
 

1 

 

accepted in Environmental Pollution 1 

 2 

 3 

Assessing the relationship among urban 4 

trees, nitrogen dioxide, and respiratory 5 

health 6 

 

 

 

Meenakshi Raoa, Linda A. Georgea*, Todd N. Rosenstielb, Vivek 7 

Shandasc, Alexis Dinnoc 8 

 

 

 

 

 

 

*Corresponding author: 

Linda A. George 

Email: georgeL@pdx.edu 
 

 

a School of the Environment, Portland State University, Portland OR, USA 
b Department of Biology, Portland State University, Portland OR, USA 
c
 Nohad A. Toulan School of Urban Studies and Planning, Portland State University, Portland 

OR, USA 

  



 

2 

 

Abstract 9 

Modelled atmospheric pollution removal by trees based on eddy flux, leaf, and chamber studies 10 

of relatively few species may not scale up to adequately assess landscape-level air pollution 11 

effects of the urban forest. A land use regression (LUR) model (R
2
 = 0.70) based on NO2 12 

measured at 144 sites in Portland, Oregon (USA), after controlling for roads, railroads, and 13 

elevation, estimated every 10 ha (20%) of tree canopy within 400m of a site was associated with 14 

a 0.57 ppb decrease in NO2. Using BenMAP and a 200m resolution NO2 model, we estimated 15 

that the NO2 reduction associated with trees in Portland could result in significantly fewer 16 

incidences of respiratory problems, providing a $7 million USD benefit annually.  These in-situ 17 

urban measurements predict a significantly higher reduction of NO2 by urban trees than do 18 

existing models. Further studies are needed to maximize the potential of urban trees in improving 19 

air quality. 20 

Keywords: NO2, land use regression, urban forest, health impacts 21 

 22 

Capsule 23 

 A land use regression model based on in-situ urban measurements of NO2 shows an association 24 

of trees with reduced NO2 sufficient to provide discernible respiratory health benefits. 25 

  26 
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Introduction  27 

 28 

Epidemiological research has established that urban air pollutants such as NO2, PM2.5 and O3 can be 29 

detrimental to human health. An increase in the average air pollution in a city is correlated with an 30 

increase in cardiovascular disease, strokes and cancer (Brunekreef and Holgate, 2002; Dockery et al., 31 

1993; Nyberg et al., 2000; Pope et al., 2002; Samet et al., 2000; Samoli et al., 2005). More recent 32 

epidemiological research has shown that the health impacts of air pollution are not uniform across a city.  33 

For example, numerous studies show a higher burden of respiratory problems close to major roadways 34 

(Brauer et al., 2007; Jerrett et al., 2008; McConnell et al., 2006; Ostro et al., 2001), which is not surprising 35 

as primary air pollutants levels are greatest near the source and decay rapidly away from it (Faus-Kessler 36 

et al., 2008; Gilbert et al., 2007; Jerrett et al., 2005). A meta-analysis by Karner et al (Karner et al., 2010) 37 

shows that air pollutants within cities decay rapidly within 200m of the source, reaching background 38 

concentrations between 200m and 1km, creating strong air pollution gradients at short spatial scales 39 

within a city.  40 

 41 

To address the challenge of reducing human exposure to urban air pollution, then, we need to monitor or 42 

model air pollutants at a spatial resolution of 200m or finer. To date, however, institutional observations, 43 

monitoring and modelling efforts have primarily focused on the regional and global scales. Active 44 

monitoring stations such as those in the US Environmental Protection Agency (US EPA) monitoring 45 

network, satellite observations, and atmospheric transport models provide air pollution data at the 10km 46 

or coarser spatial scale. Chemical transport models such as CMAQ and WRF-Chem that could be used to 47 

model air pollutant levels at the intra-urban scale lack emissions inventories as well as model validation 48 

studies at this scale. Land use regression (LUR), a method that has been widely used by epidemiologists, 49 

(Hoek et al., 2008; Jerrett et al., 2005; Ryan and LeMasters, 2007) is well-suited to model the intra-urban 50 

variability of air.  LUR combines measurements of air pollution and statistical modelling using predictor 51 

variables obtained through geographic information systems (GIS).  The European Union (EU), for 52 

example, is currently using LUR in the ESCAPE project , which aims to model the intra-urban variability of 53 

several urban air pollutants (Beelen et al., 2013; Cyrys et al., 2012; Eeftens et al., 2012). 54 

 55 

Further, we need to understand the factors such as distance from source, terrain, deposition onto the 56 

urban forest, photo-chemical environment and local meteorology that affect the dispersion of air pollutants 57 

within a city at this highly local scale of 200m. This information is critical for urban dwellers, planners and 58 

policy-makers seeking to create healthier cities. However, many of the factors affecting dispersion of air 59 

pollutants at these smaller spatial scales are not well understood; specifically, the role of vegetation in 60 

urban air pollution is poorly understood. Vegetation pays a complex role in the urban ecosystem, 61 

potentially contributing both positively and negatively to urban air pollution.  For example, biogenic volatile 62 

organic compounds (BVOCs) emitted by trees react with urban NOx emissions to produce aerosols (a 63 

component of PM2.5) and ozone, both urban air pollutants regulated by the US EPA, the EU and the 64 
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World Health Organization. In addition, several recent studies at the household and neighbourhood 65 

scales have found an improvement in human health associated with urban greenery, particularly trees (de 66 

Vries et al., 2003; Donovan et al., 2011; Maas et al., 2006), although the explicit relationship between the 67 

urban forest, air pollution reduction and human health is not understood. While eddy flux, leaf and 68 

chamber studies clearly demonstrate the physiological potential for  vegetation to remove air pollutants 69 

from the atmosphere (Fujii et al., 2008; Min et al., 2013; Sparks, 2009; Takahashi et al., 2005), landscape 70 

level studies show mixed results. For instance, Yin et al found a 1-21% reduction in NO2 associated with 71 

park trees in Shanghai, China (Yin et al., 2011), while Setala et al found no effect associated with NO2 72 

and trees in Helsinki, Finland (Setälä et al., 2012). However, UFORE (i-Tree, 2011; Hirabayashi et al., 73 

