ECE4/8-578

Intelligent Robotics |

PhD. Husnu Melih Erdogan - Electrical & Computer Engineering
herdogan@pdx.edu Teaching Assistant

Portland State

UNIVERSITY

mailto:Herdogan@pdx.edu

Introduction to ROS - Part 5 ces ROS

Speech Synthesis with
Amazon Polly

Portland State

UNIVERSITY

Course Structure

¢ Part1-Overview

What is ROS?
Introduction to ROS

ROS architecture,
philosophy, history

How to install ROS?
Examples
Installation

ROS Master

ROS Nodes

ROS Topic

ROS Messages
Console Commands
ROS Packages

ROS Launch-files

Catkin Workspace and
Build System

Turtlesim

Part 2 - Basics

ROS File System
ROS Package

How to create a
package?

How to build a
package?

Creating a Publisher
Node

Creating a Subscriber
Node

Assignment 3

Part 3 - Debug

ROS Launch
File

How to use
ROS .bagfiles?

ROS
Parameters

ROS
Namespace

Part 4 - Speech

ROS Services

Speech
Recognition

Speech Synthesis
Google Dialogflow

Part 5 - Speech

Amazon Polly
ROS Actions

Assignment 4

Part 6 - Fuzzy .

Rviz
ROS Messages

2D Multi-
Robot
Simulator

Fuzzy Logic

Assignment 5

Part 7 - Network

* ROS
Networking

* ROS and
RaspberryPi

Portland State

UNIVERSITY

HOUSTON

WEHRVEAPROBLEM...

17 Days of Robotics

O s \o W f‘bt)
n
S ‘C 2:3(:_,4 n Messea s -

M\ U
7o T\\n\Lsg“ ney "if

D' ole _-,‘,‘s\u
a\\% Nl

@

L
_gpgrmla¥ar S At Cn
’Qfa’;%‘s L€ ._%.oos N Res Ay
O W

Son

|

W

M AS

AD
F
?t.’(\o\ S \) /’{::kl\

Dec T

— |

) éeos

Aq"—, OP{ ond]
E yAca Po. nts
4_(uc) L(6) (Pgs;‘.a’r«wu\ﬁ OA\D)

CTU('HQ CLGJC)

(Last Lecture Review)

Portland State

IIIIIIIIII

ROS Service

Using ROS Services, we can write a server node and client node. The server node
provides the service under a name, and when the client node sends a request message
to this server, it will respond and send the result to the client.

Service 1 Node }

Publication

Node)

Subscription

Node }

Publication

Portland State

UNIVERSITY

Three Dialog Styles

Application Directed

Robot: What month?

Human: February

Robot: What day of the week?

Human: Twelve
Robot: What year?

Human: Nineteen ninety-seven

Human Directed Mixed initiative

Robot: What month?

Human: February twelve nineteen
ninety-seven

Human: Set month to February

Robot: Month is February

Human: Set day to twelve

Robot: Day is twelve

Human: Set year to nineteen ninety-seven

Robot: Year is nineteen ninety-seven

Portland State

UNIVERSITY

How Speech Recognition Works

Words and Phrases

T

Word
Identification

A

Phoneme
Identification

T

Feature
Extraction

Sound : Hello my name is ...

Y
_((if\)
Audi -
udio S, Portland State

Input = NIV ERSITY

Grammar-based Speech Recognition

Words and Phrases / \

Context-free Grammar

Word Languagel, (CFG)
Identification|™ Model | 4>
‘. Grammar -
Grammar

Compiler
Phoneme yy
Identification

T
Feature K /

Extraction

Audio
Input

Portland State

UNIVERSITY

Statistical Language Model-based Speech Recognition

Category

T

Does not
Classifier |«—— |Language use
. grammars
Sentences with 1
Categories Phoneme
9 Identification|
T Statistical Language Model (SLM)
3
Feature Statis_tical Verbal
Extraction Routines Phrases
T N J
Statistical language models provide the
probability that a given word will occur next,
based on the preceding words.
Audio
Input

My name is ...

