
ECE 478-578
Intelligent Robotics I
PhD. Husnu Melih Erdogan – Electrical & Computer Engineering

herdogan@pdx.edu Teaching Assistant – Lab Assistant

mailto:Herdogan@pdx.edu

Introduction to OpenCV 3 – Part 1

Open CV – Part 1

Quick Facts – Who is Gary Bradski?

Gary Bradski is an American scientist, engineer, entrepreneur, and author. He co-
founded Industrial Perception, a company that developed perception applications
for industrial robotic application (since acquired by Google in 2012) and has
worked on the OpenCV Computer Vision library, as well as published a book on
that library.
Education

Boston University
PhD
AI, machine learning, neuro-modeling
1989 – 1993

University of California, Berkeley
BS
EECS, electrical engineering, computer science
1979 – 1981

What is OpenCV?

• OpenCV is an open source computer vision library available from
http://opencv.org

• In 1999 Gary Bradski, working at Intel Corporation, launched OpenCV with
the hopes of accelerating computer vision and artificial intelligence by
providing a solid infrastructure for everyone working in the filed.

• The Library is written in C and C++.

• It runs on Linux, Windows, Mac OS X.

• There are active development interfaces for Python, Java, MATLAB, and
other programming languages, including Android and iOS for mobile
programming.

http://opencv.org/

What is OpenCV?

• OpenCV is designed for computational efficiency and with a strong
focus on real time applications.

• It can take advantage of multicore processors.

• If you want further automatic optimization on Intel architectures,
Intel’s Integrated Performance Primitives (IPP) libraries can be used.

• It is consist of low level optimized routines in many different
algorithmic areas.

• Starting from OpenCV 3 Intel granted the OpenCV team this IPP for
free.

What is OpenCV?

• It is consist of over 500 different functions.

• These functions are for many different areas,
• Factory product inspections,

• Medical imaging

• Security

• User Interface

• Camera Calibration

• Stereo Vision

• Robotics and more.

What is OpenCV?

• Computer vision and machine learning are BFF.

• That is why OpenCV contains a full, general purpose, Machine Learning
Library called ML module.

• It is very useful for the vision tasks that are at the core of OpenCV.

• It is also general enough to be used for many machine learning
problems.

OpenCV Timeline

V
3

.4
.0

 R
elease

2
0

1
8

V
3

.4
.0

 R
elease

V
4

.0
 R

elease –
Sep

 2
0

1
8

2
0

1
8

Who uses OpenCV?

• Computer Engineers and Scientist

• Programmers

• Other engineering majors

• Research centers such as Stanford, MIT, CMU, Cambridge.

• People from major companies such as IBM, Microsoft, Intel, SONY,
Siemens, and Google.

• OpenCV has a very large user community around the world.

• http://blog.ventureradar.com/2015/10/21/top-10-innovative-companies-in-computer-vision/

What is Computer Vision?

• Computer vision is concerned with the automatic extraction, analysis
and understanding of useful information from a single image or a
sequence of images. It involves the development of a theoretical and
algorithmic basis to achieve automatic visual understanding.

• The applications of computer vision are numerous and include:

• Agriculture, augmented reality, autonomous vehicles, biometrics,
character recognition, forensics, industrial quality inspection, face
recognition, gesture analysis, geoscience, image restoration medical
image analysis, pollution monitoring, process control, remote sensing,
robotics, security and surveillance, transport

http://www.bmva.org/visionoverview

http://www.bmva.org/visionoverview

Applications of Computer Vision

• Face Recognition

• Pose Estimation

• Body Tracking

• Speech Reading

• Palm Recognition

• Car Tracking

Applications of Computer Vision

• Face detection

• Face recognition

Applications of Computer Vision

• Object Detection

• Object Recognition

What is Robocup’s ultimate goal?

• Robocup’s first competition was held in
Nagaya, Japan in 1997

• More than 40 countries are represented at
Robocup in 2015 including 400 participants
ranging from engineers, professors, and
students.

• “The ultimate goal of Robocup is to develop
humanoid soccer-playing robots that can beat
the FIFA world champion team,” Gerhard
Kraetzschmar, General Chair of last year’s
RoboCup, previously told Digital Trends. “We
hope to reach that goal by 2050.”