2012) the big-leaf model based on leaf and canopy level deposition studies, scaled to landscape levels, 74 

indicates that the urban forest reduces air pollution by < 1% (Nowak et al., 2006). 75 

 76 

Our goal for this study is to develop an urban, observation-based, predictive model of NO2 at the highly 77 

spatially resolved scale of 200m and to assess the relative strengths of sources and sinks of NO2 in the 78 

urban environment, focusing especially on vegetation. Further, through application of this high resolution 79 

NO2 model, we can also estimate the economic value of the health benefits provided by trees through the 80 

reduction of NO2. Here, we focus on NO2, a strong marker for anthropogenic air pollution, as it can be 81 

measured accurately and simultaneously at a large number of sampling locations. 82 

 83 

 84 

Materials and Methods 85 

Field campaign  86 

Our study area is the Portland Metropolitan Area, a mid-size urban area covering 1210 km
2
, with a 87 

population of ~ 1.5 million, located in the state of Oregon, in north-western USA. It is situated at 45.52
o
 N, 88 

122.68
o
 W, and has a temperate climate with relatively dry summers. Portland is home to Forest Park, 89 

one of the large forests within urban boundaries in the USA. Portland’s urban forest is predominantly 90 

deciduous, with big-leaf maple, black cottonwood and Douglas fir constituting > 50% of the urban forest, 91 

based on a public tree assessment (Portland Parks & Recreation, 2007). Two rivers flow within the city 92 

boundaries – the Willamette and the Columbia, with an active port on the Columbia. The Portland Metro 93 

area has some hilly terrain, especially west of the Willamette, with a maximum elevation of 387m. 94 

  95 

NOx varies between summer and winter in Portland (summer and winter 2013 NO2 averages were 7.5 96 

ppb and 11.4 ppb respectively). However, since we were interested in assessing the effect of vegetation 97 

on local NOx, we focused our earlier sampling in the summer. NO2 and NO were measured at 144 sites in 98 

the Portland Metro area using passive Ogawa samplers (only the NO2 results are presented here; NO 99 

results will be discussed in a future paper). Sites were chosen using a spatial allocation model coupled 100 

with a stratified random approach to encompass the spatial extent of the Portland Metro area and to 101 
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capture the effect of roads, railroads and vegetation on ambient NO and NO2. A single passive Ogawa 102 

sampler, with an NO2 pad on one side and a NOx pad on the other, was placed at each site between 2m-103 

3m above ground. Controls were co-located at the Portland State University monitoring station, which 104 

actively monitors NO and NO2 using a calibrated chemiluminescent NOx monitor (Teledyne NOx 105 

Analyzer, Model T200). Lab and field blanks were also deployed to detect contamination during 106 

assembling the samplers or excess exposure during transportation.  Samplers were placed in the field 107 

23
rd

 – 25
th
 Aug 2013, and retrieved 3

rd
 – 5

th
 Sep 2013, for an approximate field exposure of 12 days. 108 

Samplers were analysed in the lab on 6
th
 Sep 2013 using the methodology outlined in the Ogawa manual 109 

(Ogawa & Co., USA, 2006) and corrected for temperature and relative humidity based on measurements 110 

at the Portland State University air quality station.  The field and lab blanks readings were all low (with an 111 

average reading of ~0.2 ppb NO2). The NO2 measured by five co-located Ogawa samplers (average 17.6 112 

+/- 0.5 ppb) was within 5% of the PSU chemiluminescence monitor ambient reading (average 16.9 ppb). 113 

(See Fig S1 for map of sites and measured NO2). 114 

 115 

Land-use Regression (LUR) 116 

Briefly, LUR (Briggs et al., 2000; Hoek et al., 2008; Jerrett et al., 2005; Ryan and LeMasters, 2007) is a 117 

statistical modelling technique used to predict air pollutant concentrations at high resolution across a 118 

landscape based on a limited number of measurements of the pollutant of interest within the study area. 119 

Land use and land cover variables are extracted at each measurement site using a spatial analysis 120 

program and a regression model developed, with the air pollutant measurements as the dependent 121 

variable and the land use parameters as the independent variables. 122 

  123 

For this study, we constructed two LUR models.  The first model, the sources and sinks model (SSM), 124 

was specifically developed to examine the relative strengths of sources and sink of NO2 in an urban 125 

environment. For the SSM model, we considered only those land use and land cover variables that were 126 

proxies for known urban sources and sinks of NO2. Land use and land cover proxies were identified 127 

based on a previous LUR model for Portland (Mavko et al., 2008), existing literature on LUR models 128 

(Beelen et al., 2013; Henderson et al., 2007; Hoek et al., 2008; Jerrett et al., 2005; Ryan and LeMasters, 129 

2007), and knowledge of sources and sinks of urban NO2. In all, we identified four classes of roadways, 130 

length of railroads, industrial area, population, tree canopy area, and area with grass and shrubs as 131 

proxies for urban sources and sinks of NO2 (Table 1).  The second model we developed was a predictive 132 

model (PM) to assess the health impacts of NO2. In this model, we wanted to have the best model fit (R
2
), 133 

and hence did not constrain the independent variables to be proxies for urban sources or sinks of NO2. 134 

The PM includes all the independent variables identified by the SSM and adds latitude and longitude to 135 

the regression variables. While latitude and longitude are neither sources nor sinks of NO2, these terms 136 

capture the spatial variability of the sources and sinks in the Portland Metro area, and hence improve the 137 

model fit.  All spatial analysis was done using ArcMAP® 10.1 by ESRI. 138 
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 139 

Table 1 summarizes the land use and land cover variables used in the study and the data source. In 140 

addition, elevation, latitude and longitude were associated with each site. Each land use and land cover 141 

variable was extracted for each of the 144 sites using spatial analysis  in 24 circular buffers ranging from 142 

50m to 1200m in 50m increments.   We considered using wind buffers as was done in the previous 143 

Portland LUR study (Mavko et al., 2008). However, we found that the average wind direction varied 144 

widely across our study area and could not be modelled using a single wind direction, as was done by 145 

