
ECE 478-578
Intelligent Robotics I
PhD. Husnu Melih Erdogan – Electrical & Computer Engineering

herdogan@pdx.edu Teaching Assistant

mailto:Herdogan@pdx.edu

Introduction to ROS Part – 4
&

Spoken Language Interface
Technologies

Course Structure
• Part 1 - Overview

• What is ROS?

• Introduction to ROS

• ROS architecture, philosophy, history

• How to install ROS?

• Examples

• Installation

• ROS Master

• ROS Nodes

• ROS Topic

• ROS Messages

• Console Commands

• ROS Packages

• ROS Launch-files

• Catkin Workspace and Build System

• Turtlesim

• Part 2 - Basics
• ROS File System

• ROS Package

• How to create a package?

• How to build a package?

• Creating a Publisher Node

• Creating a Subscriber Node

• Assignment 3

• Part 3 - Debug
• ROS Launch File

• How to use ROS
.bagfiles?

• ROS Parameters

• ROS Namespace

• Part 4 - Speech
• ROS Services

• ROS Messages

• Speech
Recognition

• Speech
Synthesis

• Google
Dialogflow

• Part 5 - Fuzzy
• Amazon Polly

• ROS Actions

• Rviz

• Mapping

• Localization

• Fuzzy Logic

• 2D Multi-
Robot
Simulator

• Assignment 4

ROS
(Robot Operating System)

ROS Services

ROS Service
• In some robot applications, a publish/subscribe model will not be enough if

it needs a request/response interaction.
• The publish/subscribe model is a kind of one-way transport system and

when we work with a distributed system, we might need a
request/response kind of interaction.

• We can define a service definition that contains two parts;
• one is for requests
• the other is for responses.

• Using ROS Services, we can write a server node and client node. The server
node provides the service under a name, and when the client node sends a
request message to this server, it will respond and send the result to the
client.

• The client might need to wait until the server responds. The ROS service
interaction is like a remote procedure call.

ROS Service

• The publish/subscribe model is a very flexible.

• However, its many-to-many one-way transport is not appropriate for
RPC request / reply interactions, which are often required in a
distributed system.

• Request / reply is done via a Service

• They are defined by a pair of messages: one for the request and one
for the reply.

• Services are defined using srv files, which are compiled into source
code by a ROS client library.

ROS Service

Difference between services and publishing and subscribing to topics

ROS Service

http://www.clearpathrobotics.com/assets/guides/ros/Intro%20to%20the%20Robot%20Operating%20System.html

How does ROS service works?

rosservice command line tool

• $ rosservice call /service args: This tool will call the service using the given arguments

• $ rosservice find service_type: This command will find services in the given service type

• $ rosservice info /service: This will print information about the given service

• $ rosservice list: This command will list the active services running on the system

• $ rosservice type /service: This command will print the service type of a given service

• $ rosservice uri /service: This tool will print the service ROSRPC URI

Ros Service Example

ROS srv

• srv: an srv file describes a service.

• It is composed of two parts: a request and a response.

• srv files are just like msg files, except they contain two parts: a
request and a response. The two parts are separated by a '---' line.
Here is an example of a srv file:

Request

Response

How to create ROS srv?

• Defining a Service

• Implement the Service

• Service Server

• Use the service

• Service Client

How to define a ROS srv?

• It is done in a service definition file

• It is .srv file

• It is just like message definition files. Maybe just a little bit more
complicated.

• It has both input types and output types

How to define a ROS srv?

• It is not a requirement, but traditionally these files are created in srv
directory in the main package directory.

How to define a ROS srv?

• There are three dashes between input and output definitions.

How to create ROS srv?

• We need to run catkin_make to create the code and class definitions
that we will actually use when interacting with services.

• In order to get catkin_make build this code, we need to modify some
files.
• CMakeList.txt

• Package.xml

How to create ROS srv?

• We need to make sure massage generation package is included.

How to create ROS srv?

• We need to tell catkin make which service definition files are going to be
compiled.

How to create ROS srv?

• We must make sure the dependencies for the service definition files is
declared.

How to create ROS srv?
Our new dependencies on rospy and the message system are needed
during build time and runtime.

