
Homework 3
Solutions

• 7.4

– (a) Elementary, if you follow the sequence of indicated steps.

– (b) Differentiate the first equation by t and multiply by L to get

Lixt + CLvtt + GLvt = 0.

Next, differentiate the second equation by x and subtract from the above
equation. This gives you

LCvtt + LGvt − vxx −Rix = 0.

Eliminate the term Rix using the first original equation. You finally obtain
that

LCvtt + (LG + RC)vt − vxx + RGv = 0.

• 8.2 Substitute the given function u(x, t) = cos t sinx into the differential equa-
tion to show that it is indeed satisfied. Once you know that the given function
u(x, t) is a solution you know both corresponding initial values:

u(x, 0) = sin x, ut(x, 0) = 0.

Hence, using the d’Alembert form of the solution solution we have that

u(x, t) =
1

2
[sin(x− t) + sin(x + t)]

indicating the left and the right moving waves.

• 8.5 Given the initial conditions

u(x, 0) = 0, ut(x, 0) = xe−x
2

,

and using again the d’Alembert form of the solution we obtain that

u(x, t) =
1

2

∫ x+t

x−t
se−s

2

ds = −1

4
e−s

2|x+t
x−t =

1

4

(
e−(x−t)

2 − e−(x+t)2
)
.

1



• 8.6 The given initial value problem is simply a superposition of the previous
two initial value problems. Therefore, its solution is

u(x, t) =
1

2
[sin(x− t) + sin(x + t)] +

1

2

∫ x+t

x−t
se−s

2

ds.

Integrating the second part of this formula we obtain that

u(x, t) =
1

2
[sin(x− t) + sin(x + t)] +

1

4

(
e−(x−t)

2 − e−(x+t)2
)
.

• 9.2 Using the d’Alembert form of the solution of the semi-infinite (one end
fixed) boundary-initial value problem we obtain that

u(x, t) =
1

2

∫ x+t

x−t
se−s

2

ds =
1

4

[
e−(x−t)

2 − e−(x+t)2
]

for x ≥ t,

and

u(x, t) =
1

2

∫ x+t

t−x
se−s

2

ds =
1

4

[
e−(x−t)

2 − e−(x+t)2
]

for x < t

As both formulas are the same the solution can be represented as

u(x, t) =
1

4

[
e−(x−t)

2 − e−(x+t)2
]

for 0 ≤ x <∞, t ≥ 0.

• 9.5 Using the same arguments as in the case of the semi-infinite string with
the left boundary fixed, we look for the solution in the form

u(x, t) = F1(x− ct) + G(x + ct), when x− ct < 0.

Thus,
ux(x, t) = F ′1(x− ct) + G′(x + ct)

where ”prime” denotes the ordinary derivative with respect the whole variable
z equal either x− ct or x+ ct. Evaluating this derivative at the boundary x = 0
we obtain that

F ′1(−ct) + G′(ct) = 0
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which simply means that for any generic variable, say, s

F ′1(s) = −G′(−s).

Integrating this relation we obtain that

F1(s) = G(−s).

Knowing from the original derivation of the d’Alembert solution that

G(s) =
1

2
f(s) +

1

2

∫ s

0

g(u)du

and that the function F1 must be evaluated for the variable z = x − ct, we
obtain that

F1(x− ct) =
1

2
f(ct− x) +

1

2c

∫ ct−x

0

g(s)ds.
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