Mavko et al, due the smaller spatial extent of their study area. 146 

 147 

Land use/land cover 
variable Data source Proxy 

Freeways (length) RLIS 2012a traffic emissions 

AADT* (traffic volume) NHPN 2007b traffic emissions 

Major Arteries (length) RLIS 2012a traffic emissions 

Arteries (length) RLIS 2012a traffic emissions 

Streets (length) RLLIS 2012a traffic emissions 

Railroads (length) RLIS 2012a railroad emissions 

Industrial Area (area) RLIS 2012a industrial point sources 

Population (number) 
RLIS 2012a (based on 2010 

census) area sources 

Area under tree canopy (area) City of Portland, 2010 sink through deposition 

Area under shrubs/herbaceous 
cover (area) City of Portland, 2010 sink through deposition 

Elevation (height) RLIS 2012a potential sink (wind flow) 

Latitude Measured/Google Earth 
spatial variability of sources & 

sinks 

Longitude Measured/Google Earth 
spatial variability of sources & 

sinks 
Table 1: Land use/land cover variables used in LUR, data source and NO2 source/sink proxy 148 

*AADT: Annual average daily traffic 149 
a
 Regional Land Information System,  Metro Resource Data Center 150 

b
 National Highway Planning Network 151 

 152 

In all, we extracted more than 200 land-use and land-cover variables. We did not consider area under 153 

grass and shrubs or latitude further in the model as neither showed any correlation with NO2 at any buffer 154 

size between 50m and 1200m.  We also did not consider industrial area as it was very highly correlated 155 

with both railroads and major arteries.  Our approach allowed us to build a parsimonious model for 156 

teasing out the relative strengths of primary sources and sinks of NO2 in the study region. For the land 157 

use and land cover variables that showed a correlation with NO2, we identified the appropriate buffer size 158 

for each land use variable based on correlation with NO2 (Clougherty et al., 2008; Henderson et al., 159 

2007).  160 
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 161 

We followed a cross-validation design in developing both regression models. The monitored data was 162 

divided into 5 sets. Four sets were combined at a time to create 5 sets of training data, with the excluded 163 

set kept aside for validation. A hierarchical nested regression analysis (Cohen et al., 2003) was also done 164 

on the SSM to estimate the direct and indirect contributions of each land use category to urban NO2. All 165 

statistical analyses were done in SPSS 19. 166 

 167 

We developed five spatial distributions of NO2
;
 to estimate the effect of scale and tree canopy on 168 

respiratory health:   169 

(i) A “rural background” NO2 spatial distribution, assuming a uniform NO2 distribution of 0.1 ppb  170 

(estimated level in rural areas upwind of Portland) (Lamsal et al., 2013) across the Portland Metro 171 

area. 172 

(ii) A “regional” NO2 spatial distribution, based on the average Oregon DEQ NO2 measurement for the 173 

period of the study (7.5 ppb). 174 

(iii) A 200m predictive NO2 spatial distribution across Portland Metro, generated by applying the 175 

predictive LUR model to points on a 200m grid (the PM model) 176 

(iv) A 200m sources-and sinks spatial distribution of NO2 across Portland Metro, generated by applying 177 

the sources-and-sinks model to points on a 200m grid (the SSM model) 178 

(v) A 200m resolution “no trees” map of NO2 in the Portland area modelling the NO2 levels in the 179 

absence of trees, generated by applying the sources-and-sinks model without the sink term 180 

associated with tree canopy, to points on a 200m grid (the SSM model without trees). 181 

 182 

Respiratory Health Impact Analysis 183 

Analysis of several asthma-related endpoints – including asthma exacerbation resulting in missed school 184 

among children aged 4-12; asthma exacerbation resulting in one or more symptoms among children 4-185 

12; emergency room visits for asthma at any age; and hospital admissions (HA) for any respiratory 186 

condition among elderly persons aged 65 and over –  to estimate incidence and economic valuation was 187 

done in The Environmental Benefits Mapping and Analysis Program version 4.0.35 (BenMAP) (U.S. 188 

Environmental Protection Agency, 2010). BenMAP is a Windows-based computer program developed by 189 

the US EPA that uses a Geographic Information System (GIS)-based approach to estimate the health 190 

impacts and economic benefits (or dis-benefits) occurring when populations experience changes in air 191 

quality.  BenMAP comes with multiple built-in regional and national datasets, including health impact 192 

functions and baseline incidences, to facilitate health benefits modeling. It has been used to estimate the 193 

health impacts of urban air pollutants at the regional and national scales (Davidson et al., 2007; Fann et 194 

al., 2009; Hubbell et al., 2009, 2004). 195 

 196 
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For this study, we estimated the incidence and valuation for four respiratory endpoints of NO2, using the 197 

health impact and valuation functions built into BenMAP (Table S1). We used Popgrid, a population 198 

allocation tool that comes with BenMAP to allocate the census population into age bins required by 199 

BenMAP (Abt Associates Inc., 2010). We estimated the respiratory health impacts of NO2 on the Portland 200 

population at two different spatial scales of assessment. At the city-scale, we used the “regional” NO2 201 

distribution based on the Oregon DEQ NO2 measurements. For the highly spatially resolved scale, we 202 

used our 200m predictive NO2 LUR model (PM model). Incidences of respiratory outcomes for both 203 

scales were assessed against an estimated rural background of 0.1 ppb NO2  (Lamsal et al., 2013). The 204 

respiratory health outcomes under these two different scale scenarios were compared to evaluate the role 205 

of scale in health impact assessments.  206 

 207 

Respiratory health benefits of trees due to reduction in NO2 associated with tree canopy were assessed 208 

by comparing the respiratory outcomes based on the 200m NO2 distribution generated using the SSM 209 

LUR model with and without the sink term for tree canopy.  210 

 211 

 212 

Results and Discussion 213 

LUR Models 214 

Two LUR models were developed based on the NO2 measured at 144 sites (Fig S1) and the adjoining 215 

land use. The SSM fit estimated NO2 using only land-use proxies for urban sources and sinks of NO2. 216 

The PM added longitude (as X_DIST) to the SSM to account for the spatial variability of land use within 217 

the Portland Metro area (Fig 1). 218 
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 219 

Fig 1: NO2 quantiles, based on the predictive NO2 LUR model (PM) applied at a 200m spatial resolution 220 

The average adjusted R
2
 (across 5 training models) and average RMSE (across 5 validation models) was 221 

