
ECE 478-578
Intelligent Robotics I
PhD. Husnu Melih Erdogan – Electrical & Computer Engineering

herdogan@pdx.edu Teaching Assistant

mailto:Herdogan@pdx.edu

Introduction to ROS Part - 1

ROS
(Robot Operating system)

Course Structure
• Part 1 - Overview

• What is ROS?

• Introduction to ROS

• ROS architecture, philosophy, history

• How to install ROS?

• Examples

• Installation

• ROS Master

• ROS Nodes

• ROS Topic

• ROS Messages

• Console Commands

• ROS Packages

• ROS Launch-files

• Catkin Workspace and Build System

• Turtlesim

• Assignment 3 – Part1

• Part 2 - Details
• ROS File System

• ROS Package

• How to create a package?

• How to build a package?

• Creating a Publisher Node

• Creating a Subscriber Node

• Creating a Launch File

• How to use ROS .bagfiles?

• Assignment 3- Part2

• Part 3 - Details
• ROS Parameters

• ROS Messages

• ROS Services

• ROS Actions

• Assignment 4

• Part 4 - Project
• Rviz

• Mapping

• Localization

• 2D Multi-Robot
Simulator

• Assignment 5

Books

Courses
• http://wiki.ros.org/Courses

What is ROS?

• ROS stands for Robot Operating System.

• However, it is not a real operating system such a Linux, Windows, OSX

• It is framework.

• It is more like a middleware that sits between your operating system
and your program in C++, Python, Java, and MATLAB etc.

Why ROS is useful?

• A distributed, modular design

• A very large community

• Permissive Licensing
• "lets people do anything they want with your code

as long as they provide attribution back to you
and don’t hold you liable."

• Collaborative Environment

• It is free.

• Supports different programming languages
• Matlap, C++, Python, Lisp

• An important technical skill to have in your resume.

Why ROS is good for us?

• We use ROS in the Intelligent Robotics Lab because:
• Some of our robots already supports ROS

• ROS is a distributed system

• It allows us do fast prototyping

• There are already so many ready to use packages

• Robot Theater project

• It will also help you find Robotics Engineering jobs

Robotics Engineering Jobs

History of ROS

• It is developed in 2007 at the Stanford Artificial Intelligence Lab.

• It was managed by Willow Garage.

• Open Source Robotics Foundations has been managing it since 2013.

Current Distributions

ROS Industrial

http://rosindustrial.org/

ROS-Industrial is an open-source project that extends the advanced capabilities of ROS software to

manufacturing.

https://rosindustrial.org/

Some of Our ROS Powered Robots

ROS Philosophy
• Peer to Peer

• Individual programs communicate over defined API (ROS messages, services)

• Distributed
• Programs can be run on multiple computers and communicate over the network.

• Supports Multiple Languages
• ROS modules can be written in any language for which a client library exist (C++, Python, MATLAB,

Java, etc.)

• Light-weight
• Stand-alone libraries are wrapped around with in a thin ROS layer.
• It doesn’t mean ROS doesn’t use your CPU or don’t need a powerful PC.
• Some packages could use all almost your system resources.

• Free and Open-Source
• It is totally free and supported by a considerably large community.
• It is backed by many universities and industrial companies.
• It becomes a standard in the robotics field.

ROS Core Components

• There are three core components:

Communications Infrastructure:
• Message Passing
• Remote Procedure Calls
• Recording and Playback of

Messages
• Distributed Parameter System

Tools:
• Command-Line Tools
• Rviz
• Rqt

Robot-Specific Features:
• Standard Message Definitions
• Robot Geometry Library
• Robot Description Language
• Localization
• Mapping
• Navigation

Communications Infrastructure

• At the lowest level, ROS offers a message passing interface that
provides inter-process communication and is commonly referred to as
a middleware.

• The ROS middleware provides these facilities:
• publish/subscribe anonymous message passing

• recording and playback of messages

• request/response remote procedure calls

• distributed parameter system

Communications Infrastructure
Message Passing
• A communication system is often one of the first needs to arise when

implementing a new robot application.

• ROS's built-in and well-tested messaging system saves you time by
managing the details of communication between distributed nodes
via the anonymous publish/subscribe mechanism.

• Another benefit of using a message passing system is that it forces
you to implement clear interfaces between the nodes in your system,
thereby improving encapsulation and promoting code reuse.

• The structure of these message interfaces is defined in the message
IDL (Interface Description Language).

Communications Infrastructure
Remote Procedure Calls
• The asynchronous nature of publish/subscribe messaging works for

many communication needs in robotics, but sometimes you want
synchronous request/response interactions between processes.