Portland State

UNIVERSITY

Speech Synthesis

(Text-To-Speech,

S)

Text input:
“Hello my name is Melih”

A 4

Structure
Analysis

4

“Hello my name is Melih”

Voice output: J

A 4

Text
Normalization

A

Text-to-phoneme
Conversion

A

A 4

Prosody
Analysis

A

A

«—

Waveform
Production

A

A

Structure Rules

Abbreviation and Acronym
Database

Pronunciation Lexicon

Prosody Rules

Phoneme-to-sound
Database

Portland State

UNIVERSITY

Concatenated vs. Parameter-based Speech Synthesis

“The dog—,| Isolate

barked” Phonemes \ e Speech signal H
e . O e Voice
Y ‘ 4 5;2:2?; pi?:n?;?;r Pa ra m ete rs
W @ extraction extraction
w Excitation 1 [Spectral
[f:;:r:eters. PEETRE e parameters
daog e J) b v
ok 2 - v Training part
baherkehd ! 88 9%8. Syhesis part " Generate
t .) ; context-dependent HMMs red Ca r S eec h
Text analysis i & duration models
' [‘ Labels | Paran;elera;nﬁration p
ured capr— COnCAtENAte | e] s
Phonemes T4 L) [1 T
/ [eredd kaher

[er edd kah er}

Parametric synthesis model describes the speech using

. . _ N parameters, rather than stored exemplars.
Concatenative synthesis is a technique for synthesizing It is statistical because it describes those parameters
sounds by concatenating short samples of recorded sound . -
(called units) using statistics

L Portland State
Need a professional speaker 2-10 hr. or

UNIVERSITY

Dialogflow

* DialogFlow is a natural processing tool.

1. User utterance

e > @ Agent
8 !l Intent

2. Intent matching

!l Intent
Training phrases

) Intent
Action and

) Intent
parameters

3. Response
o) Response

Portland State

UNIVERSITY

ROS Implementation G
P e

’ Dialogflow

Amazon Polly

cdwr

Text
o|l} oIpne

/response

.wav
audio file

Text respond

AmazonPolly
Service Server

DialogFlow
ServiceServer

Speech Synthesis
Node

Recognition
Node

Portland State

UNIVERSITY

-

Gy

Amazon Polly

Amazon Polly

Portland State

IIIIIIIIII

Introduction to Amazon Polly

* Amazon Polly is a cloud service that converts text into lifelike speech.

* You can use Amazon Polly to develop applications that increase
engagement and accessibility.

 Amazon Polly supports multiple languages and includes a variety of
lifelike voices, so you can build speech-enabled applications that work
in multiple locations and use the ideal voice for your users.

Portland State

UNIVER SITY

Introduction to Amazon Polly

High quality — Amazon Polly uses advance Text-to-Speech (TTS) technology to
synthesize natural speech with high pronunciation accuracy (including
abbreviations, acronym expansions, date/time interpretations, and homograph
disambiguation).

Low latency — Amazon Polly ensures fast response times, which make it a viable
option for low-latency use cases such as dialog systems.

Support for a large portfolio of languages and voices — Amazon Polly supports
dozens of voices and multiple languages, offering male and female voice options
for most languages.

Cost-effective — Amazon Polly's pay-per-use model means there are no setup
costs. You can start small and scale up as your application grows.

Cloud-based solution —Text-to-Speech conversion done in the cloud dramatically
reduces local resource requirements. Moreover, speech improvements are

instantly available to all end-users and do not require additional updates for

devices. Portland State

UNIVERSITY

Introduction to Amazon Polly

* Input text
* Provide the text you want to synthesize

* You can provide the input as plain text or in Speech Synthesis Markup
Language (SSML) format.

* Available voices

 Amazon Polly provides a portfolio of multiple languages and a variety of
voices, including a bilingual voice.

* For most languages you can select from several different voices, both male
and female

* Output format — Amazon Polly can deliver the synthesized speech in multiple
formats. You can select the audio format that suits your needs. MP3, Ogg etc...