ROS Service Server

ROS Service Test

ROS Service Server Test

ROS Service Client

ROS Service Client

ROS Implementation

DialogFlow
ServiceServer

AmazonPolly
Service Server

/response

.w
av

au

d
io

 f
ile

Te
xt

 r
es

p
o

n
d

Te
xt

.m
p

3

au
d

io
 file

Speech
Recognition

Node

req res Speech Syntesis
Node

req res

Speech Recognition and
Speech Synthesis

What is Speech Recognition?

• The task of speech recognition is to convert speech into a sequence of words by
a computer program

Hello World!

What is Speech Syntesis?

• Speech synthesis is artificial simulation of human speech which is created by a
computer or other device.

Hello World!

Where are they used?

• Computers

• Telemarketing

• Smart Phones

• Emergencies

• Phone Call Routing

• Smart Homes

• Cars

• Robots

• Etc.

The Current State of Art in Speech Technologies

Speech Applications and Technologies

Cloud
Resources

Input
Technologies

Output
Technologies

Local
Resources

• Text
• Voice
• Ink etc..

• Text
• Voice
• Ink etc..

• Web
Application

• Software
• Your Robot

Apps

• Google Cloud Voice
• Dialogflow
• Amazon Polly

• Espeak
• pocketsphinx

Dialog Management

• Controlling the interchange of information between users

and application

• Three dialog styles

• Human-directed conversational dialogs

• User asks a question or speaks a command and the computer responds.

• Application-directed conversational dialogs

• Application asks questions to get answers and instructions from a user.

• Mixed-initiative dialogs

• User and application take turns driving the conversations.

Three Dialog Styles
Application Directed

Robot: What month?

Human: February

Robot: What day of the week?

Human: Twelve

Robot: What year?

Human: Nineteen ninety-seven

Human Directed

Human: Set month to February

Robot: Month is February

Human: Set day to twelve

Robot: Day is twelve

Human: Set year to nineteen ninety-seven

Robot: Year is nineteen ninety-seven

Mixed initiative

Robot: What month?

Human: February twelve nineteen

ninety-seven

Speech Recognition

Speech Recognition
ASR – Automated Speech Recognition

• Advantages

• User does not convert choices to a digit

• Disadvantages

• Occasional failure to recognize what user said

• Noise

• Accent

• Long Delay

• Some times time-consuming dialogs

• Users may interrupt prompts by “barge-in”

How Speech Recognition Works

Audio

Input

Feature

Extraction

Phoneme

Identification

Word

Identification

Words and Phrases

Digital

signal

processing

signal

- Computer converts analog waves
spoken into a microphone into a digital
format.
- Noise reduction

Sound : Hello my name is …

Audio

Input

Feature

Extraction

Phoneme

Identification

Word

Identification

Acoustic

Model

Words and Phrases

Transform

features

to phonemes

• Sounds in a language

• Different for each language

• May be speaker dependent

(speaker must train model)

• May be speaker independent

(pretrained)

• Usually supplied by ASR vendor

How Speech Recognition Works

hə’ləʊ ‘maɪ 'neɪm ‘ɪz

Acoustic model represents the relationship

between an audio signal and the phonemes or

other linguistic units that make up speech.

Audio

Input

Feature

Extraction

Phoneme

Identification

Word

Identification

Language

Model

Words and Phrases

Transform

phonemes

to words

Words in a language

and their

pronunciations

How Speech Recognition Works
Text: Hello my name is …

Speech Recognition

• There are two common methods

• Grammar-based
• Developer specifies words to be recognized

• Statistical Language Models
• Developer records and tags phrases

Context-free Grammar
(CFG)

Grammar-based Speech Recognition

Audio

Input

Feature

Extraction

Phoneme

Identification

Word

Identification

Language

Model

Words and Phrases

Grammar

Compiler
Grammar

Lexicon

Where Are Grammars Used?