0.70 (2.6 ppb) and 0.80 (2.2 ppb) for the sources and sinks (SSM) and predictive models (PM), 222 

respectively. The R
2
 for the models is consistent with published R

2
 values, ranging from 0.50 to 0.90, 223 

while the RMSE is on par with the lowest measured RMSE values (1.4 – 34 ppb) (Hoek et al., 2008). 224 

 225 

The coefficients of the two LUR models are similar for roadways and area sources, but differ for railroads, 226 

tree canopy and elevation. This is an indication that roadways and population are relatively evenly 227 

distributed across the Metro area, while railroads, trees and elevation show a strong spatial gradient 228 

across the city, consistent with the local geography.  229 

 230 

Based on the regression equation (Eq 2) ambient NO2 in Portland in the absence of considered land use 231 

sources and sinks is 7.7 ppb. Ambient NO2 levels increase by 1.1 ppb for every 100 000 vehicle 232 

kilometers traveled (annually) on freeways within a 1.2 km buffer of the site. NO2 levels increase by an 233 

additional 0.65 ppb for each kilometer of major arteries within 500m of the site, and 1.7 ppb NO2 for each 234 

kilometer of arteries within 350m. However, ambient NO2 levels decrease by 0.57 ppb for every 10 ha of 235 
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trees (20% tree cover) within 400m of a site. (See S2 for descriptive statistics of model predictor 236 

variables). 237 

 238 

Sources and sinks model (SSM) 239 

NO2(i) = 9.4 + 1.2x10
-8

*FWY_AADT1200,i       + 5.0x10
-4

*MAJ_ART500,i  + 1.8x10
-3

*ARTERIES350,i  240 

                    + 1.7x10
-8

*STREETS(POP)800,i + 1.5x10
-3

*RAILS250,i        – 3.5x10
-3

*ELEVATIONi  241 

                    – 8.4x10
-6

*TREES400,i        ………………………………………………………………(.Eq 1) 242 

Adj R
2
 = 0.70, validation RMSE = 2.6 243 

 244 

 245 

Predictive model (PM) 246 

NO2(i) = 7.7 + 1.1x10
-8

*FWY_AADT1200,i       + 6.5x10
-4

*MAJ_ART500,i  + 1.7x10
-3

*ARTERIES350,i  247 

                    + 1.8x10
-8

*STREETS(POP)800,i + 1.0x10
-3

*RAILS250,i        – 1.0x10
-2

*ELEVATIONi  248 

                    + 1.4x10
-5

*(ELEVATIONi)
2
         – 5.73x10

-6
*TREES400,i    + 1.1x10

-4
*X_DISTi  ……(Eq 2) 249 

Adj R
2
 = 0.80, validation RMSE = 2.2 250 

 251 

Where: 252 

NO2(i)            ……………………………….….NO2 ppb, at site (i) 253 

FWY_AADT1200,i ………………………………freeway (m) in 1200m, weighted with AADT 254 

MAJ_ART500,i ……………………………..…..major arteries (m) in 500m  255 

ARTERIES350,i ………………………………   arteries (m) in 350m 256 

STREETS(POP)800,i   ……………………….…streets (m) in 800m, weighted by the population  257 

RAILS250,i           …………………………….…railroads (m) in 250m  258 

ELEVATIONi    …………………………….….elevation (ft) 259 

TREES400,i           …………………………….….tree cover (m
2
 ) in 400m 260 

X_DISTi           …………………………………distance from center of city (in m), along E-W axis 261 

 262 

 263 

 264 
Scale & health impact assessment 265 

Based on the 200m predictive NO2 spatial distribution in BenMAP (on an annualized basis, i.e., assuming 266 

comparable levels of NO2 over the year, and assuming the same association of reduced NO2 with trees 267 

across all seasons), we estimate 140 370 excess cases annually of asthma exacerbation in 4-12 year-268 

olds, valued at $30 million (2013 USD), over a rural background NO2 background of 0.1 ppb. Further, we 269 

estimate 384 incidents (annually) of ER visits due to NO2-triggered asthma and 423 incidents of 270 

hospitalization in the elderly due to respiratory problems triggered by NO2. Altogether, the four NO2 271 

triggered end-points considered here result in an economic cost to society of roughly $46 million (2013 272 

USD). Assessing the same respiratory health impacts, using the same population distribution, but using 273 

the regional NO2 level for Portland for the summer sampling period instead, we estimate 105 819 excess 274 

cases of asthma exacerbation in 4-12 year-olds annually, 280 excess ER visits and 296 excess 275 

hospitalizations among the elderly attributable to urban NO2. Altogether the four endpoints considered at 276 

this scale result in an estimated $34 million (2103 USD) cost to society (Table 2). 277 

 278 

From this analysis, it is clear that the spatial resolution of the NO2 estimates used to assess the health 279 

impacts makes a significant difference in the magnitude of predicted health outcome. Specifically for 280 

Portland, the 200m scale predictive NO2 model results in an estimate 30-45% higher than the number of 281 
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incidences and economic cost as the uniform regional value. Even keeping in mind that different health 282 

impact and valuation functions will result in different health and economic cost estimates, the critical point 283 

– that the incidence and valuation increase significantly for Portland when using the 200m map of NO2 – 284 

holds. 285 

 286 

Health Impact 

Incidence 
estimate        

200m LUR 
NO2 

Economic 
Valuation              

(in $1,000,000) 
200m LUR NO2 

Incidence 
estimate   
Regional  

NO2 

Economic 
Valuation           

(in $1,000,000) 
Regional NO2 

Asthma Exacerbation, Missed school days   
(4-12 years) 

47 918 5.55 36 239 4.20 

Asthma Exacerbation, One or More 
Symptoms (4-12 years) 

140 370 29.70 105 819 22.39 

Emergency Room Visits, Asthma  (all ages) 384 0.16 280 0.12 

HA, All Respiratory (65 and older) 423 10.58 296 7.43 

Estimated cost  
$45.99 million 

 
$34.14 million 

Table 2: Comparison of incidence and valuation of respiratory problems attributable to NO2 at the 200m and 287 

regional scale. All valuations are in 2013 USD. 288 

 289 

For a mid-size city like Portland with relatively clean air and US criteria pollutants below US standards, for 290 

an urban air pollutant like NO2, which is related to relatively mild respiratory health outcomes, the single 291 

regional value for NO2 underestimates the annual respiratory health impacts on the order of  $10 million 292 