File format Sample rate Speech Marks Types
® MP3 ® 22050Hz Viseme

0GG 16000Hz Word

PCM 8000Hz Sentence

Speech Marks SSML POI'ﬂal’lﬁiN §E’[RE§|’[T§

Using SSML — breaks <break>

* To add a pause to your text, use the <break> tag.

e <speak>
Mary had a little lamb
<break time="3s"/>
Whose fleece was white as snow.
</speak>

Portland State

IIIIIIIIII

Using SSML - paragraphs <p>

* To add a pause between paragraphs in your text, use the <p> tag.
Using this tag provides a longer pause than native speakers usually

place

e <speak>
<p>This is the first paragraph.
There should be a pause after this text is spoken.
</p>
<p>This is the second paragraph.
</p>
</speak>

Portland State

IIIIIIIIII

Using SSML — sentence - <s>

To add a pause between lines or sentences in your text, use the <s> tag. Using this
tag has the same effect as:

* Ending a sentence with a period (.)
* Specifying a pause with <break strength="strong"/>

e <speak>
<s>
Mary had a little lamb
<[s>
<s>
Whose fleece was white as snow
<[s>
And everywhere that Mary went, the lamb was sure to go.
</speak>

Portland State

UNIVERSITY

Using SSML - interpret-as - <say-as>

* Use the <say-as> tag with the interpret-as attribute to tell Amazon Polly how to
say certain characters, words, and numbers.

* This enables you to provide additional context to eliminate any ambiguity on how
Amazon Polly should render the text.

e <speak>

My phone number is

<say-as interpret-as=“telephone”
206 111 22 33

</say-as>

.</spea k>

Portland State

UNIVERSITY

Using SSML - Prosody - <prosody>

* To control the volume, rate, or pitch of your selected voice, use the prosody tag.

e <speak>
Sometimes it can sometimes be useful to
<prosody volume="loud"> increase the volume for a specific speech.</prosody>

</speak>
» <speak> For dramatic purposes, you might wish to

<prosody rate="slow">speed up the speaking rate of your text.</prosody>
</speak>

Portland State

UNIVERSITY

Using SSML

* To make Amazon Polly use phonetic pronunciation for specific text, use the
<phoneme> tag.

e <speak>
You say, '
<phoneme alphabet="ipa" ph="p1 ka:n">
pecan
</phoneme>.
| say, '
<phoneme alphabet="ipa" ph=" pi.kaen">
pecan
</phoneme>.
</speak>

* ipa: International Phonetic Alphabet (IPA)

* ph: Specifies the phonetic symbols

Portland State

UNIVERSITY

Using SSML — More tags and options

https://docs.aws.amazon.com/polly/latest/dg/supported-ssml.html

Action SSML Tag
Adding a Pause <break>
Emphasizing Words <emphasis>
Specifying Another Language for Specific Words <lang>
Placing a Custom Tag in Your Text <mark>
Adding a Pause Between Paragraphs <p>

Using Phonetic Pronunciation <phoneme>
Controlling Volume, Speaking Rate, and Pitch <prosody>

Setting a Maximum Duration for Synthesized Speech <prosody amazon:max-duration>
Adding a Pause Between Sentences <s>

Controlling How Special Types of Words Are Spoken <say-as>

Identifying SSML-Enhanced Text <speak>

Pronouncing Acronyms and Abbreviations <sub>

Improving Pronunciation by Specifying Parts of Speech <w>

Adding the Sound of Breathing <amazon:auto-breaths>
Adding Dynamic Range Compression <amazon:effect name="drc">
Speaking Softly <amazon:effect phonation="soft">
Controlling Timbre <amazon:effect vocal-tract-length> P
ortland State

Whispering <amazon: effect name="whispered"> UNIVERSITY

https://docs.aws.amazon.com/polly/latest/dg/supported-ssml.html

If you want to learn more about Spoken Language
Interfaces and Human Computer Interaction

* Portland State University
* Computer Science Department
* Spoken Language Interfaces - CS 410/510

* Instructor: Jim Larson
* Some slides from his lectures are updated and used in this documentation

Portland State

IIIIIIIIII

ntroduction to Amazon Polly

Text-to-Speech

Listen, customize, and download speech. Integrate when you're ready.

Type or paste your text in the window, choose your language and region, choose a voice, choose Listen to speech, and then integrate it into your applications and services.

With up to 3000 characters you can listen, download, or save immediately. For up to 100,000 characters, your task must be saved to an S3 bucket.