• Interactive Response Systems (IVR)
• Automated telephone agents

• Each step may use a different grammar
• Grammar defines only the words which the user may speak during a step

• Application developers specify grammars for each step

• The same grammar may be reused in multiple applications

Grammar Rules Example

<grammar

type = "application/grammar+xml"

root = "request"

mode = "voice">

<rule id = "request">
<ruleref uri = "#color"/>
<ruleref uri = "#size"/>

</rule>

<rule id = "size">
<one-of>

<item> small </item>
<item> medium </item>
<item> large </item>

</one-of>
</rule>

<rule id = "color">
<one-of>

<item> red </item>
<item> green </item>
<item> blue </item>

</one-of>
</rule>

• In order to create rules XML format is used

Statistical Language Model-based Recognition
Technologies
• Call Routing

• Speaker Identification

• Dictation

• Speaker emotion

• Voice pitch

• Age Detection

• Gender Detection

• Intoxication Detection

• Stress Detection

• Medical conditions (e.g., sleep apnea)

Example Verbal Phrases with Label

• “I have a problem with my bill” accounting

• “Where is my order?” shipping

• “My gadget arrived broken” customer service

• “I need to return my gadget” shipping

• “My statement is wrong” accounting

• “I want a refund” accounting

Label thousands of verbal phrases

Statistical Language Model (SLM)

Statistical Language Model-based Speech Recognition

Audio

Input

Feature

Extraction

Phoneme

Identification

Classifier Language

Model

Category

Statistical

Routines

Verbal

Phrases

Sentences with

Categories

Does not

use

grammars

Statistical language models provide the
probability that a given word will occur next,
based on the preceding words.

My name is …

Grammars vs. Statistical Language Models

• Hand-crafted rules

• Very high-accuracy

• Easy to assemble

• Finite phrases

• Used for
• Interactive Voice Response (IVR)

• Command and Control

Context-Free Grammars
(CFGs)

• Data-driven

• High-accuracy

• Complex to assemble

• Natural language

• Used for dictation

Statistical Language
Models (SLMs)

Usage of Statistical Language Model-based
Recognition Technologies

• Widely available

• Call routing

• Speaker authentication

• Dictation

• Actively being researched

• Speaker emotion

• Voice Pitch

• Age Detection

• Gender Detection

• Intoxication Detection

• Stress Detection

• Medical conditions (e.g., sleep apnea)

49

Speech Syntesis

Speech Synthesis
(Text-To-Speech, TTS)

Structure
Analysis

Text
Normalization

Text-to-phoneme
Conversion

Prosody
Analysis

Waveform
Production

Structure Rules

Abbreviation and Acronym
Database

Pronunciation Lexicon

Prosody Rules

Phoneme-to-sound
Database

Text input:
“Hello my name is Melih”

Voice output:
“Hello my name is Melih”

Concatenated vs. Parameter-based Speech Synthesis

Isolate
Phonemes

“The dog
barked”

“red car”
Concatenate
Phonemes

er ed d k ah er

dh eh
d ao g

b ah er k eh d “red car”
Generate
Speech

er ed d k ah er

Voice
Parameters

Concatenative synthesis is a technique for synthesizing

sounds by concatenating short samples of recorded sound

(called units).
Need a professional speaker 2-10 hr.

Parametric synthesis model describes the speech using
parameters, rather than stored exemplars.
It is statistical because it describes those parameters
using statistics

Speech Synthesis Markup Language (SSML)

Structure
Analysis

Text
Normali-

zation

Text-to-
Phoneme

Conversion

Prosody
Analysis

Waveform
Production

Markup support:
p, s
Non-markup behavior:
infer structure by
automated text analysis

Dr. Smith lives at 214 Elm Dr. He weights 214 lb. He plays bass
guitar. He also likes to fish; last week he caught a 19 lb. bass.

Before and after Structure Analysis
• Before structure analysis

• Dr. Smith lives at 214 Elm Dr. He weights 214 lb. He plays bass guitar. He also likes to fish;
last week he caught a 19 lb. bass.

• After structure analysis
<p>

<s>
Dr. Smith lives at 214 Elm Dr.

</s>
<s>

He weights 214 lb.
</s>

<s>

He plays bass guitar.

</s>

<s>

He also likes to fish; last week he caught
a 19 lb. bass.

</s>

</p>

Speech Synthesis Markup Language

Structure
Analysis

Text
Normali-

zation

Text-to-
Phoneme

Conversion

Prosody
Analysis

Waveform
Production

Markup support: say-as for dates, times, etc.
sub for aliasing
Non-markup behavior: automatically identify
and convert constructs

He weights 214 _{lb.}

After Text Normalization
<p>

<s>

_{Dr.} Smith lives at 214 Elm _{Dr.}

</s>

<s>

He weights 214 _{lb.}

</s>

<s>

He plays bass guitar.