(2013 USD). The majority of EPA monitors are focused on assessing area-wide air quality, and are 293 

required to be sited to minimize near-road influences (Ambient Air Quality Surveillance, 2007). Thus, we 294 

can expect underestimation of air pollutants to hold for other air pollutants such as PM2.5 whose health 295 

impacts include mortality, neurological, pulmonary, and cardiovascular diseases, particularly in larger 296 

cities that show greater variation in intra-urban distribution of urban air pollutants. This disparity between 297 

the highly resolved spatial scale and a single regional representative value is likely to grow even more 298 

when the cumulative health impacts of all urban air pollutants are taken into account. Thus, this analysis 299 

emphasizes the need for spatially (and temporally) resolved air pollutant data to more accurately assess 300 

the health, social, and economic costs of urban air pollution. 301 

 302 

Relative strength of sources and sinks 303 

LUR models have been extensively used to capture the intra-urban variability of urban air pollutants in 304 

epidemiological studies that focus on establishing health impact functions for urban air pollutants (Cyrys 305 

et al., 2012; Eeftens et al., 2012; Henderson et al., 2007; Jerrett et al., 2005). To our knowledge, LUR 306 

models have not been used to examine the relative strength of sources and sinks of urban air pollutants 307 

within cities. To examine the relative strengths of sources and sinks of NO2, we look at the SSM from 308 

several different perspectives (Table 3).  309 

 310 



 

12 

 

The standardized regression coefficients (betas) in the SSM show that the freeway traffic volume within 311 

1.2km of a site has the strongest association with local NO2. One standard deviation increase in freeway 312 

traffic volume corresponds to a 0.4 standard deviation increase in NO2 levels at a site. Roadways, taken 313 

together, have a strong association with NO2 – a combined beta of 0.7. The association of trees and 314 

elevation with NO2 is much weaker, corresponding to a reduction in local NO2 levels by 0.2 and 0.15 315 

standard deviations for each standard deviation increase in tree canopy and elevation respectively.  316 

 317 

Another way to examine the relative strengths of NO2 sources and sinks is to see how much each source 318 

(sink) increases (decreases) the background NO2. The modelled urban NO2 background, that is the NO2 319 

level in the absence of LUR sources and sinks, is 9.4 ppb.  The average traffic volume value across the 320 

144 sites of 120 x 10
3
 vehicle-km increases the ambient NO2 by16% (1.5 ppb) over background. 321 

Roadways, considered together, on average across the 144 sites, increase NO2 levels by 25% (2.4 ppb) 322 

over background. Trees, on average, reduce the NO2 by about 15% of background (1.4 ppb).  323 

 324 

From a planning perspective, it is also important to know the range of change in NO2 levels associated 325 

with a specific source or sink that can be encountered in the city. Based on the SSM and the range of 326 

values observed for the land use variables in the Portland Metro area (Table 3), we find that freeway 327 

traffic can increase NO2 from 0-7.9 ppb above the 9.4 ppb background. Roadways taken together can 328 

increase NO2 from 0-11.8 ppb; railroads can increase NO2 from 0 to 3.3 ppb; while tree canopy can 329 

decrease NO2 from 0 - 4.2 ppb from the urban background. 330 

 331 

We further used hierarchical nested regression analysis (Cohen et al., 2003) to address the question of 332 

whether the reduction in NO2 seen with elevation and tree canopy could be attributed simply to the 333 

absence of sources, as sites at high elevation and with dense tree cover are less likely to have high traffic 334 

volume roads, railroads and area sources in the vicinity. The hierarchical analysis shows that about 30% 335 

of the total reduction in NO2 associated with elevation is directly due to elevation, while 38% is related to 336 

increased tree canopy at higher elevation, 12% due to fewer railroads, 14% due to fewer area sources 337 

and 6% due to lower road traffic. Similarly, 56% of the reduction in NO2 associated with trees is directly 338 

associated with tree canopy, while 14% is due to fewer area sources and 30% due to fewer roadways 339 

and lower traffic volume. LUR analyses using ordinary linear regression are not able to disentangle these 340 

effects. 341 

 342 

 

Std beta 

(avg of 5 
training models) 

% of 
background 

NO2 on 
average 

NO2 contrib 
(ppb)  based 
on avg land-

use values for 
144 sites 

NO2 contrib 
(ppb) based on 
max land-use 
values for 144 

sites 
FWY_AADT1200 0.414 15.8 % 1.5 ppb 7.9 ppb 



 

13 

 

  Table 3: Comparison of relative strengths of sources and sinks of urban NO2 based on land use proxies 343 

 344 

 345 

 346 

An assessment of the relative strengths of sources and sinks of air pollutants within a city is important 347 

and relevant data for determining optimum air pollution strategies. Chemical transport models, which are 348 

used extensively to evaluate mitigation policies at the regional scale, do not encode local dispersion 349 

phenomenon such as the urban canyon effect, the role of trees in changing wind flow, or deposition of air 350 

pollutants to the urban forest. Another shortcoming is the lack of emissions inventories and validation at 351 

the intra-urban scale. LUR is a technique that can be readily used to both inform policy and chemical 352 

transport model adaptation to the intra-urban scale. Of course, it is necessary to develop LUR models for 353 

diverse cities, collecting and analysing the data using a standard methodology, along the lines the 354 

ESCAPE project has undertaken for determining health impact functions for the European population. 355 

 356 

Role of vegetation 357 

Based on the SSM LUR model for NO2 in the Portland Metro area, every 10ha of trees within 400m of a 358 

site is associated with a 0.57 ppb reduction in NO2 at the site in summer. Of this reduction, 56% is directly 359 

associated with trees, while 14% is due to the absence of area sources and 30% due to fewer roads and 360 

lower traffic volumes associated with treed area. Fig. 2 maps the reduction in NO2 associated with the 361 

presence of trees (as % of the background) in the Portland Metro area. The reduction in NO2 ranges from 362 