Some interesting OpenCV project videos from
the Internet
• Finger Drawing

https://www.youtube.com/watch?v=Z43_hCM74rU

• Traffic Counting
https://www.youtube.com/watch?v=z1Cvn3_4yGo

• Object Tracking
https://www.youtube.com/watch?v=CigGvt3DXIw

• Face Recognition and Tracking
https://www.youtube.com/watch?v=vRHoQVZLvoM

• OpenCV Artificial Vision with Raspberry Pi
https://www.youtube.com/watch?v=YAu1KlKblR4

• Lane Detection and Steering
https://www.youtube.com/watch?v=8h9vU1pnNZA

• MIT Dockietown
https://vimeo.com/152233002

https://www.youtube.com/watch?v=Z43_hCM74rU
https://www.youtube.com/watch?v=z1Cvn3_4yGo
https://www.youtube.com/watch?v=CigGvt3DXIw
https://www.youtube.com/watch?v=vRHoQVZLvoM
https://www.youtube.com/watch?v=YAu1KlKblR4
https://www.youtube.com/watch?v=8h9vU1pnNZA
https://vimeo.com/152233002

Installing OpenCV - Windows

• https://solarianprogrammer.com/2016/09/17/install-opencv-3-with-
python-3-on-windows/

https://solarianprogrammer.com/2016/09/17/install-opencv-3-with-python-3-on-windows/

Installing OpenCV - Linux

• https://docs.opencv.org/3.0-
beta/doc/tutorials/introduction/windows_install/windows_install.ht
ml

https://docs.opencv.org/3.0-beta/doc/tutorials/introduction/windows_install/windows_install.html

Installing OpenCV Mac OSX

• https://www.pyimagesearch.com/2016/12/19/install-opencv-3-on-
macos-with-homebrew-the-easy-way/

https://www.pyimagesearch.com/2016/12/19/install-opencv-3-on-macos-with-homebrew-the-easy-way/

Installing OpenCV on Raspberry Pi

• Raspbian Jessie:
https://www.pyimagesearch.com/2016/04/18/install-guide-
raspberry-pi-3-raspbian-jessie-opencv-3/

• Raspbian Stretch:
https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-
install-opencv-3-python-on-your-raspberry-pi/

https://www.pyimagesearch.com/2016/04/18/install-guide-raspberry-pi-3-raspbian-jessie-opencv-3/
https://www.pyimagesearch.com/2016/04/18/install-guide-raspberry-pi-3-raspbian-jessie-opencv-3/
https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-opencv-3-python-on-your-raspberry-pi/

Installing OpenCV – Other Systems

• https://docs.opencv.org/3.0-
beta/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html

https://docs.opencv.org/3.0-beta/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html

Online Documentation and Tutorials

• https://docs.opencv.org/3.0-beta/doc/tutorials/tutorials.html

• https://www.pyimagesearch.com/

• https://pythonprogramming.net/loading-images-python-opencv-
tutorial/

• https://www.learnopencv.com/

https://docs.opencv.org/3.0-beta/doc/tutorials/tutorials.html
https://www.pyimagesearch.com/
https://pythonprogramming.net/loading-images-python-opencv-tutorial/
https://www.learnopencv.com/

OpenCV Contribution Repository

• Since OpenCV 3.0 the previously monolithic library has been split into
two parts:

• Mature OpenCV

• Opencv_contrib - The current state of the art in larger vision functionality

• Opencv_contrib library is maintained and developed by the
community. It may have parts under non-OpenCV license and may
include patented algorithms.

• https://github.com/opencv/opencv_contrib

https://github.com/opencv/opencv_contrib

opencv_contrib installation

• Python: https://pypi.python.org/pypi/opencv-contrib-python

• C++: https://github.com/opencv/opencv_contrib
• Linux : https://docs.opencv.org/trunk/d7/d9f/tutorial_linux_install.html

• Windows: https://www.learnopencv.com/install-opencv3-on-windows/

• OSX: https://www.learnopencv.com/install-opencv-3-on-yosemite-osx-10-10-x/

https://pypi.python.org/pypi/opencv-contrib-python
https://github.com/opencv/opencv_contrib
https://docs.opencv.org/trunk/d7/d9f/tutorial_linux_install.html
https://www.learnopencv.com/install-opencv3-on-windows/
https://www.learnopencv.com/install-opencv-3-on-yosemite-osx-10-10-x/

How to contribute to the OpenCV repository

• Details documentation about how to submit your algorithm or
contribution to OpenCV repository.