• The ROS middleware provides this capability using services.
Like topics, the data being sent between processes in a service call are
defined with the same simple message IDL (Interface Description
Language).

Communications Infrastructure:
Recording and Playback of Messages
• Because the publish/subscribe system is anonymous and asynchronous, the

data can be easily captured and replayed without any changes to code.

• Say you have Task A that reads data from a sensor, and you are developing
Task B that processes the data produced by Task A. ROS makes it easy to
capture the data published by Task A to a file, and then republish that
data from the file at a later time.

• This is a powerful design pattern that can significantly reduce your
development effort and promote flexibility and modularity in your system.

• We can run the robot itself only a few times, recording the topics we care
about, and then replay the messages on those topics many times,
experimenting with the software that processes those data.

Communications Infrastructure
Distributed Parameter System

• The ROS middleware also provides a way for tasks to share
configuration information through a global key-value store.

• This system allows you to easily modify your task settings, and even
allows tasks to change the configuration of other tasks.

Tools

• One of the strongest features of ROS is the powerful development
toolset.

• These tools support introspecting, debugging, plotting, and visualizing
the state of the system being developed.

• The underlying publish/subscribe mechanism allows you to
spontaneously do self-analysis of the data flowing through the
system, making it easy to comprehend and debug issues as they
occur.

• The ROS tools take advantage of this introspection capability through
an extensive collection of graphical and command line utilities that
simplify development and debugging.

Tools - Command-Line Tools

• ROS can be used 100% without a GUI.

• All core functionality and introspection tools are accessible via one of
more than 45 ROS command line tools.

• There are commands for launching groups of nodes;
• introspecting topics,

• services,

• and actions;
• recording and playing back data;

• and a host of other situations.

Tools - rviz
• Perhaps the most well-known tool in ROS, rviz provides general purpose,

three-dimensional visualization of many sensor data types and any URDF-
described robot.

• rviz can visualize many of the common message types provided in ROS,
such as
• laser scans,
• three-dimensional point clouds,
• and camera images.

• Visualizing all of your data in the same application not only looks
impressive, but also allows you to quickly see what your robot sees, and
identify problems such as sensor misalignments or robot model
inaccuracies.

rviz

rviz

rviz

Tools - rqt

• ROS provides rqt, a Qt-based framework for developing graphical
interfaces for your robot.

• You can create custom interfaces by composing and configuring the
extensive library of built-in rqt plugins into tabbed, split-screen, and
other layouts.

• You can also introduce new interface components by writing your
own rqt plugins .

Tools - rqt

Tools – rqt_graph

• The rqt_graph plugin provides introspection and visualization of a live
ROS system

• It shows nodes and the connections between them

• It allows you to easily debug and understand your running system and
how it is structured.

Tools – rqt_graph

Tools – rqt_plot

• The rqt_plot plugin help you monitor encoders, voltages, or anything
that can be represented as a number that varies over time.

• The rqt_plot plugin allows you to choose the plotting backend (e.g.,
matplotlib, Qwt, pyqtgraph) that best fits your needs.

Tools – rqt_plot

Tools – rqt_topic

• The rqt_plot plugin help you monitor encoders, voltages, or anything
that can be represented as a number that varies over time.

• The rqt_plot plugin allows you to choose the plotting backend (e.g.,
matplotlib, Qwt, pyqtgraph) that best fits your needs.

Tools – rqt_topic

Tools – rqt_publisher

• The rqt_plot plugin help you monitor encoders, voltages, or anything
that can be represented as a number that varies over time.

• The rqt_plot plugin allows you to choose the plotting backend (e.g.,
matplotlib, Qwt, pyqtgraph) that best fits your needs.

Tools – rqt_publisher

Robot-Specific Features
• In addition to the core middleware components, ROS provides

common robot-specific libraries and tools that will get your robot up
and running quickly. Here are just a few of the robot-specific
capabilities that ROS provides:
• Standard Message Definitions for Robots
• Robot Geometry Library
• Robot Description Language
• Pre-emptiable Remote Procedure Calls
• Diagnostics
• Pose Estimation
• Localization
• Mapping
• Navigation

Robot-Specific Features – Pose Estimation

Robot-Specific Features - Mapping

How to Install ROS?

• Install ROS Kinetic on PC - Ubuntu - Recommended

• Install ROS Kinetic on Virtual Machine

• Install ROS Kinetic on Raspberry Pi 3 - Stretch - Project2

ROS Workspace Environment

• Standard name for it catkin_ws

• However, you can use whatever name you want.

• You can create it in any user location

• Before you use a work space first you need to source your setup.*sh.

• The setup.bash files setup your environment variables and paths.