</s>

<s>

He also likes to fish; last week he caught a 19 _{lb.} bass.

</s>

</p>

Speech Synthesis Markup Language

Structure
Analysis

Text
Normali-

zation

Text-to-
Phoneme

Conversion

Prosody
Analysis

Waveform
Production

Markup support:
phoneme, say-as
Non-markup behavior:
look up in pronunciation
dictionary

He plays <phoneme alphabet = "ipa" ph="beɪs">bass</phoneme> guitar.

Text-to-Phoneme Conversion
<p>

<s>

_{Dr.} Smith lives

at <say-as interpret-as = “address"> 214 </sayas> Elm

_{Dr.}

</s>

<s>

He weighs <sayas interpret-as = "number">214 </sayas>

_{lb.}

</s>

<s>

He plays <phoneme alphabet = "ipa" ph="beɪs">bass</phoneme> guitar.

</s>

<s>

He also likes to fish; last week he caught a

<sayas interpret-as= "number">19 </sayas>

_{lb.}

<phoneme alphabet = "ipa" ph="bæs">bass</phoneme>.

</s>

</p>

Bass guitar Bass fish

Speech Synthesis Markup Language

Structure
Analysis

Text
Normali-

zation

Text-to-
Phoneme

Conversion

Prosody
Analysis

Waveform
Production

Markup support:
emphasis, break, prosody
Non-markup behavior:
automatically generate prosody through analysis
of document structure and sentence syntax

Prosody Analysis
<prompt>

Environmental control menu. Do you want to adjust the lighting or temperature?

</prompt>

<prompt>

Environmental control menu

<break/> <emphasis level = "reduced" >

do you want to adjust the </emphasis>

<emphasis level = "strong">

lighting </emphasis>

<break/>

or <emphasis level = "strong">

temperature? </emphasis>

</prompt>

Speech Synthesis Markup Language

Structure
Analysis

Text
Normali-

zation

Text-to-
Phoneme

Conversion

Prosody
Analysis

Waveform
Production

Markup support:
voice, audio*

Voice Output:
“Hello my name is Melih”

Prerecorded messages vs. Speech Synthesis

• Artificial sounding (Getting better)

• May be difficult to understand

• Computer-generated data

• Easy to specify

Speech Synthesis (TTS)

• Natural sounding

• Easy to understand

• Static data

• Tedious to record and tag

Prerecorded messages

Prerecorded Messages vs.
Speech Synthesis

• Artificial sounding

• May be difficult to understand

• Computer-generated data

• Easy to specify

Speech Synthesis (TTS)

• Natural sounding

• Easy to understand

• Static data

• Tedious to record and tag

Prerecorded Messages

Speech Structure Overview

DialogFlow
ServiceServer

AmazonPolly
Service Server

/response

.w
av

au

d
io

 f
ile

Te
xt

 r
es

p
o

n
d

Te
xt

.m
p

3

au
d

io
 file

Speech
Recognition

Node

req res Speech Syntesis
Node

req res

Google Dialogflow

Introduction to Dialogflow

• DialogFlow is a natural processing tool.

• Started as API.AI in 2010, acquired by Google

• Can be used to create user voice interfaces and chatbots

Introduction to Dialogflow

• You create a decision tree

• And Dialogflow uses Machine Learning to match user inputs to given training
examples to figure out what the user’s intent.

• It is flexible

• It keeps learning

• It works in many different circumstances

• It an be used with many programming languages such as Python, Java, Go, PHP, Ruby
etc

Main Concepts and Features of Dialogflow

• Agent

• Prebuild Agents

• Intents

• Action and Parameters

• Context

• Events

• Responses

• Contexts

• Entities
• System Entities
• Custom Entities

• Training
• Small Talk

Agents

• Antural Language Understanding (NLU) modules.

• It can be included in your app, website, product or services

• It translates text and spoken user requests into actionable data.

