
Homework 8
Solutions

• 22.2 We are looking for the solution

u(x, t) = g(
x

t
).

After substituting it into our conservation law ut + u2ux = 0 we get

− x

t2
g′ + g2g′

1

t
= 0.

As the constant solution is not acceptable as a rarefaction wave we finally arrive
at the relation

g(
x

t
) =

√
x

t
.

Note that, based on the given initial condition, the most left characteristic of
the rarefaction wave is x = t while the most right characteristic is x = 4t. This
means that the solution takes the following form:

u(x, t) =


1, x ≤ t,√

x
t
, t < x ≤ 4t,

2, x > 4t.

• 22.5 The line x = v1t represent the front of moving cars while the line x = −v1t
indicates the position (in time) where the cars are still stopped. In other words,
there are no cars in front of the line x = v1t, the density of cars increases
gradually between x = v1t and x = −v1t, and the density of cars is maximum
(they are not moving) at and beyond the line x = −v1t.

• 23.4 To identify the corresponding characteristics, note that

c(u) = v1

(
1 − 2

u

u1

)
.

Therefore,

c(0) = v1, c(u1) = −v1, c(
u1
2

) = 0.
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This implies that the corresponding characteristics are:

x = v1t+ x0, x = −v1t+ x0, x = x0.

To find the rarefaction wave solution, see the previous problem. However, to
find the shock wave (back-shock) note first that the flux

φ(u) = v1u−
v1u

2

u1
.

The Rankine-Hugoniot condition is therefore

dx

dt
= −1

4
v1u1, x(0) = −L

and the shock curve is

x = −1

4
v1u1t− L.

• Problem 11 from the Review set: To find the solution to the given initial-value
problem using the artificial viscosity method, we replace the given equation
(conservation law) by the equation

ut + 2uux = εuxx

where ε > 0. Our objective is to find a traveling wave u(x, t) = f(x−ct) subject
to the following conditions:

lim
z→∞

f(z) = 1, lim
z→−∞

f(z) = 2, lim
z→±∞

f ′(z) = 0

that is, mimicking our original initial condition at infinities. Here, z = x − ct.
Substituting the formula for the traveling wave into the differential equation,
we obtain the following ordinary differential equation for the shape f and the
speed of propagation c:

−cf ′ + 2ff ′ = εf ′′.

Integrating this equation once we obtain

−cf + f 2 = εf ′ + k
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where k is the constant of integration. Considering the above listed conditions
at infinities we obtain the following equations for the speed c and the constant
k: {

−c+ 1 = k

−2c+ 4 = k.

Solving this system of linear equations we obtain c = 3 and k = −2. We are
now left with solving the following ordinary differential equation for the shape
f :

f 2 − 3f + 2 = εf ′.

This is a separable first-order ordinary differential equation. Using the method
of partial fractions we obtain∫

1

f − 2
df −

∫
1

f − 1
df =

1

ε

∫
dz.

This gives us

ln
f − 2

f − 1
=

1

ε
z + A,

where A is the integration constant. Equivalently, this leads to the relation

f − 2

f − 1
= Ae

x−3t
ε .

It should now be easy to see that

if x > 3t lim
ε→0

f(z) = 1

if x < 3t lim
ε→0

f(z) = 2

proving that our unique solution is the forward shock

u(x, t) =

{
2 x < 3t,

1 x > 3t.
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