ROS Workspace Environment
• setup.bash Environment Setup File

• The binary catkin package includes a set of environment setup files that are used
to extend your shell environment, so that your terminal can find and use any
resources that have been installed to that location.

• the setup file included in the root of the distribution install directory (usually
/opt/ros/<ros_distribution_name>)

• For example with ROS Kinetic on Ubuntu the files would be located as such:

ROS Workspace Environment

• If you want to change the environment of your current shell
• source /opt/ros/kinetic/setup.bash

• If you want to overlay a workspace on top of your environment.
• source devel/setup.bash

• If you want to source your terminal automatically.
• echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

• source ~/.bashrc

Catkin Workspace

What is catkin?

A catkin workspace is a folder where you modify, build, and install
catkin packages. (wiki.ros.org)

Catkin packages can be built as a standalone project, in the same way
that normal cmake projects can be built, but catkin also provides the
concept of workspaces, where you can build multiple, interdependent
packages together all at once.

Create a Catkin Workspace
- mkdir -p ~/catkin_ws/src

(create a new directory called src in another directory called catkin ws)

- cd ~/catkin_ws/src

(go into the src directory)

- catkin_init_workspace

(initialize the workspace)

- cd ~/catkin_ws/

(go into your brand new workspace)

- catkin_make

(build your code in a catkin workspace)

- source devel/setup.bash

(Before continuing make sure you source your new setup.*sh file)

- echo $ROS_PACKAGE_PATH

Test your path: /home/youruser/catkin_ws/src:/opt/ros/kinetic/share

Catkin Workspace

• You can also use catkin build command to build your code in your
package.

• It is as same as the catkin_make command.

Catkin Workspace

• Do not use catkin_make and catkin build at the same time

• Do not mix them

Catkin Workspace

Catkin Workspace – src folder

• The source space is the folder is where catkin will be expected to look
for packages when building.

• Each catkin project desired to be compiled from source should be
checked out into subdirectories inside this directory.

• Packages are found recursively so they do not have to be direct
subfolders.

Catkin Workspace – dev folder

• The development space is where catkin generates the binaries and
runtime libraries which are executable before installation.

• After the build step, inside this folder is expected everything needed
to run nodes in packages which have been built.

• The development space can not be a folder which contains ROS
packages in subfolders.
• Ex: It can not equal to the workspace root as this would make the source

space a subfolder which would lead to packages being found multiple times.

Catkin Workspace – build folder

• The build space is the folder in which cmake is invoked and generates
artifacts such as the CMakeCache

Catkin Workspace – Overlying Workspaces

• In catkin style workspaces, overlaying of one workspace on top of
another workspace is supported. E

• Each overlay can be built on top of another overlay, and any packages
in a higher overlay will mask out packages in lower overlays.

• When overlaying any package all packages which depend on that
package must be overlayed if they are intended to be used.

• This must be checked by the user creating the overlays. If a core
package is overlayed and changes how it works, any package which
depends on it and relies on the old behavior (whether runtime, or link
time) will crash.

Catkin Workspace – Overlying Workspaces
• mkdir ws1/src

• mkdir ws2/src

• mkdir ws3/src

• ws1 as an overlay of /opt/ros/kinetic/setup.bash

• ws2 as an overlay of ws1

• ws3 as an overlay of ws2

• http://wiki.ros.org/catkin/Tutorials/workspace_overlaying

http://wiki.ros.org/catkin/Tutorials/workspace_overlaying

Catkin Workspace – Overlying Workspaces

• cd ~/catkin_ws1

• catkin_make

• source /opt/ros/kinetic/setup.bash

• cd ~/catkin_ws2

• catkin_make

• source ~/catkin_ws1/devel/setup.bash

• cd ~/catkin_ws3

• catkin_make

• source ~/catkin_ws2/devel/setup.bash

ROS Master

• In charge of managing the communication between nodes
• Every node registers with the master when you run them
• It tracks publishers and subscribers to topics as well as services.
• The role of the Master is to enable individual ROS nodes to locate one

another.
• Once these nodes have located each other they communicate with each

other peer-to-peer.
• The Master also provides the parameter server.

ROS Master

• In order to start a master type:
• roscore

Ros Nodes
• Single-purpose, executable program written in Python, C++, Matlab

etc

• Individually complied, executed and managed.

• You can run, stop, and kill nodes whenever you want.

• They run in parallel.

• In order to run a node type:
• rosrun package_name node_name

• See active nodes running on ROS
• rosnode list

• In order to get more information about nodes type:
• rosnode info node_name

ROS Master and Nodes

ROS Master

Node 1 Node 2 Node 3

Registration Registration
Registration

ROS Master Example

Step 1 Step 2 Step 3

ROS Master Example

Step 1 Step 2 Step 3

ROS Topics
• ROS Nodes communicate over topics.
• Each node can publish or subscribe topics
• When one of the nodes register with the master, node also tells master

that I am the publisher of these topics. Therefore, other nodes can know
who publishes that topic and subtribe that topic.