• https://github.com/opencv/opencv/wiki/How_to_contribute

https://github.com/opencv/opencv/wiki/How_to_contribute

OpenCV and Portability

Linear Algebra

Linear Algebra – Quick Review

• In order to understand how most of the image processing algorithms
work you need to know linear algebra.

• Good Review – Numeric Understanding

• http://cs229.stanford.edu/section/cs229-linalg.pdf

• Essence of linear algebra – Geometric intuitions – Geometric
Understanding of Linear algebra.

• https://www.youtube.com/watch?v=kjBOesZCoqc

http://cs229.stanford.edu/section/cs229-linalg.pdf
https://www.youtube.com/watch?v=kjBOesZCoqc

Linear Algebra – Matrix

OpenCV with Python

The Very First Digital Image
• Russel A. Kirsch took a picture of his infant son and scanned it

into a computer. It was the first digital image: a grainy, black-
and-white baby picture that literally changed the way we view
the world.

• The picture of Kirsch’s three-month-old son, was captured as
just 30,976 pixels, a 176 × 176 array, in an area measuring
5 cm × 5 cm

Russel A. Kirsch

• https://www.wired.com/2010/06/smoothing-square-pixels/

https://en.wikipedia.org/wiki/Pixel

How does an image look like in OpenCV?

How does an image look like in OpenCV?

Color Image

Grayscale Image

• Currently, the following file formats are supported:
• Windows bitmaps - *.bmp, *.dib (always supported)
• JPEG files - *.jpeg, *.jpg, *.jpe (see the Notes section)
• JPEG 2000 files - *.jp2 (see the Notes section)
• Portable Network Graphics - *.png (see the Notes section)
• Portable image format - *.pbm, *.pgm, *.ppm (always supported)
• Sun rasters - *.sr, *.ras (always supported)
• TIFF files - *.tiff, *.tif (see the Notes section)

Supported Image File Formats

How to load and display an image?

• Imread(filename, flag)

• Python: cv.LoadImage(filename, iscolor=CV_LOAD_IMAGE_COLOR)

• CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if present)

• CV_LOAD_IMAGE_GRAYSCALE (0) loads the image as an grayscale one

• CV_LOAD_IMAGE_COLOR (>0) loads the image in the BGR format

How to load and display an image?

• asItis = Image includes alpha channel transparency.

• colorBgr = Image is in BGR format no transparency

How to load and display an image?

Quick Facts – Who is Lenna (Lena)?

Lenna or Lena is the name given to a standard test image widely used in the field of image processing
since 1973. It is a picture of Lena Söderberg, shot by photographer Dwight Hooker, cropped from
the centerfold of the November 1972 issue of Playboy magazine.
Over the years there has been quite a bit of controversy over the use of this image.

Some people proposed banning the use of this image because of its source. Also, Playboy threatened to
prosecute the unauthorized use of the image.

Image of Lena Söderberg used in many image processing experiments.

Lena Söderberg

RGB (BGR) Image
• The RGB color model is

an additive color model in
which red, green and blue light are
added together in various ways to
reproduce a broad array of colors. The
name of the model comes from the
initials of the three additive primary
colors, red, green, and blue.

Why BGR?

• In the past BGR color format was more popular.

• Camera manufacturers and software developers were using BGR color
format.

• That is my OpenCV developers decided to use BGR.

Grayscale Image

• For a grayscale images, the pixel
value is a single number that
represents the brightness of the
pixel. The most common pixel
format is the byte image, where
this number is stored as an 8-bit
integer giving a range of possible
values from 0 to 255. Typically zero
is taken to be black, and 255 is
taken to be white.

How to load and play a video – Color Video

cv2.VideoCapture(filename) → <VideoCapture object>
cv2.VideoCapture(device) → <VideoCapture object>

Parameters:

•filename – name of the opened video file (eg. video.avi) or image sequence (eg.
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
•device – id of the opened video capturing device (i.e. a camera index). If there is a
single camera connected, just pass 0.

