
Homework 2
Solutions

• 4.5

– (a) Given the Sine-Gordon equation

utt = uxx − sinx,

substitute the traveling wave solution u(x, t) = f(x− ct) into the equation
to find the required relation for the function f(z), where z = x− ct. Using
the Chain Rule, one can easily obtain that in order for f(x − ct) to be a
solution of the given equation the function f must satisfy the equation

c2f ′′ = f ′′ − sin f

or equivalently
(1− c2)f ′′ = sin f.

– (b) After multiplying the given differential equation for the function f(z)
by its derivative f ′(z) we obtain

(1− c2)f ′′f ′ = f ′ sin f.

This is a second-order ordinary differential equation. Integrating this equa-
tion once gives us

1

2
(f ′′)2(1− c2) = − cos f + A

which yields
(f ′)2(1− c2) = A− 2 cos f.

– (c) Using the trigonometric identity

cos f = 1− 2 sin2 f

2

and assuming that A = 2 one can re-write our equation in the form

(f ′)2(1− c2) = 4 sin2 f

2
.
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To verify that f(z) = 4 arctan{exp( x−ct√
1−c2 )} is a solution for 0 < c < 1

observe that

sin(arctan f) =
f√

1 + f 2
.

• 4.8 In order to determine if

u(x, t) = 4 arctan{exp(
x− ct√
1− c2

)}

is a pulse, a wave front, or neither we should check the limits of the given
function when x → ∞ and x → −∞. You should be able to show that these
are 2π and 0, respectively, proving that our solution is a wave front.

• 4.11 As shown in Example 4.10, a wave train solution to the Klein-Gordon
equation propagates at speeds

c =

√
a+

ab

ω2 − b
,

where a and b are positive. Note also that ω =
√
ak2 + b. This means that

ω >
√
b as the wave number k can be arbitrarily small. It should now be easy

to see that
lim

ω→
√
b
c =∞

while
lim
ω→∞

c =
√
a.

This proves that these wave trains can travel with speeds
√
a < c <∞.

• 4.13 (a) Consider the differential equation

ut + aux = duxx

where both constants are positive. To derive the dispersion relation, consider
the solution

u(x, t) = ei(kx−wt).

Substituting this function into the differential equation and factoring by the
common factor of ei(kx−wt), we obtain the following relation between w and k:

−iw + iak = −k2d.
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Multiplying both sides by i and taking all the k dependent terms to the right,
we obtain that

w = ak − k2di

which the dispersion relation for our differential equation. As w is a quadratic
function of k, the said equation is dispersive.

• 5.2 Suppose v(x, t) and w(x, t) are two solutions to the equation ut + uux +
uxxx = 0. Consider the function u(x, t) = v(x, t) +w(x, t) and show that it is a
solution to the given differential equation provided the product v(x, t)w(x, t) is
x independent.

Substituting the function u(x, t) into the left hand side of the differential equa-
tion we obtain that

vt + vvv + vxxx + wt + wwx + wxxx + (vwx + wvx) = vwx + wvx

as the functions v and w are the solutions of the original equation. Note now
that vwx + wvx = (vw)x. Thus, the right-hand side of the equation vanishes if
the product vw is indeed x independent.

• 7.2 Note first that due to the assumption that ρ(s) ≈ ρ(x) for any s such that
x < s < x +4x, and that we only allow small deformations, the total mass of
the segment [x, x+4x] is

M =

∫ x+4x

x

ρ(s)
√

1 + (ux)2ds ≈
∫ x+4x

x

ρ(x)ds = ρ(x)4x.

This mean that the Newton’s Second Law for this segment (compare with equa-
tion (7.4)) takes the form

ρ(x)4xutt(x, t) = T (x+4x)ux(x+4x, t)− T (x)ux(x, t).

Dividing both sides by 4x and taking the limit when 4x → 0 we obtain the
required equation

ρ(x)utt = (T (x)ux)x.
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