Plain text SSML @

Hil My name is Justin. | will read any text you type here.

©

4

58 characters used Clear text

Language and Region Voice <) Stop the speech

English, US v Salli, Female
Kimberly, Female < Download MP3

Kendra, Female

Change file format
Joanna, Female

vy, Female Synthesize to S3
Matthew, Male

@ Justin, Male Change S3 task settings
Joey, Male

Portland State

UNIVERSITY

ntroduction to Amazon Polly

Text-to-Speech

Listen, customize, and download speech. Integrate when you're ready.

Type or paste your text in the window, choose your language and region, choose a voice, choose Listen to speech, and then integrate it into your applications and services.

With up to 3000 characters you can listen, download, or save immediately. For up to 100,000 characters, your task must be saved to an S3 bucket.

Plain text SSML @

<speak>Hi! My name is Justin. | will read any text you type here.</speak>

©

73 characters used Clear text

Language and Region Voice P Listen to speech

English, US v Salli, Female
’ Kimberly, Female & Download MP3

Kendra, Female Change file format

Joanna, Female

Ivy, Female Synthesize to S3
Matthew, Male

® Justin, Male Change S3 task settings
Joey, Male

» Customize pronunciation

Portland State

UNIVERSITY

Introduction to Amazon Polly

Plain text SSML (2]

<speak>

<p>

<g> Hil My name is Melih. </s>

<s> | am a Teaching Asistant in Robotics 1. </s>

<s> we have <say-as interpret-as="number">123456</say-as>robots in our lab. </s>
<s> Dr Marek Perkowski is teaching Robotics at PSU </s>

</p>

<p>

<s> Robotics 1 students are great. They love the assignments</s>

<break time="1s"/>

<g> <prosody volume="loud"> Assignment 4 .</prosody>

<break time="0.5s"/> and <break time="0.5s"/>

<prosody volume="loud"> Assignment 5 .</prosody>

will be fun </s>

<s> Each morning when | wake up,

<prosody volume="loud" rate="x-slow">

| speak quite slowly and deliberately until | have my coffee.</prosody> </s>

</p>

<s> But after | have my coffee <prosody volume="x-loud" rate="x-fast"> | get louder and faster</prosody> </s>

</speak> @
Portland State

UNIVERSITY

ROS
(Robot Operating System)

IIIIIIIIII

ROS Action

Portland State

IIIIIIIIII

ROS Action

* One node sends a request to another node to perform some task
* Itis like ROS services, however when service performs a task we can’t do any other work

* Action are needed:
* When the requested task takes time
* When we want to some other things as the task performed

 When we want to monitor the task, have continuous feedback about the task and possibly
cancel the request during execution or restart it again.

* Actionlib package is used to create action servers and clients
 More powerful and flexible

* Complicated — You need to know what you are doing

Portland State

UNIVERSITY

ROS Action

 actionlib package is used to create action servers and clients
* Action servers execute ling running tasks
* Action clients interacts with servers by calling actions

Client Application Server Application
user code user code
client.sendGoal(...) M’- ACtIOﬂ &)‘ ACtlon callbacks > void executeGoaNg)
- Cllent Ser\fer function calls {
callbacks }

Portland State

UNIVERSITY

ROS Action

ROS Action and Server Interaction

goal: used to send new goals to server

cancel: used to send cancel requests to server

status: used to notify clients on the current state of every goal in the system

feedback: used to send clients periodic auxiliary information for goal

result: used to send clients one-time auxiliary information upon completion of a goal

-

Action
Client

~

ROS Topics

r

goal

cancel

Yy

status

result

feedback

el

Action
Server

N

From Client

From Ser

vVer

Portland State

UNIVERSITY

ROS Action

e Action templates are defined by a name and some additional properties
through an .action structure defined in ROS

* Each instance of an action has a unique Goal ID

* Goal ID provides the action server and the action client with a robust way to
monitor the execution of a particular instance of an action.

Portland State

UNIVERSITY

Server State Machine

setRejected

C REJECTED

setRejected

Receive Goal

v

PENDING

cotAccopt

|

CancelRequest

v

setSucceeded

ed
ACTIVE

CancelRequest

qotAbortod

qotSuccoodo

RECALLING
|

setCanceled

'

(RECALLED)

xet/\ccept

)(REEMPTING
ed

setC mcollod

.