• The supported format vary by system but should always include an
AVI.

• .avi
• .mp4

Supported Video File Formats

How to load and play a video – Color Video

cap.read() returns bool(True/False) -> ret. If frame is read correctly it will return True.
cv2.waitKey() is used to create delays between frames. 25 milliseconds.

How to load and play a video – Color Video

How to load and play a video – Grayscale Video

How to load and play a video – Grayscale Video

How to load and play a video –Grayscale the 1st Frame

Input From a Camera

Quick Facts - Computer Vision in Sport

Computer Vision in Sports - Prof. Moeslund
ECSS Vienna 2016

Input From a Camera

Saving Images

cv2.imwrite(filename, img[, params])

Parameters:

•filename – Name of the file.
•image – Image to be saved.
•params

–Format-specific save parameters encoded as pairs paramId_1, paramValue_1, paramId_2, paramValue_2, The following
parameters are currently supported:

• For JPEG, it can be a quality (CV_IMWRITE_JPEG_QUALITY) from 0 to 100 (the higher is the better). Default value is
95.

• For WEBP, it can be a quality (CV_IMWRITE_WEBP_QUALITY) from 1 to 100 (the higher is the better). By default
(without any parameter) and for quality above 100 the lossless compression is used.

• For PNG, it can be the compression level (CV_IMWRITE_PNG_COMPRESSION) from 0 to 9. A higher value means a
smaller size and longer compression time. Default value is 3.

• For PPM, PGM, or PBM, it can be a binary format flag (CV_IMWRITE_PXM_BINARY), 0 or 1. Default value is 1.

Saves an image to a specified file.

Saving Images

Saving Images

Saving Videos

cv.CreateVideoWriter(filename, fourcc, fps, frame_size, is_color=true)

Parameters:

•filename – Name of the output video file.
•fourcc – 4-character code of codec used to compress the frames. For
example, CV_FOURCC('P','I','M','1') is a MPEG-1 codec, CV_FOURCC('M','J','P','G') is a motion-jpeg
codec etc. List of codes can be obtained at Video Codecs by FOURCC page.
•fps – Framerate of the created video stream.
•frameSize – Size of the video frames.
•isColor – If it is not zero, the encoder will expect and encode color frames, otherwise it will work
with grayscale frames (the flag is currently supported on Windows only).

VideoWriter constructors

http://www.fourcc.org/codecs.php

Saving Videos

cv2.VideoWriter.write(image) → None

Parameters:
•writer – Video writer structure (OpenCV 1.x API)
•image – The written frame

The functions/methods write the specified image to video file. It must have the same size as has been

specified when opening the video writer.

Saving Videos

Saving Videos

OpenCV User Interface
• OpenCV has a few but useful user interface tools.

• Especially, they are helpful when we test different values with different
functions.

• Trackbar

• Mouse

• Window

OpenCV User Interface - Trackbar

OpenCV User Interface - Trackbar

OpenCV User Interface - Mouse

OpenCV User Interface - Mouse

Python User Interface Libraries
• Top 7 Python GUI - https://insights.dice.com/2017/08/07/7-top-

python-gui-frameworks-for-2017-2/

PyQt

https://insights.dice.com/2017/08/07/7-top-python-gui-frameworks-for-2017-2/

Accessing and Setting a pixel value

Accessing and Setting a pixel value

numpy

• NumPy is the fundamental package for scientific
computing with Python. It contains among other
things:

• a powerful N-dimensional array object

• sophisticated (broadcasting) functions

• tools for integrating C/C++ and Fortran code

• useful linear algebra, Fourier transform, and random
number capabilities

• http://www.numpy.org/

• https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

http://www.numpy.org/
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

Numpy Example

Numpy Example

Operations on Arrays

• Operations on Arraysabs

• absdiff

• add

• addWeighted

• bitwise_and

• bitwise_not

• bitwise_or

• bitwise_xor

• calcCovarMatrix

• cartToPolar

• checkRange

• compare

• completeSymm

• convertScaleAbs

• countNonZero

• idft

• inRange

• invert

• log

• LUT

• magnitude

• Mahalanobis

• max

• mean

• meanStdDev

• merge

• min

• minMaxIdx

• minMaxLoc

• mixChannels

• mulSpectrums

• RNG::operator T

• RNG::operator ()