< 1% of background (< 0.1 ppb) to a maximum of 45% of background (~4 ppb). Not surprisingly, the 363 

greatest reduction in NO2 is in Forest Park, a 2092 ha forest within the Portland Metro area, while the 364 

least reduction is in the industrial areas in North Portland, which have very little tree cover. 365 

MAJ_ART500 0.121 4.3 % 0.4 ppb 2.0 ppb 
ARTERIES350 0.189 5.6 % 0.5 ppb 1.9 ppb 
STREETS(POP)800 0.222 6.6 % 0.6 ppb 2.7 ppb 
RAIL250 0.164 5.6 % 0.5 ppb 3.3 ppb 
ELEVATION -0.148 -10.8 % -1.0 ppb -4.0 ppb 
TREES400 -0.179 -14.7 % -1.4 ppb -4.2 ppb 



 

14 

 

                          366 

 367 
Fig 2 Quantile map showing the modelled reduction of NO2 (as percentage of background) attributable to tree 368 

canopy, based on the NO2 SSM LUR model, with map of tree canopy above for comparison. 369 
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 370 

Our model shows a correlation between reduction in the urban air pollutant NO2 and trees. However, 371 

without being able to relate this reduction to known mechanisms through which trees affect NO2, i.e., 372 

through wet and dry deposition, changing airflow, accelerating chemical transformation, we cannot 373 

discount unknown factors associated with trees themselves. Nevertheless, it is instructive to estimate the 374 

potential health benefits associated with trees due do this statistical reduction of NO2 as a way to assess 375 

the viability of trees as a mitigation strategy. We used a BenMAP simulation to estimate both the 376 

incidence and economic valuation of the decrease in respiratory problems attributable to reduction in NO2  377 

by trees (Table 4). The potential annual respiratory health benefit associated with trees in Portland due to 378 

reduction in NO2 is approximately 21 000 fewer incidences and 7000 fewer days of missed school due to 379 

asthma exacerbation for 4-12 year-olds; 54 fewer ER visits across people of all ages; and 46 fewer cases 380 

of hospitalization due to respiratory problems triggered by NO2 in the elderly. The economic value of 381 

these health benefits is approximately $7 million (2013 USD). 382 

 383 

Health Impact                                                          
(Annualized) 

Reduced 
Incidence due 

to Trees 

Valuation of 
Reduced Incidence 
(in $1,000,000 USD) 

Asthma Exacerbation, Missed school days (4-12 years) 7 380 0.85 

Asthma Exacerbation, One or More Symptoms (4-12 years) 21 466 4.55 

Emergency Room Visits, Asthma  (all ages) 54 0.03 

HA, All Respiratory (65 and older) 46 1.16 

Potential estimated respiratory health benefit due to trees  $ 6.59 million 

Table 4  Incidence and valuation of potential respiratory health benefits due to reduction in NO2 attributable to tree 384 

canopy. Valuations are in 2013 USD. 385 

 386 

Our findings that trees are associated with a significant reduction in NO2 is not unique: previous 387 

epidemiological LUR models include a term for trees or green spaces with a negative sign (Dijkema et al., 388 

2011; Gilbert et al., 2005; Kashima et al., 2009; Mavko et al., 2008; Novotny et al., 2011). Here, however, 389 

we show for the first time – in our understanding – that this landscape-level reduction in NO2 associated 390 

with trees in Portland is large enough to make a discernible contribution to improved human respiratory 391 

health. Estimates using the big-leaf model UFORE indicate, however, that the urban forest in Portland 392 

removes only approximately 0.6% of atmospheric NO2 through deposition and foliar uptake (Nowak et al., 393 

2006), which suggests that refinement of these deposition and uptake values are required or that other 394 

mechanisms may be the dominant mechanisms for landscape-level NO2 removal by trees in our study. In 395 

general, UFORE models of air pollution removal for US cities show < 2% air pollutant removal by trees, 396 

leading urban ecologists (Pataki et al., 2011) to question the efficacy of urban tree plantings in mitigating 397 

air pollution. Our observations of the large reduction in NO2 associated with trees at the landscape level 398 

and the magnitude of the associated health impacts serve to highlight the need to understand, quantify 399 

and model the mechanisms through which trees impact urban air pollution at the landscape level, so we 400 

can effectively incorporate trees into the urban environment, balancing their benefits and dis-benefits. 401 
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One avenue to explore in understanding the role of the urban forest in air pollution mitigation is to 402 

determine whether the current generation of UFORE significantly underestimates the potential for tree-403 

associated reduction of NO2 in urban areas. If the big-leaf model is indeed correct, then possibly other, 404 

less seasonal, mechanisms may dominate landscape level NO2 reduction, and we may find landscape-405 

level winter reduction of NO2 to be roughly on par with our observed summer reduction. Eventually, 406 

species-specific measures of NO2 removal by intact urban canopies would provide the necessary 407 

foundation for a metabolically informed rational design of urban forest canopies, where key tree species 408 

are planted intentionally to maximize local NO2 removal, while taking into consideration the complex role 409 

of the urban trees in ozone production, allergen production, effect on local wind dispersion. Trees are an 410 

integral part of many urban environments, and hence, in an era of increasing global urbanization, it 411 

becomes even more important to understand the various mechanisms through which trees, of diverse 412 

forms and functions, are associated with reduced NO2, and potentially other more harmful urban air 413 

pollutants such as PM2.5. 414 

 415 

 416 

Summary and conclusions 417 

We live in a rapidly urbanizing world – more than half of the world’s population lives in cities today, and 418 

more than two-thirds will live in urban areas by 2050 (United Nations, 2011). An unintended consequence 419 

of increasing urbanization is an increase in anthropogenic emissions due to increased human activity, 420 

which in turn means more people are exposed to air pollution, potentially leading to reduced life 421 

expectancy, reduced productivity and a decrease in quality of life for urban dwellers (Straf et al., 2013). 422 

Due to the geographic variation in the distribution of air pollutants in a city, the health impacts are not 423 

uniform and tend to be increasingly borne by susceptible and socially disadvantaged urban populations 424 

