Soft	P/DPsI	0-0-0
N8	7 5-7 9	S/P	11.0	Medium Dense	P/D	1-10-13
N9	8 4-8 8	S/P	26.1	Medium Dense	P/D	7-13-13
N10	0.1 0.0 0 1 ₋ 0 6	S/P	20.1	Very Dense		8-29-40
NIO	7.1-7.0	JI		Very Delise	r/Dre	0-27-40
Project	HW 101 MP	Date		Reference: Bounds (200	.0)	
Nesika	320-328	2000				
Drill Hole	UTM-N	UTM-E	Elevation			
10817-04	4705400	383900	40.3 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Aae	Resistance
·	(m)	Grading	% natural		/Facies	/6"

N3	2.3-2.7	SM	24.8	Loose	Fill	3-4-3
N8	6.9-7.3	SM		Medium Stiff	P/DPsL	3-2-2
N9	7.6-8.1	S/P	29.1 Wet	Dense	P/D	3-14-21
N10	8.4-8.8	S/P		Dense	P/D	9-17-25
N11	9.1-9.6	S/P	26.6	Medium Dense	P/D	13-11-12
Project	HW 101 MP	Date		Reference: Bounds (2000)	
Nesika	320-328	2000			2000)	
Drill Hole	LITM-N	LITM-F	Flevation			
10817-05	4705800	38400	36.9 (m)			
Sample	Denth	Soil/	Moisture	Structure	Linit Age	Posistanco
Sample	(m)	Grading	% natural	Structure	/Facios	/6"
N/2	1520	S/D	10 Q	Madium Dansa	Fill	70 10 13 12
NZ N5	2012	SM	10.0	Medium Dense		10-13-12
	3.0-4.3	SM	12.0	Medium Dense	F/DF3L	4-3-0
	4.0-3.0	SIVI	12.0	Medium Dense	P/DPSL	7-0-11 0 10 14
N7	0.3-0.8	5/P	11 /	Medium Dense	P/D	8-12-14 7 11 10
N8	0.1-0.5	5/P	11.0	wedium Dense	P/D	/-11-12
N9	6.9-7.3	S/P	10.0	Loose	P/D	4-5-4
N10	7.6-8.1	SM	19.2	Loose	P/DPsL	3-4-4
N11	8.3-8.8	S/P		Medium Dense	P/D	/-11-11
N12	9.1-9.6	S/P	19.9	Loose	P/D	4-4-4
N13	9.9-10.4	SM		Loose	P/DPsL	1-2-3
N14	10.6-11.1	SM	41	Loose	P/DPsL	2-3-6
N15	11.4-11.8	SM		Medium Dense	P/DPsL	3-8-6
N16	12.2-12.6	ML	49.4	Soft	P/Wetland	2-2-3
Project	HW 101 MP	Date		Reference: Bounds (2000)	
Nesika	320-328	2000				
Drill Hole	UTM-N	UTM-E	Elevation			
10817-06	4705800	38400	34.9 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
·	(m)	Grading	% natural		/Facies	/6"
N2	1.5-2.0	S/P	14.5	Medium Dense	Fill	9-11-13
N8	6.1-6.5	SM	13.1	Medium Dense	P/DPsL	7-12-12
Proiect	HW 101 MP	Date		Reference: Bounds (2000)	
Nesika	320-328	2000)	
Drill Hole	UTM-N	UTM-F	Flevation			
10817-07	4705800	38400	(m)			
Sample	Denth	Soil/	Moisture	Structure	LInit Δαe	Resistance
Sample	(m)	Grading	% natural	Structure	/Facios	/6"
N2	15-20	S/P	7.6	Madium Dansa	Fill	7_11_11
NI10	7. <u>5</u> -2.0	SM	7.0 26.8		D/DDel	2_1_1
N11	7.0-0.1 Q / 0 0	SIVI S/D	20.0	Luuse Madium Dansa		∠-+-+ 0 12 10
N12	0.4-0.0	SM	25.1	Modium Donco		7-13-12 1 Q 7
N12	7.1-7.0 0.0.10 /		20.1	Modium Donco	riursl D/D	4-0-7 6 0 10
N17	7.7-10.4 10 7 11 1	S/F	24 E	Medium Dense		0-0-1U
N14	10.7-11.1	SIVI	∠0.0	Medium Dense	P/DPSL	0-0-9 4 11 10
CIVI	11.4-11.9	J/M		ivieulum Dense	r/U	0-11-19