(PREEMPTED)

setAborted

SUCCEEDED)

ABORTED)

Client Triggered
g9 >

Server Triggered

C Terminal State)

Portland State

UNIVERSITY

Action Server State Machine

» setAccepted - After inspecting a goal, decide to start processing it

» setRejected - After inspecting a goal, decide to never process it because it
is an invalid request (out of bounds, resources not available, invalid, etc)

» setSucceeded - Notify that goal has been successfully processed

» setAborted - Notify that goal encountered an error during processsing, and
had to be aborted

» setCanceled - Notify that goal is no longer being processed, due to a cancel
request

* The action client can also asynchronously trigger state transitions:

* CancelRequest: The client notifies the action server that it wants the server
to stop processing the goal.

Portland State

UNIVERSITY

Action Client State Machine

Send Goal

Client Triggered
—)

Server ngqeros
WAITING FOR

[PENDING] [ACTIVE)

Cancel Goal

PENDING {ACTIVE) ACTIVE

Cancel Goal Cancel Goal

WAITING FOR
CANCEL ACK

[PREEMPTING] [ABORTED]
[SUCCEEDED]

[PREEMPTING]
[RECALLING]

[RECALLING]

RECALLING

[RECALLED)
[REJECTED] (REJECTED]

[PREEMPTING] PREEMPTING

[PREEMPTED]
[ABORTED]
[SUCCEEDED)]

WAITING FOR
RESULT

Receive
Result Msg

m Portland Sta}te

Action Client State Machine

Intermediate States

Pending - The goal has yet to be processed by the action server

Active - The goal is currently being processed by the action server

Recalling - The goal has not been processed and a cancel request has been received from the action
client, but the action server has not confirmed the goal is canceled

Preempting - The goal is being processed, and a cancel request has been received from the action
client, but the action server has not confirmed the goal is canceled

Terminal States

Rejected - The goal was rejected by the action server without being processed and without a request
from the action client to cancel

Succeeded - The goal was achieved successfully by the action server

Aborted - The goal was terminated by the action server without an external request from the action client
to cancel

Recalled - The goal was canceled by either another goal, or a cancel request, before the action server
began processing the goal

Preempted - Processing of the goal was canceled by either another goal, or a cancel request sent to the
action server

Portland State

UNIVERSITY

How to create ROS Action Server and Client?

* Create a directory called action in your package

tesk

rHome catkin ws src Etest

© Recent)
4r Home ‘ J
scripts src CMakelLiskts.bxt ackage xml
= K P P g
Desktop

[Documents
<+ Downloads
dd Music

[A Pictures
vl Videos

i) Trash

22 MNetwork

kinetic-server

B cConnectto Server

Portland State

UNIVERSITY

How to create ROS Action Server and Client?

* Create an action file in /action directory.

e

ackion

4 rHome catkin ws src test action

® Recent
2 Home
[Desktop

[Documents
¥» Downloads
dd Music

A Pictures

vl Videos

=

Portland State

IIIIIIIIII

How to create ROS Action Server and Client?

e Add goal, result, and feedback message type and name information into
the action file

o

my_action.action (~fcatkin_ws/src/test/action) - gedit

Open ¥ [+l

goal
int32 step

result
string complete

feedback
int32 current step

Portland State

UNIVERSITY

How to create ROS Action Server and Client?

* Create two scripts — One node will work as an action client and the other
node will work as an action server

scripts

ftHome catkin ws src test scripts

@ Recent @ @
it Home
B Desktop client.py server.py

[Documents
«» Downloads
dd Music

A Pictures
vl Videos

() Trash

@? Network

kinetic-server

0 Connectto Server

Portland State

UNIVERSITY

How to create ROS Action Server and Client?

