Homework 7
Solutions

e 18.4 The equation of a characteristic x(t) for the differential equation u; +
wu, =0 is

dx

dt

As the solution is constant on characteristics, the above equation reduces to

= u*(x(t), ).
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where zy denotes the initial point. Therefore, the characteristic is given by
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= t+a.
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Given the characteristic starting at (z¢,0), the critical time at which it will
meet with another characteristic is
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To find the critical time at which the shocks will develop one must find the
minimum of ¢, as a function of xy. A simple differentiation shows that the
function t, has two critical points
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Substituting these two values to the formula for the breaking time ¢, yields that

e 19.2 The flux function of the conservation law u; + u?u, = 0 is



Thus, the Rankine-Hugoniot condition takes the form
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where u™ = 1 and v~ = 2. This yields the shock curve
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Consequently, the solution

e 20.2 If the incoming traffic’s speed is 15 miles per hour then, according to the
formula "
v = Ul(l — u—l),
the density of the incoming traffic is ug = 200 cars per mile. This implies, as

the flux
v

o(u) = *(uuy — ),
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that the back-shock propagates with the speed of —30. Therefore the solution

is:
200, =z < =30t

u(zx,t) =
300, x> —30t.

e 20.3

— (a) I see no fundamental difference.

— (b) The flux
U2
o(u) = uwv = uv; (1 - —2) :
uy
Therefore, the Rankine-Hugoniot condition takes the form
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As ut = u; and u~ = g the shock curve is the straight line
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Consequently,

Ug, r < U 1+Z_(1) t,
u(z,t) =
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