• Topics is used to transfer data from publisher node to subscriber node
• List all active topics :

• rostopic list

• Subscribe and print the contents of a topic
• rostopic echo /topic-name

• Show information about the topic
• rostopic info /topic-name

• Show all the other possible rostopic commands
• rostopic -h

ROS Master and Nodes

ROS Master

Node 1 Node 2 Node 3

Publish

Registration

Registration

topic

Registration

SubscribeSubscribe

Massages

Info InfoInfo

Other ROS Topic Commands

• rostopic bw display bandwidth used by topic

• rostopic echo print messages to screen

• rostopic hz display publishing rate of topic

• rostopic list print information about active topics

• rostopic pub publish data to topic

• rostopic type print topic type

Using rqt-graph

• rqt_graph tool is used to create a dynamic graph of what's going on in
the system that includes all nodes and topics

• To run rqt-graph
• rosrun rqt_graph rqt_graph

Using rqt-graph

ROS Messages

• ROS message describes the data values that ROS nodes publish.

• Messages help ROS tolls to automatically generate code for the
message type in several target languages.

• Message descriptions are in .msg files in the msg/ directory.

• Messages can be nested in each other.

• Each ROS distribution can have a different description for a message
• You can go to http://wiki.ros.org/msg and check the message type

• Publish a message to a subscriber ROS node on command line.
• rostopic pub /mytopic std_msg/String “data: ‘Portland State University’”

http://wiki.ros.org/msg

Summary of ROS Messages

Image Source Link

https://www.mathworks.com/help/robotics/examples/exchange-data-with-ros-publishers-and-subscribers.html?requestedDomain=www.mathworks.com

Example ROS Message Definition:

Message Types
You must not use the names of built-in types or header when constructing your own message types.

ROS Messages - Remapping

Image Source Link

/example1

https://www.mathworks.com/help/robotics/examples/exchange-data-with-ros-publishers-and-subscribers.html?requestedDomain=www.mathworks.com

ROS Messages - Remapping
Node 1 : rosrun tutorials listener.py /topic:=/topic1
Node 2 : rosrun tutorials talker.py /topic:=/topic1

/topic1

/topic

talker.py

talker.py listener.py

listener.py

/topic1

/topic1
Subscriber

Subscriber

ROS Package

• Software in ROS is organized in packages.
• A package can contain your ROS nodes, any libraries, a dataset, configuration

files, message types, scripts, service types, some third-party software.
• When you want to create a project in ROS, first you need to create a package
• You can also download and install many packages written by other ROS users

around the world
• You can submit the ROS package you write to the ROS package repository
• Every ROS package is for certain ROS distributions
• Packages have dependencies
• http://www.ros.org/browse/list.php?package_type=package&distro=indigo

http://www.ros.org/browse/list.php?package_type=package&distro=indigo

ROS Package – Package.xml

ROS Launch

• Sometimes you have so many nodes with many different arguments
and parameters to run in a project.

• Roslaunch is a tool for easily launching multiple ROS nodes as well as
setting parameters in the parameter server.

• The basic idea is to list, in a specific XML format, a group of nodes
that should be started at the same time.

ROS Launch – Simple Example

Example Launch File

Some useful ROS command-line tools

• rospack: find and retrieve information about packages

• catkin_create_pkg: create a new package

• catkin_make: build a workspace of packages

• rosdep: install system dependencies of a package

• rqt: In rqt there is a plugin called "Introspection/Package Graph",
which visualizes package dependencies as a graph

http://wiki.ros.org/rospack
http://wiki.ros.org/catkin/commands/catkin_create_pkg
http://wiki.ros.org/catkin/commands/catkin_make
http://wiki.ros.org/rosdep
http://wiki.ros.org/rqt
http://wiki.ros.org/rqt

Turtlesim Example

http://wiki.ros.org/turtlesim

- Roscore

- Nodes
- rosrun turtlesim turtlesim_node
- rosrun turtlesim_turtle_teleop_key

- Topic
- rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

geometry_msgs/Twist
• Twist message should have:

• a linear component for the x, y, and z axes velocities,
• an angular component for the for the x, y, and z axes angular rate

Ubuntu Terminal – Open New Tab

Resources

• http://www.iris.ethz.ch/the-institute/robotics-systems-lab.html

• http://www.ros.org/

http://www.iris.ethz.ch/the-institute/robotics-systems-lab.html
http://www.ros.org/