* In the CMakelist.txt file in the package
* Add actionlib_msgs to the package list

cmake minimum required(VERSION 2.8.3)
project(test)

Compile as C++11l, supported in ROS Kinetic and newer
add compile options(-std=c++11)

Find catkin macros and libraries
1f COMPONENTS 1list like find package(catkin REQUIRED COMPONENTS xyz)

is used, also find other catkin packages
find package(catkin REQUIRED COMPONENTS
actionlib msgs
rospy
std msgs
geometry msgs

Portland State

UNIVERSITY

How to create ROS Action Server and Client?
* In the CMakelist.txt file in the package

* Add the action file intop action files list

e Add actionlib_msgs package as a dependency

Generate actions in the ‘action' folder
add action files(

FILES

my action.action

)

Generate added messages and services with any dependencies listed here
generate messages(

DEPENDENCIES

actionlib msgs# std msgs
)

Portland State

UNIVERSITY

How to create ROS Action Server and Client?

* In package.xml add the dependencies for the package

<buildtool depend>catkin</buildtool depend=>

<build depend=actionlib msgs</build depend=

<build depend>rospy</build depend=>

<build depend>std msgs</build depend=>

<build depend>geometry msgs</build depend>

<build export depend=actionlib msgs</build export depend>
<build export depend>rospy</build export depend>

<build export depend>std msgs</build export depend=>
<build export depend>geometry msgs</build export depend=
<exec _depend=actionlib msgs</exec depend>

<exec depend>rospy</exec depend=

<exec depend>std _msgs</exec depend=>
ﬂexec_depend}QEGmetry_msgskfexec_depend}

Portland State

UNIVERSITY

How to create ROS Action Server and Client?

* Create two scripts — One node will work as an action client and the other
node will work as an action server

scripts

ftHome catkin ws src test scripts

@ Recent @ @
it Home
B Desktop client.py server.py

[Documents
«» Downloads
dd Music

A Pictures
vl Videos

() Trash

@? Network

kinetic-server

0 Connectto Server

Portland State

UNIVERSITY

ROS Action Server

 Action Server (server.py)

#! /usr/bin/env python

import rospy
import actionlib
import test.msg

from geometry msgs.msg import Twist

#varibales for server
jlobal tas
jlobal feedback
jlobal result

#publisher for the turtlesim
oub = rospy.Publisher('/turtlel/cmd vel', Twist, queue size=10)

define cmd vel

vel msg

message and set the arguments
.linear.x
.linear.y
vel msg.
.angular.x
.angular.y
.angular.z

vel msg
vel msg

vel msg
vel msg
vel msg

= Twist()

linear.z

0
0
0

.
.0
. 0
0

O
0

Portland State

UNIVERSITY

ROS Action Server

 Action Server (server.py)

#Action Server

def testAction():
global tas
global feedback
global result

create messages that are used to publish feedback/result
feedback = test.msg.my actionFeedback()
result = test.msg.my actionResult()

#create a simple action server with a namespace, actiontype, callbackfuntion
tas = actionlib.SimpleActionServer("TAS", test.msg.my actionAction, execute cb, auto start = False)

#start the action server
tas.start()

Portland State

UNIVERSITY

ROS Action Server

* Action Server (server.py)

def execute cb(goal): # when everything is succesfully done
global tas if success:
global feedback # set and publish the result
global result result.complete = "done"
success = True tas.set succeeded(result)

print("action is done")
#set the rate 2 times per second

r = rospy.Rate(0.5) if name == "' main ':

print("action is executing") rospy.init node{ test ~action server node')
testAction()

start executing the action rospy.spinf)

for i in range(©®, goal.step):
check that preempt has not been requested by the client
if tas.is preempt requested():
rospy.loginfo('Preempted')
tas.set preempted()
success = False
break

#move the turtle
pub.publish(vel msg)
print("turtle is moving")

#set and publish the feedback
feedback.current step = i
tas.publish feedback(feedback)

#sleep for 500 ms
r.sleep()

Portland State

UNIVERSITY

How to call Actions?

®* run roscore

melih@kinetic-server:~/catkin_ws$ roscore
. logging to /home/melih/.ros/log/3dc8fe84-edc6-11e8-80a7-e84e0666f0cb/roslaunch-kinetic-server-22086.1og
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage 1s <1GB.

started roslaunch server http://kinetic-server:37899/
ros_comm version 1.12.14

PARAMETERS
* Jrosdistro: kinetic
* /rosversion: 1.12.14

* run server action node

melih@kinetic-server:~/catkin_ws$ rosrun test server.py

Portland State

UNIVERSITY

How to call Actions?