N16	12.2-12.6	S/P	27.4	Medium Dense	P/D	7-9-16
Project	HW 101 MP	Date		Reference: Bounds	(2000)	
Nesika	320-328	2000				
Drill Hole	UTM-N	UTM-E	Elevation			
10817-08	4704900	383800	38.6 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(m)	Grading	% natural		/Facies	/6"
N2	1.5-2.0	SM	12.5	Medium Dense	Fill	6-9-8
N4	3-3.5	S/P	8	Medium Dense	P/D	8-15-17
N5	3.8-4.3	S/P		Medium Dense	P/D	7-11-14
N6	4.6-5	S/P	14.7	Medium Dense	P/D	7-11-13
N7	5.3-5.8	SM		Medium Dense	P/DPsL	6-9-10
N8	6.1-6.5	S/P	14.5	Medium Dense	P/D	6-11-11
N9	6.9-7.3	SM		Loose	P/DPsL	2-3-4
N10	7.6-8.1	SM	29	Loose	P/DPsL	2-4-5
N11	8.4-8.8	SM		Medium Dense	P/DPsL	4-8-8
N12	9.1-9.6	SM	39.8	Medium Dense	P/DPsL	3-4-7
Project	HW 101 MP	Date		Reference: Bounds	(2000)	
Nesika	320-328	2000				
Drill Hole	UTM-N	UTM-E	Elevation			
10817-10	4704900	383800	38.7 (m)			
Sample	Depth	Soil/	Moisture	Structure	Unit Age	Resistance
	(m)	Grading	% natural		/Facies	/6"
N2	1.5-2.0	SM	15.7	Medium Dense	Fill	6-8-12
N8	6.1-6.5	SM	16.6	Medium Dense	P/DPsL	7-9-12
N9	6.9-7.3	SM		Medium Dense	P/DPsL	3-4-6
N10	8.2-8.7	SM		Loose	P/DPsL	3-3-6
N11	9.1-9.6	SM	30.9	Loose	P/DPsL	3-4-3

Summary of SPT Statistics for Dune and Associated Terrace Deposits of the Oregon Coast

Unit Age: Holocene (H), Pleistocene (P), Tertiary Shale, Siltstone Unit Facies: Dune (D), Paleosol (Ps), Iron Oxide (Fe), Wetland (Peat), Loess (L) Beach/Shelf Shoreface (S), Lagoon/Estuary Mud (Bay) Soil Type: Unified Soil Clasification: Sand (S), Gravel (G) Silty Fines (M), Clay (C), Organics (0), >90% Organics (PT) Grading: Poorly Graded (P)

Unit/Facies						Pleistocene	Pleistocene	
Description						Dune	Dune	
	Holocene	Holocene	Holocene	Holocene	Pleistocene	Paleosol	Hardpan	Tertiary
	Dune	Shoreface	Bay/Pond	Peat	Dune	with Loess	Fe-stain	Bedrock
Unit Abbrev.	H/D	H/S	H/Bay	H/Peat	P/D	P/DPsL	P/DFe	Siltstone
Material	(S/P)	(S/P)	(M,C,O)	(PT)	(S/P)	(SM)	(S-Fe)	/Shale
Statistics Number								
Tests	62	35	7	4	64	38	4	10
Minimum (N) Maximum	2	20	5	2	8	0	69	34
(N)	26	58	13	5	100	24	100	100
Mean (N)	9	37	9	3	44	11	84	81
1Std.Dev. (N)	±5	±11	±3	±2	±28	±6	±16	±31

note: SPT N values greater than 100 blows per 12 inches are rounded to N=100 for statistical calculations.

REFERENCE:

Bellin, G.H., 1988. Tenmile Creek Bridge, Oregon Coast (Lakeside Frontage Rd) Coos County, Br 949B, Foundation Rpt, ODOT.

Bolanbder, P, 1987. Foundation Rpt, Sutton Creek Bridge, Oregon Coast Hwy, Sutton Lake to Florence Section, Lane Cty, Bridge 1494A, ODOT.

Bounds, J.D., 2000. Nesika Beach, Rogue River, Curry County, Oregon, Engineering Geology Report, ODOT.

Burns, R.W. and Thommen, G.R., 1988. Foundation Report, Powers Slough, Alder Creek, Bridge Fort Stevens #104. Structural Design Section, ODOT.

Carmel Knoll, 1985. Carmel Knoll, Oregon Coastal Highway MP 135, ODOT.

Geotechnical Rpt, 1991. Neahkanie Mountain-Manzanita Junction, Oregon Coast Highway #9, Tillamook County CO29-1408, ODOT.

Howard, Needles, Tammen & Bergendoff, 1986. Preliminary Found. Rpt. for Proposed Alsea Bay Bridge, CH2MHILL Prepared for Geo/Hydro Section, ODOT.

Interdepartmental Correspondence, 1969. Neacoxi Creek Bridge, Del Ray Beach Road, Bridge 9894. ODOT.

Kleutsch, B., 1992. Camp Rilea Road-Dellmoor Loop Road, Oregon Coast Hwy MP12.1-16.3 Clatsop Cty. C004140, #00534, Geotechnical Svcs Unit, ODOT.

Kobernick, R.M., 1999. County Line Slide, Geology Report, Oregon Coast Highway, MP 220.4, Douglas County. Geohydro Services Section, ODOT.

Narkiewicz, S., 1995. Summary of Hydrological Investigation, Clear Lake (Reedsport) Oregon Coast Highway #9 MP218.1-219.1, ODOT.

Rodzinski, 1973. Inn at Spanish Head, Lincoln City, Oregon. ODOT.

Stephens, R.L., 1999. Neahkahnie Creek Culvert No.1 Project MP43.27 Tillamook County, Kleinfelder Inc. ODOT.

Turner, D., 1994. Coquille River, Bullards Bridge #07020 NW Corner Operations Building, Oreogn Coast Highway, Coos County, Geotechnical Report, ODOT.

NOTE: ODOT refers to the Oregon Department of Transportation, Salem, Oregon.