
ECE 478-578
Intelligent Robotics I
PhD. Husnu Melih Erdogan – Electrical & Computer Engineering

herdogan@pdx.edu Teaching Assistant

mailto:Herdogan@pdx.edu

Introduction to ROS Part - 2

ROS
(Robot Operating System)

Course Structure
• Part 1 - Overview

• What is ROS?

• Introduction to ROS

• ROS architecture, philosophy, history

• How to install ROS?

• Examples

• Installation

• ROS Master

• ROS Nodes

• ROS Topic

• ROS Messages

• Console Commands

• ROS Packages

• ROS Launch-files

• Catkin Workspace and Build System

• Turtlesim

• Assignment 3 – Part1

• Part 2 - Details
• ROS File System

• ROS Package

• How to create a package?

• How to build a package?

• Creating a Publisher Node

• Creating a Subscriber Node

• Creating a Launch File

• Assignment 3- Part2

• Part 3 - Details
• How to use ROS

.bagfiles?

• ROS Parameters

• ROS Messages

• ROS Services

• ROS Actions

• Assignment 4

• Part 4 - Project
• Rviz

• Mapping

• Localization

• 2D Multi-Robot
Simulator

• Assignment 5

ROS
(Robot Operating System Review)

ROS Workspace Environment

• Standard name for it catkin_ws

• However, you can use whatever name you want.

• You can create it in any user location

• Before you use a work space first you need to source your setup.*sh.

• The setup.bash files setup your environment variables and paths.

ROS Workspace Environment
• setup.bash Environment Setup File

• The binary catkin package includes a set of environment setup files that are used
to extend your shell environment, so that your terminal can find and use any
resources that have been installed to that location.

• the setup file included in the root of the distribution install directory (usually
/opt/ros/<ros_distribution_name>)

• For example with ROS Kinetic on Ubuntu the files would be located as such:

ROS Workspace Environment

• If you want to change the environment of your current shell
• source /opt/ros/kinetic/setup.bash

• If you want to overlay a workspace on top of your environment.
• source devel/setup.bash

• If you want to source your terminal automatically.
• echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

• source ~/.bashrc

Catkin Workspace

What is catkin?

A catkin workspace is a folder where you modify, build, and install
catkin packages. (wiki.ros.org)

Catkin packages can be built as a standalone project, in the same way
that normal cmake projects can be built, but catkin also provides the
concept of workspaces, where you can build multiple, interdependent
packages together all at once.

Create a Catkin Workspace
- mkdir -p ~/catkin_ws/src

(create a new directory called src in another directory called catkin ws)

- cd ~/catkin_ws/src

(go into the src directory)

- catkin_init_workspace

(initialize the workspace)

- cd ~/catkin_ws/

(go into your brand new workspace)

- catkin_make

(build your code in a catkin workspace)

- source devel/setup.bash

(Before continuing make sure you source your new setup.*sh file)

- echo $ROS_PACKAGE_PATH

Test your path: /home/youruser/catkin_ws/src:/opt/ros/kinetic/share

Catkin Workspace

• Do not use catkin_make and catkin build at the same time

• Do not mix them

Catkin Workspace

ROS Master

• In charge of managing the communication between nodes
• Every node registers with the master when you run them
• It tracks publishers and subscribers to topics as well as services.
• The role of the Master is to enable individual ROS nodes to locate one

another.
• Once these nodes have located each other they communicate with each

other peer-to-peer.
• The Master also provides the parameter server.

ROS Master

• In order to start a master type:
• roscore

Ros Nodes
• Single-purpose, executable program written in Python, C++, Matlab

etc

• Individually complied, executed and managed.

• You can run, stop, and kill nodes whenever you want.

• They run in parallel.

• In order to run a node type:
• rosrun package_name node_name

• See active nodes running on ROS
• rosnode list

• In order to get more information about nodes type:
• rosnode info node_name

ROS Topics
• ROS Nodes communicate over topics.
• Each node can publish or subscribe topics
• When one of the nodes register with the master, node also tells master

that I am the publisher of these topics. Therefore, other nodes can know
who publishes that topic and subtribe that topic.

• Topics is used to transfer data from publisher node to subscriber node
• List all active topics :

• rostopic list

• Subscribe and print the contents of a topic
• rostopic echo /topic-name

• Show information about the topic
• rostopic info /topic-name

• Show all the other possible rostopic commands
• rostopic -h

ROS Messages

• ROS message describes the data values that ROS nodes publish.

• Messages help ROS tolls to automatically generate code for the
message type in several target languages.

• Message descriptions are in .msg files in the msg/ directory.

• Messages can be nested in each other.

• Each ROS distribution can have a different description for a message
• You can go to http://wiki.ros.org/msg and check the message type

• Publish a message to a subscriber ROS node on command line.
• rostopic pub /mytopic std_msg/String “data: ‘Portland State University’”

http://wiki.ros.org/msg

Summary of ROS Messages

Image Source Link

https://www.mathworks.com/help/robotics/examples/exchange-data-with-ros-publishers-and-subscribers.html?requestedDomain=www.mathworks.com

ROS Master and Nodes

ROS Master

Node 1 Node 2 Node 3

Publish

Registration

Registration

topic

Registration

SubscribeSubscribe

Massages

Info InfoInfo

ROS File System

XML Format Review
• XML stands for extensible markup language.
• XML documents must contain one root element that is the parent of all

other elements

<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

The XML above does not DO anything. XML is just information wrapped in
tags.