* There is no rosaction command!
* rostopic is called to call action
e List all the available actions

melih@kinetic-server:~/catkin_ws$ rostopic list
/TAS/cancel

/TAS/feedback

/TAS/goal

JTAS/result
JTAS/status
Jrosout

/rosout agg

e Get information about actions

melih@kinetic-server:~/catkin_ws$ rostopic info /TAS/goal
Type: test/my actionActionGoal

Publishers: None

Subscribers:
* /test action server node (http://kinetic-server:38455/)

Portland State

UNIVERSITY

How to call Actions?

e Run Turtlesim

melih@k1inetic-server: $ rosrun turtlesim turtlesim node
[INFO] [1542829946.069088646]: Starting turtlesim with node name /turtlesim

[INFO] [1542829946.076435202]: Spawning turtle [turtlel] at x=[5.544445], y=[5.544445], theta=[0.000000]

TurtleSim

Portland State

UNIVERSITY

How to call Actions?

* Use rostopic pub to call an action

e Set the goal

melih@kinetic-serve
seq: ©
stamp:
secs: 0O
nsecs: 0
frame id: "'

0

action
turtle
turtle
turtle
turtle
turtle
action

1s
1s
1s
1s
1s
1s
1s

r:~/melih@kinetic-server:~/catkin_ws$ rosrun test server.py

executing
moving
moving
moving
moving
moving
done

Portland State

UNIVERSITY

How to call Actions?

* Action starts executing

e When it is done it will return the result

* Turtle will start moving

melih@kinetic-server:

15
15
15
15
15
15
15

executing
moving
moving
moving
moving
moving
done

$ rosrun test SErver.py

TurtleSim

Portland State

UNIVERSITY

ROS Action Client

#! /usr/bin/env python
|

import rospy

import actionlib
import sys

import test.msg

#method to properly shutdown a node
def hook():
print "shutdown time!"

#velues for different action server states
pending = 0
active

counter to print
counter = 0

Portland State

UNIVERSITY

ROS Action Client

initilize our client node
rospy.init node('test action client')

creates the SimpleActionClient, passing the type of the action
client = actionlib.SimpleActionClient('TAS', test.msg.my actionAction)

walits until the action server has started up and started
listening for goals.
client.wait for server()

creates a goal to send to the action server.
goal = test.msg.my actionGoal(step=10)

sends the goal to the action server.
client.send goal(goal)

walits for the server to finish performing the action.
client.wait for result()

prints out the result of executing the action
state = client.get state()

set the rate to 10 times per second
r = rospy.Rate(10)

Portland State

UNIVERSITY

ROS Action Client

do some other things as the action is running
while state < done:
print("doing other stuff counter:
counter = counter + 1

+ str(counter))

get the state of the action
state = client.get state()

if the result is published show the result
if None != client.get result():
print(client.get result())

#sleep for 100 ms
r.sleep()

print ("client done")
shutdown the node
rospy.on_shutdown(hook)

Portland State

UNIVERSITY

ROS Action Client Test

 Run action client node

melih@kinetic-server:~/catkin_ws$ rosrun test client.py
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:
doing other stuff counter:

0
1
2
3
4
5
6
7
8
9
1
1

Portland State

UNIVERSITY

ROS Action Client Test

* Run action server node

* |t will receive the action request and will start executing the action

melih@kinetic-server:~/catkin_ws$ rosrun test server.py

action
turtle
turtle
turtle
turtle
turtle
turtle
turtle
turtle
turtle
turtle
action

1s
1s
1s
1s
1s

1s
1s
1s
1s
1s
1s
1s

executing
moving
moving
moving
moving
moving
moving
moving
moving
moving
moving
done

doing other stuff
doing other stuff
doing other stuff
doing other stuff
doing other stuff
doing other stuff
doing other stuff

doing other stuff
doing other stuff
doing other stuff
doing other stuff
complete: "done"
client done
shutdown time!

client.py

counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:
counter:

* As the action runs, client will be doing some other things

 When action is done result will be return and client will also stop

Portland State

UNIVERSITY

Let’s Stop
Here

Happy
Thanksgiving