• RNG::uniform

• RNG::gaussian

• RNG::fill

• randu

• randn

• randShuffle

• reduce

• repeat

• scaleAdd

• setIdentity

• solve

• solveCubic

• solvePoly

• sort

• multiply

• mulTransposed

• norm

• normalize

• PCA

• PCA::PCA

• PCA::operator ()

• PCA::project

• PCA::backProject

• perspectiveTransform

• phase

• polarToCart

• pow

• RNG

• RNG::RNG

• RNG::next

• cvarrToMat

• dct

• dft

• divide

• Determinant

• eigen

• exp

• extractImageCOI

• insertImageCOI

• flip

• gemm

• getConvertElem

• getOptimalDFTSize

• Idct

• idft

• inRange

• sortIdx

• split

• sqrt

• subtract

• SVD

• SVD::SVD

• SVD::operator ()

• SVD::compute

• SVD::solveZ

• SVD::backSubst

• sum

• theRNG

• trace

• transform

• transpose

https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#abs
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#addweighted
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#calccovarmatrix
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#carttopolar
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#checkrange
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#completesymm
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#convertscaleabs
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#countnonzero
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#idft
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#inrange
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#invert
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#log
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#lut
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#magnitude
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#mahalanobis
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#max
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#meanstddev
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#merge
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#min
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#minmaxidx
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#minmaxloc
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#mixchannels
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#mulspectrums
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-operator-t
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-operator
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-uniform
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-gaussian
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-fill
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#randu
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#randn
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#randshuffle
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#reduce
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#repeat
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#scaleadd
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#setidentity
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#solve
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#solvecubic
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#solvepoly
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#multransposed
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#norm
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#normalize
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#pca
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#pca-pca
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#pca-operator
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#pca-project
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#pca-backproject
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#perspectivetransform
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#phase
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#polartocart
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#pow
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-rng
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#rng-next
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#cvarrtomat
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#dct
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#dft
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#determinant
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#exp
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#extractimagecoi
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#insertimagecoi
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#flip
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#gemm
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#getconvertelem
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#getoptimaldftsize
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#idct
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#idft
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#inrange
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#sortidx
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#split
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#sqrt
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#subtract
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#svd
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#svd-svd
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#svd-operator
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#svd-compute
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#svd-solvez
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#svd-backsubst
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#therng
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#trace
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#transform

Operations on Arrays

• absdiff
• Calculates the per-element absolute difference between two arrays or between an array and a

scalar.

• cv2.absdiff(src1, src2, dst - value)

Parameters:

•src1 – first input array or a scalar.
•src2 – second input array or a scalar.
•src – single input array.
•value – scalar value.
•dst – output array that has the same size and type as
input arrays.

Operations on Arrays

• add

• Calculates the per-element sum of two arrays or an array and a
scalar.

• cv2.add(src1, src2, dst, mask, dtype)

Parameters:

•src1 – first input array or a scalar.
•src2 – second input array or a scalar.
•src – single input array.
•value – scalar value.
•dst – output array that has the same size and number of channels as the input array(s); the depth is
defined by dtype or src1/src2.
•mask – optional operation mask - 8-bit single channel array, that specifies elements of the output array
to be changed.
•dtype – optional depth of the output array (see the discussion below).

Operations on Arrays

Operations on Arrays

Operations on Arrays – bitwise operations

- bitwise_and: Calculates the per-element bit-wise conjunction of two arrays or an array and a
scalar.
- cv2.bitwise_and(src1, src2, dst, mask)

- bitwise:_not: Inverts every bit of an array.
- cv2. bitwise_not(src1, src2, dst, mask=None)

- bitwise_or: Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
- cv2.bitwise_or(src1, src2, dst, mask)

- bitwise_xor: Calculates the per-element bit-wise “exclusive or” operation on two arrays or an
array and a scalar.
- cv2.bitwise_xor(src1, src2[, dst[, mask]])

Operations on Arrays – bitwise operations

Drawing Functions

List of OpenCV drawing functions:

• circle

• clipLine

• ellipse

• ellipse2Poly

• fillConvexPoly

• fillPoly

• LineIterator

• rectangle

• polylines

• putText

Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be rendered
with antialiasing (implemented only for 8-bit images for now). All the functions include the parameter color that
uses an RGB value (that may be constructed with CV_RGB or the Scalar_ constructor) for color images and
brightness for grayscale images. For color images, the channel ordering is normally Blue, Green, Red.