XML Tags and Elements

https://www.youtube.com/watch?v=nyk8QO08grM

Why XML?

• It simplifies data sharing

• It simplifies data transport

• It simplifies platform changes

• It simplifies data availability

If you want to learn more about xml:

https://www.w3schools.com/xml/default.asp

ROS File System

• Packages: Packages are the software organization unit of ROS code.
Each package can contain libraries, executables, scripts, or other
artifacts.

• Manifests (package.xml): A manifest is a description of a package. It
serves to define dependencies between packages and to capture
meta information about the package like version, maintainer, license,
etc...

http://wiki.ros.org/catkin/package.xml

rospack

• rospack : gives you information about the package

• rospack find package_name

• ex: rospack find roscpp

roscd

• It is used to change directory to a package or a stack.

• roscd package_name

• You can also use roscd to move into sub directories.

• roscd package_name/sub_directory

rosls

• It is used to list to directories inside a package.

• rosls roscpp_tutorials

• cmake launch package.xml srv

rosdep

• It is used to install system dependencies.

• rosdep install my_package

• rosdep install --from-paths src --ignore-src --rosdistro indigo

Rospack Dependencies

• catkin_create_pkg beginner_tutorials std_msgs rospy roscpp

Rospack Dependencies
These dependencies for a package are stored in the package.xml file:

Indirect Dependencies

• A dependency can also have its own dependencies.

• All indirect
dependencies

Install Dependencies of a Package

• Use rosdep and catkin to build any package in the ROS repository.
• Say our package is named TEST_PACKAGE

• rosdep install TEST_PACKAGE

How to Install ROS Packages?

• There are two ways to do it.

• If there is a Debian package it is easy to install. (Method 1)

• If there is no Debian package, you have to install it from sources.
(Method 2)

ROS Package Review

• Software in ROS is organized in packages.

• A package can contain your ROS nodes, any libraries, a dataset,
configuration files, message types, scripts, service types, some third-
party software.

• When you want to create a project in ROS, first you need to create a
package

• ROS package are usually for certain ROS distributions

• Packages have dependencies

• http://www.ros.org/browse/list.php?package_type=package&distro=kinetic

http://www.ros.org/browse/list.php?package_type=package&distro=kinetic

Method 1

• apt-get install ros-<ros-distribution>-<package-name>

• Example:

• http://www.ros.org/browse/list.php

• apt-get install ros-indigo-effort-controllers

Method 2
- cd catkin_ws/src

- https://github.com/ros/ros_tutorials

- git clone -b indigo-devel https://github.com/ros/ros_tutorials.git

- cd catkin_ws

- rosdep install --from-paths src --ignore-src --rosdistro kinetic

- catkin_make

Creating a Package

How to Create a ROS Package?

• For a package to be considered a catkin package it must meet a few
requirements:

• The package must contain a catkin compliant package.xml file.
• That package.xml file provides meta information about the package.

• The package must contain a CMakeLists.txt which uses catkin. If it is
a catkin metapackage it must have the relevant boilerplate
CMakeLists.txt file.

• There can be no more than one package in each folder.
• This means no nested packages nor multiple packages sharing the same

directory.

ROS Package – Package.xml

ROS Package
Way 1:

Way 2:

How to Create a ROS Package?

• Create your workspace

• Go to your source directory
• cd ~/catkin_ws/src

• Create a new package
• catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

• Build the workspace and add the workspace to your ROS environment
by sourcing the setup.bash file
• cd ~/catkin_ws

• . ~/catkin_ws/devel/setup.bash

Customize your ROS Package
The generated package.xml should be in your new package.

Customize your ROS Package

• Description Tag:
• Describe your package in a few words

Customize your ROS Package

• Maintainer Tags:
• This is a required and important tag for the package.xml
• Let others know who to contact about the package.

Customize your ROS Package

• License Tags:
• You should choose a license and fill it in here. Some common open source licenses

are BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, and LGPLv3

Customize your ROS Package

• Dependencies Tags:
• We define all of our specified dependencies to be available at build

and run time.

ROS Package Review

1

4

3
2

5

Creating a Subscriber Node

Creating a Subscriber Node

• Go to your package in workspace
• cd catkin_ws/src/mypackage

• Create directory called “scripts”
• mkdir scripts

• Go in to scripts
• cd scripts

• Create script with your favirote editor “listener.py”

• Make the python script executable
• chmod +x listener.py

Creating a Subscriber Node

It tells your system this a Python file
It allows us to use Python with ROS
Import message type string, so we can reuse it

It prints to screen as it also writes to stdout

Create a node called listener

Node subscribes to the chatter.
When new messages are received
callback method is invoked.

Let’s Test Our Node

• Publishes data to a topic

• rostopic pub /topic_name std_msgs/String Perkowski

• Publishes data to a topic

• rostopic pub /TA_topic std_msgs/String Hello World