(Clougherty and Kubzansky, 2009; Clougherty et al., 2007). Our study demonstrates the need to monitor 425 

or model air pollutants at a highly local scale in order to correctly assess the health impacts of urban air 426 

pollutants and to address social equity issues. 427 

 428 

Our study is further suggestive of the potential of an urban forest to reduce the air pollutant NO2 and 429 

hence provide health benefits on the order of millions of dollars (on an annualized basis) due to reduced 430 

incidence of respiratory problems. It emphasizes the need to resolve the NO2 conundrum so urban 431 

planners and urban foresters can better understand if and how trees may be more effectively 432 

incorporated into urban designs for healthier cities. 433 

 434 

Acknowledgements 435 

The authors gratefully acknowledge support from the US Forest Service Award #2011-DG-11062765-436 

016. We would also like to thank the numerous volunteers that helped with the field campaign. 437 

 438 



 

17 

 

 439 

Supplementary Data 440 

Fig S1: Map of Portland showing the 144 sites, and measured NO2 441 

Table S1: BenMAP NO2 health impact endpoints and valuation methods considered in this study 442 

 443 

 444 

References 445 

Abt Associates Inc., 2010. BenMAP Environmental Benefits Mapping and Analysis Program User’s 446 

Manual Appendices. U.S. Environ. Prot. Agency. 447 

Ambient Air Quality Surveillance,  40 C.F.R.  pt 58 (2007) 448 

Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.-Y., Künzli, N., 449 

Schikowski, T., Marcon, A., Eriksen, K., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, 450 

T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., Birk, M., Cyrys, J., von Klot, S., Nádor, G., 451 

Varró, M.J., Dėdelė, A., Gra˛ulevičienė, R., Mölter, A., Lindley, S., Madsen, C., Cesaroni, G., Ranzi, 452 

A., Badaloni, C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch, T., Cirach, M., de 453 

Nazelle, A., Nieuwenhuijsen, M., Bellander, T., Korek, M., Olsson, D., Strömgren, M., Dons, E., 454 

Jerrett, M., Fischer, P., Wang, M., Brunekreef, B., de Hoogh, K., 2013. Development of NO2 and 455 

NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe – 456 

the ESCAPE project. Atmos. Environ. 72, 10–23. doi:10.1016/j.atmosenv.2013.02.037 457 

Brauer, M., Hoek, G., Smit, H. a, de Jongste, J.C., Gerritsen, J., Postma, D.S., Kerkhof, M., Brunekreef, 458 

B., 2007. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur. 459 

Respir. J.  Off. J. Eur. Soc. Clin. Respir. Physiol. 29, 879–88. doi:10.1183/09031936.00083406 460 

Briggs, D.J., de Hoogh, C., Gulliver, J., Wills, J., Elliott, P., Kingham, S., Smallbone, K., 2000. A 461 

regression-based method for mapping traffic-related air pollution: application and testing in four 462 

contrasting urban environments. Sci. Total Environ. 253, 151–67. 463 

Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233–42. doi:10.1016/S0140-464 

6736(02)11274-8 465 

Clougherty, J.E., Kubzansky, L.D., 2009. A framework for examining social stress and susceptibility to air 466 

pollution in respiratory health. Environ. Health Perspect. 117, 1351–8. doi:10.1289/ehp.0900612 467 

Clougherty, J.E., Levy, J.I., Kubzansky, L.D., Ryan, P.B., Suglia, S.F., Canner, M.J., Wright, R.J., 2007. 468 

Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. 469 

Environ. Health Perspect. 115, 1140–6. doi:10.1289/ehp.9863 470 

Clougherty, J.E., Wright, R.J., Baxter, L.K., Levy, J.I., 2008. Land use regression modeling of intra-urban 471 

residential variability in multiple traffic-related air pollutants. Environ. Health 7, 17. doi:10.1186/1476-472 

069X-7-17 473 

Cohen, J., Cohen, P., West, S.G., Aiken, L.S., 2003. Applied Multiple Regression/Correlation Analysis for 474 

the Behavioral Sciences. Lawrence Erlbaum Associates. 475 

Cyrys, J., Eeftens, M., Heinrich, J., Ampe, C., Armengaud, A., Beelen, R., Bellander, T., Beregszaszi, T., 476 

Birk, M., Cesaroni, G., Cirach, M., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dėdelė, 477 



 

18 

 

A., Dimakopoulou, K., Eriksen, K., Galassi, C., Grąulevičienė, R., Grivas, G., Gruzieva, O., 478 

Gustafsson, A.H., Hoffmann, B., Iakovides, M., Ineichen, A., Krämer, U., Lanki, T., Lozano, P., 479 

Madsen, C., Meliefste, K., Modig, L., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Nonnemacher, M., 480 

Oldenwening, M., Peters, A., Pontet, S., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., 481 

Ranzi, A., Sugiri, D., Stephanou, E.G., Taimisto, P., Tsai, M.-Y., Vaskövi, É., Villani, S., Wang, M., 482 

Brunekreef, B., Hoek, G., 2012. Variation of NO2 and NOx concentrations between and within 36 483 

European study areas: Results from the ESCAPE study. Atmos. Environ. 62, 374–390. 484 

doi:10.1016/j.atmosenv.2012.07.080 485 

Davidson, K., Hallberg, A., McCubbin, D., Hubbell, B., 2007. Analysis of PM2.5 using the Environmental 486 

Benefits Mapping and Analysis Program (BenMAP). J. Toxicol. Environ. Health. A 70, 332–46. 487 

doi:10.1080/15287390600884982 488 

De Vries, S., Verheij, R. a, Groenewegen, P.P., Spreeuwenberg, P., 2003. Natural environments -- 489 

healthy environments? An exploratory analysis of the relationship between greenspace and health. 490 

Environ. Plan. A 35, 1717–1731. doi:10.1068/a35111 491 

Dijkema, M.B., Gehring, U., van Strien, R.T., van der Zee, S.C., Fischer, P., Hoek, G., Brunekreef, B., 492 

2011. A comparison of different approaches to estimate small-scale spatial variation in outdoor NO₂ 493 

concentrations. Environ. Health Perspect. 119, 670–5. doi:10.1289/ehp.0901818 494 

Dockery, D.W., C Arden Pope III, Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Benjamin G. Ferris, J., 495 

Speizer, F., 1993. An association between air pollution and mortality in six U.S. cities. N. Engl. J. 496 