Intents

• Represents a mapping between what a user says and what action
should be taken by your software

• In order to define how conversations work, intents are used in agent

• It maps user input to responses

• In each intent,
• There are defined examples of user utterances that can trigger the intent

• What to extract from the utterance

• and how to respond.

Intents
• Intent has the following sections:

• User input (Text-Voice)

• Written in natural language and annotated with parameter values

• “Weather forecast in Portland tomorrow”
• Action

• Steps your application will take when a specific intent has been triggered.

• Response

• Text, image, card, quick reply, custom payload

• Context

• Current context of a user's request

• Resolves “it” or “them”

Parameter values

Entities

• Mechanism for identifying and extracting useful data from natural language inputs.

• Three entity types:

• System Entity Types - defined by Dialogflow

• Developer Entity Types - defined by developer

• User - built for each individual end-user in every request

• Entities can be exported and downloaded

Entities - System Entity

• System Entity Type are defined by Dialogflow

• @sys.date matches common date references such as "January 1, 2015" or
"The first of January of 2015" and returns a reference value in ISO-8601
format: 2015-01-01T12:00:00-03:00.

• @sys.color matches most popular colors and returns the matched color.

• @sys.unit-currency matches amounts of money with indication of currency
name, e.g., "50 euros" or "twenty dollars and five cents

Entities - Developer Entity

• Developer entity types are defined by developer

• For example, a brand might create an entity type to recognize its unique set of
product names.

• @coffee

• @tea

• @bread

• @condiments

• @meats

Entities

• User --built for each individual end-user in every request

• Session entities extend or replace a developer entity at the user session level.

• A user's session is the conversation they have with your agent from start to finish.

• For example, if your agent has a @pets entity that includes "dog" and "cat", that
entity could be updated to include "bird" or "fish" depending on the information
your agent collects from a user.

• @pets
• Dog

• Cat

• Bird

• Fish

Parameters
• Parameters are elements generally used to connect words in a user’s response to

entities.

• A corresponding parameter stores the extracted value from the utterance

• This lets us convert user input into structured data that we can use to do some
logic or generate responses.

Parameters
• As an example, let's look at one of the example training phrases we defined earlier

• User input/intent: "What is the weather like on Tuesday at 3pm".

• The date and time entities (corresponding to the values Tuesday and 3 PM) are
automatically annotated as @sys.date and @sys.time

Actions

• Step your application will take when a specific intent has been triggered by a
user’s input.

• Actions can have parameters for extracting information from user requests

Responses

• Every intent must define a response that's returned to the user.

• There are two primary ways you can return a response to the user -
either with a pre-defined, static response or with a response
generated from a webhook.

• In both of these cases, you can use extracted parameters in the
response.

Messages

• Text

• Image

• Card

• Consist of an image, a card title, a card subtitle, and interactive buttons

• Quick reply

• Displayed as clickable buttons with pre-defined user responses.

• Custom payload

• You can send custom payloads in the JSON format provided in the
platforms documentation.

Events

• Events allow you to invoke intents based on something that has
happened instead of what a user communicates.

Training
• Dialogflow is a natural language processing tool that is based on

machine learning

• That means you can add training data that the agent learns from and
uses to improve its performance.

• Logs of user interactions can be used to improve the performance of
Dialogflow agents.

Training

• Since Dialogflow's natural language processing is based on machine
learning, you can add training data that the agent learns from and
uses to improve its performance.

• Dialogflow's training feature provides an interface for incorporating
both external and internal customer interaction logs into an agent's
training phrases. You can use this feature to build a new Dialogflow
agent using logs of existing customer interactions and to improve the
performance of a live Dialogflow agent using its own logs.

Pre-build agents and Small Talk

• Dialogflow provides two out-of-the-box features that help get you started with
agent and conversation design:

• Prebuilt Agents

• Prebuilt Agents include intents and entities that cover the agent's topic.

• You need to provide responses since they may depend on particular use cases
or need to be retrieved from external sources (webhook or third-party API).

• Small Talk

• Small Talk is used to provide responses to casual conversation.

• This feature can greatly improve the user experience by covering common
questions that may not pertain to your agent's intents you built.

Reference

• Portland State University

• Computer Science Department

• Spoken Language Interfaces - CS 410/510

• Instructor: Jim Larson

• Some slides from his lectures are updated and used in this
documentation

End of class