• getTextSize
• InitFont
• line
• arrowedLine

Drawing Functions - Circle

cv2.Circle(img, center, radius, color, thickness=1, lineType=8, shift=0) → None

Parameters:

•img – Image where the circle is drawn.
•center – Center of the circle.
•radius – Radius of the circle.
•color – Circle color.
•thickness – Thickness of the circle outline, if positive. Negative thickness means that a filled
circle is to be drawn.
•lineType – Type of the circle boundary. See the line() description.
•shift – Number of fractional bits in the coordinates of the center and in the radius value.

Drawing Functions - Line

cv2.line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) → None

Parameters:

•img – Image.
•pt1 – First point of the line segment.
•pt2 – Second point of the line segment.
•color – Line color.
•thickness – Line thickness.
•lineType –Type of the line:

• 8 (or omitted) - 8-connected line.
• 4 - 4-connected line.
• CV_AA - antialiased line.

•shift – Number of fractional bits in the point coordinates.

Drawing Functions - Rectangle

cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) → None

Parameters:

•img – Image.
•pt1 – Vertex of the rectangle.
•pt2 – Vertex of the rectangle opposite to pt1 .
•rec – Alternative specification of the drawn rectangle.
•color – Rectangle color or brightness (grayscale image).
•thickness – Thickness of lines that make up the rectangle. Negative values,
like CV_FILLED , mean that the function has to draw a filled rectangle.
•lineType – Type of the line. See the line() description.
•shift – Number of fractional bits in the point coordinates.

Drawing Functions - Polygon

Python: cv2.polylines(img, pts, isClosed, color[, thickness[, lineType[, shift]]]) → None

Parameters:

•img – Image.
•pts – Array of polygonal curves.
•npts – Array of polygon vertex counters.
•ncontours – Number of curves.
•isClosed – Flag indicating whether the drawn polylines are closed or not. If they are
closed, the function draws a line from the last vertex of each curve to its first vertex.
•color – Polyline color.
•thickness – Thickness of the polyline edges.
•lineType – Type of the line segments. See the line() description.
•shift – Number of fractional bits in the vertex coordinates.

https://docs.opencv.org/2.4/modules/core/doc/drawing_functions.htmlvoid line(Mat& img, Point pt1, Point pt2, const Scalar& color, int thickness, int lineType, int shift)

Drawing Functions - Text

cv2.putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) → None

Parameters:

•img – Image.
•text – Text string to be drawn.
•org – Bottom-left corner of the text string in the image.
•font – CvFont structure initialized using Intron().
•fontFace – Font type. One
of FONT_HERSHEY_SIMPLEX, FONT_HERSHEY_PLAIN, FONT_HERSHEY_DUPLEX, FONT_HERSHEY_COMPLEX, FO
NT_HERSHEY_TRIPLEX, FONT_HERSHEY_COMPLEX_SMALL,FONT_HERSHEY_SCRIPT_SIMPLEX,
or FONT_HERSHEY_SCRIPT_COMPLEX, where each of the font ID’s can be combined with FONT_ITALIC to get
the slanted letters.
•fontScale – Font scale factor that is multiplied by the font-specific base size.
•color – Text color.
•thickness – Thickness of the lines used to draw a text.
•lineType – Line type. See the line for details.
•bottomLeftOrigin – When true, the image data origin is at the bottom-left corner. Otherwise, it is at the top-
left corner.

Drawing Functions

Drawing Functions

Image Transformation Review
• Image transforms can be simple arithmetic operations on images or complex mathematical

operations which convert images from one representation to another.

• Mathematical Operations include simple image arithmetic, Fourier, fast Hartley transform, Hough
transform and Radon transform.

• Histogram Modification include histogram equalization and adaptive histogram equalization.

• Image Interpolation includes various methods for scaling, Kriging, image warping and radial
aberration correction.

