e 4.5

Homework 2
Solutions

— (a) Given the Sine-Gordon equation

Uy = Ugy — SIN T,

substitute the traveling wave solution u(z,t) = f(x — ct) into the equation
to find the required relation for the function f(z), where z = x —ct. Using
the Chain Rule, one can easily obtain that in order for f(z — ct) to be a
solution of the given equation the function f must satisfy the equation

CQf// — f// — sin f

or equivalently

(1—c*)f" =sin f.

(b)  After multiplying the given differential equation for the function f(z)
by its derivative f’(z) we obtain
(1= f"f = f'sinf.

This is a second-order ordinary differential equation. Integrating this equa-
tion once gives us

SUP(L= ) = —cos f + 4

which yields
(f)2(1—c*) =A—2cos f.

(¢) Using the trigonometric identity
f

cos f =1—2sin* =
2
and assuming that A = 2 one can re-write our equation in the form

(f)2(1 — ¢*) = 4sin? g



To verify that f(z) = 4arctan{exp(%)} is a solution for 0 < ¢ < 1
observe that f

i P

sin(arctan f) =

e 4.8 In order to determine if

T —ct
Vi-o
is a pulse, a wave front, or neither we should check the limits of the given

function when x — oo and x — —oo. You should be able to show that these
are 27 and 0, respectively, proving that our solution is a wave front.

)}

u(z,t) = 4 arctan{exp(

e 411 As shown in Example 4.10, a wave train solution to the Klein-Gordon
equation propagates at speeds
n ab
c=4/a+ ——
w2 —0b’
where a and b are positive. Note also that w = v/ak? + b. This means that
w > Vb as the wave number k can be arbitrarily small. It should now be easy
to see that

lim ¢ =
w—Vb

while

lim ¢ = +/a.

w—r00

This proves that these wave trains can travel with speeds y/a < ¢ < oo.
e 4.13 (a) Consider the differential equation

U + Aty = AUy,

where both constants are positive. To derive the dispersion relation, consider

the solution '
U($,t) — ez(kx—wt).

Substituting this function into the differential equation and factoring by the
common factor of e?**=%%) e obtain the following relation between w and k:

—iw + iak = —k2d.



Multiplying both sides by ¢ and taking all the & dependent terms to the right,
we obtain that
w = ak — k*di

which the dispersion relation for our differential equation. As w is a quadratic
function of k, the said equation is dispersive.

5.2 Suppose v(x,t) and w(x,t) are two solutions to the equation u; + uu, +
Uzze = 0. Consider the function u(x,t) = v(x,t) + w(z,t) and show that it is a
solution to the given differential equation provided the product v(x,t)w(x,t) is
x independent.

Substituting the function u(z,t) into the left hand side of the differential equa-
tion we obtain that

Uy + VU + Vggy + Wy + WW, + Wege + (VW + W) = vw, + wo,

as the functions v and w are the solutions of the original equation. Note now
that vw, + wv, = (vw),. Thus, the right-hand side of the equation vanishes if
the product vw is indeed x independent.

7.2 Note first that due to the assumption that p(s) = p(x) for any s such that
r < s < x4+ Az, and that we only allow small deformations, the total mass of
the segment [z, x + Ax] is

M = /x zp(s)\/ 1+ (uy)?ds =~ /x zp(x)ds = p(x)Aw.

This mean that the Newton’s Second Law for this segment (compare with equa-
tion (7.4)) takes the form

p(x)Axuy(x,t) = T(x + Ax)ug(z + Dx,t) — T(x)u(z,t).

Dividing both sides by Az and taking the limit when Az — 0 we obtain the
required equation

pla)uy = (T(x)ue)s.