• Image Registration is a tool for registering two 2D or 3D similar images and finding an affine
transformation that can be used to convert one into the other. The operation is suitable for
registering medical images of the same object.

• Background Removal is a process to correct an image for non-uniform background or non-
uniform illumination.

• Image Rotation is a simple tool to rotate an image about its center by the specified number of
degrees.

• https://www.tutorialspoint.com/dip/image_transformations.htm, https://www.mathworks.com/discovery/image-transform.html,
https://www.wavemetrics.com/products/igorpro/imageprocessing/imagetransforms.htm

https://www.tutorialspoint.com/dip/image_transformations.htm
https://www.mathworks.com/discovery/image-transform.html
https://www.wavemetrics.com/products/igorpro/imageprocessing/imagetransforms.htm

Image Transformation

https://www.cis.rit.edu/class/simg782/lectures/lecture_02/lec782_05_02.pdf

Point - pMapped Point - q

Transformation Matrix (T)

https://www.cis.rit.edu/class/simg782/lectures/lecture_02/lec782_05_02.pdf

Transformation Matrix

Image source

https://en.wikipedia.org/wiki/Transformation_matrix#/media/File:2D_affine_transformation_matrix.svg

Image Transformation - Scaling

Image Transformation - Scaling

Image Transformation - Translation
Translation is the shifting of object's location. If you know the shift in (x,y) direction, let it be (tx,ty), you
can create the transformation matrix M as follows:

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html

Image Transformation - Translation

Image Transformation - Rotation
Rotation of an image for an angle Θ is achieved by the transformation matrix of the form

Image Transformation - Rotation

Morphological Operations Review

• Morphological operators often take a binary image and

a structuring element as input and combine them using a

set operator (intersection, union, inclusion,

complement).

• They process objects in the input image based on

characteristics of its shape, which are encoded in the

structuring element.

• Dilation

• Erosion

• Opening

• Closing

• Top Hat

• Black Hat

https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm

https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm

Basic Structuring Element
• Simply a binary image

• The matrix dimensions specify the size of the structuring element.

• The pattern of ones and zeros specifies the shape of the structuring
element.

• An origin of the structuring element is usually one of its pixels,
although generally the origin can be outside the structuring element.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

Different Shape Structuring Elements

Diamond Square Cross X

Hit and Fit
When a structuring element is placed in a binary image, each of its pixels is associated with the
corresponding pixel of the neighborhood under the structuring element.
• The structuring element is said to fit the image if, for each of its pixels set to 1, the

corresponding image pixel is also 1.
• Similarly, a structuring element is said to hit, or intersect, an image if, at least for one of its pixels

set to 1 the corresponding image pixel is also 1.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

Grayscale Morphology

http://www.coe.utah.edu/~cs4640/slides/Lecture11.pdf

http://www.coe.utah.edu/~cs4640/slides/Lecture11.pdf

Morphological Operations - Dilation

• Enlarges object by adding boundary pixels to object
• Fill in small holes in object
• If structuring element hits result is 1

http://www.csie.nuk.edu.tw/~ayen/teach/cv/cv-note04.pdf

http://www.csie.nuk.edu.tw/~ayen/teach/cv/cv-note04.pdf

Morphological Operations - Dilation

Image Source

https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html

Morphological Operations - Erosion

• It has the effect of stripping away boundary pixels
• It enlarges holes in object
• It removes unwanted small-scale features
• It reduces size of other features
• If structuring element fits put 1

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

Morphological Operations - Erosion

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

Morphological Operations - Opening
• An opening is defined as an erosion followed by a dilation using the same structuring element for

both operations.

• Grayscale opening consists simply of a Grayscale erosion followed by a Grayscale dilation.

• Small bright regions are removed

• And white regions are more isolated

https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm

https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm

Morphological Operations - Closing
• An closing is defined as an dilation followed by a erosion using the same structuring element for

both operations.

• Grayscale opening consists simply of a grayscale dilation followed by a grayscale erosion.

• Removes unwanted noisy segments

• Bright regions are joined but retain basic size

Morphological Operations

Morphological Operations

Finding Corners

Finding Corners – Cont.

Finding Corners – Cont.