Med. 329, 1753–1759. 497 

Donovan, G.H., Michael, Y.L., Butry, D.T., Sullivan, A.D., Chase, J.M., 2011. Urban trees and the risk of 498 

poor birth outcomes. Health Place 17, 390–3. doi:10.1016/j.healthplace.2010.11.004 499 

Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Dėdelė, A., 500 

Dons, E., de Nazelle, A., Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C., 501 

Gražulevičienė, R., Heinrich, J., Hoffmann, B., Jerrett, M., Keidel, D., Korek, M., Lanki, T., Lindley, 502 

S., Madsen, C., Mölter, A., Nádor, G., Nieuwenhuijsen, M., Nonnemacher, M., Pedeli, X., Raaschou-503 

Nielsen, O., Patelarou, E., Quass, U., Ranzi, A., Schindler, C., Stempfelet, M., Stephanou, E., 504 

Sugiri, D., Tsai, M.-Y., Yli-Tuomi, T., Varró, M.J., Vienneau, D., Klot, S. Von, Wolf, K., Brunekreef, 505 

B., Hoek, G., 2012. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, 506 

PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ. Sci. 507 

Technol. 46, 11195–205. doi:10.1021/es301948k 508 

Fann, N., Fulcher, C.M., Hubbell, B.J., 2009. The influence of location, source, and emission type in 509 

estimates of the human health benefits of reducing a ton of air pollution. Air Qual. Atmos. Health 2, 510 

169–176. doi:10.1007/s11869-009-0044-0 511 

Faus-Kessler, T., Kirchner, M., Jakobi, G., 2008. Modelling the decay of concentrations of nitrogenous 512 

compounds with distance from roads. Atmos. Environ. 42, 4589–4600. 513 

doi:10.1016/j.atmosenv.2008.01.073 514 

Fujii, E., Manager, P., Lawton, J., Barnes, D.E., Spada, N., Trails, B.C.S., 2008. Breathe California of 515 

Sacramento- Emigrant Trails Health Effects Task Force Removal Rates of Particulate Matter onto 516 

Vegetation as a Function of Particle Size. 517 

Gilbert, N.L., Goldberg, M.S., Beckerman, B., Brook, J.R., Jerrett, M., 2005. Assessing spatial variability 518 

of ambient nitrogen dioxide in Montréal, Canada, with a land-use regression model. J. Air Waste 519 

Manag. Assoc. 55, 1059–63. 520 



 

19 

 

Gilbert, N.L., Goldberg, M.S., Brook, J.R., Jerrett, M., 2007. The influence of highway traffic on ambient 521 

nitrogen dioxide concentrations beyond the immediate vicinity of highways. Atmos. Environ. 41, 522 

2670–2673. doi:10.1016/j.atmosenv.2006.12.007 523 

Henderson, S.B., Beckerman, B., Jerrett, M., Brauer, M., 2007. Application of Land Use Regression to 524 

Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter. 525 

Environ. Sci. Technol. 41, 2422–2428. doi:10.1021/es0606780 526 

Hirabayashi, S., Kroll, C.N., Nowak, D.J., 2012. i-Tree Eco Dry Deposition Model Descriptions. 527 

Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D., 2008. A review of 528 

land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42, 529 

7561–7578. doi:10.1016/j.atmosenv.2008.05.057 530 

Hubbell, B., Fann, N., Levy, J.I., 2009. Methodological considerations in developing local-scale health 531 

impact assessments: balancing national, regional, and local data. Air Qual. Atmos. Heal. 2, 99–110. 532 

doi:10.1007/s11869-009-0037-z 533 

Hubbell, B.J., Hallberg, A., McCubbin, D.R., Post, E., 2004. Health-Related Benefits of Attaining the 8-Hr 534 

Ozone Standard. Environ. Health Perspect. 113, 73–82. doi:10.1289/ehp.7186 535 

I-Tree, 2011. i-Tree Eco User’s Manual. doi:10.1007/SpringerReference_28001 536 

Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., Morrison, J., Giovis, 537 

C., 2005. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. 538 

Environ. Epidemiol. 15, 185–204. doi:10.1038/sj.jea.7500388 539 

Jerrett, M., Shankardass, K., Berhane, K., Gauderman, W.J., Künzli, N., Avol, E., Gilliland, F., Lurmann, 540 

F., Molitor, J.N., Molitor, J.T., Thomas, D.C., Peters, J., McConnell, R., 2008. Traffic-related air 541 

pollution and asthma onset in children: a prospective cohort study with individual exposure 542 

measurement. Environ. Health Perspect. 116, 1433–8. doi:10.1289/ehp.10968 543 

Karner, A. a, Eisinger, D.S., Niemeier, D. a, 2010. Near-roadway air quality: synthesizing the findings 544 

from real-world data. Environ. Sci. Technol. 44, 5334–44. doi:10.1021/es100008x 545 

Kashima, S., Yorifuji, T., Tsuda, T., Doi, H., 2009. Application of land use regression to regulatory air 546 

quality data in Japan. Sci. Total Environ. 407, 3055–62. doi:10.1016/j.scitotenv.2008.12.038 547 

Lamsal, L.N., Martin, R. V, Parrish, D.D., Krotkov, N. a, 2013. Scaling relationship for NO2 pollution and 548 

urban population size: a satellite perspective. Environ. Sci. Technol. 47, 7855–61. 549 

doi:10.1021/es400744g 550 

Maas, J., Verheij, R. a, Groenewegen, P.P., de Vries, S., Spreeuwenberg, P., 2006. Green space, 551 

urbanity, and health: how strong is the relation? J. Epidemiol. Community Health 60, 587–92. 552 

doi:10.1136/jech.2005.043125 553 

Mavko, M.E., Tang, B., George, L.A., 2008. A sub-neighborhood scale land use regression model for 554 

predicting NO(2). Sci. Total Environ. 398, 68–75. doi:10.1016/j.scitotenv.2008.02.017 555 

McConnell, R., Berhane, K., Yao, L., Jerrett, M., Lurmann, F., Gilliland, F., Künzli, N., Gauderman, J., 556 

Avol, E., Thomas, D., Peters, J., 2006. Traffic, Susceptibility, and Childhood Asthma. Environ. 557 

Health Perspect. 114, 766–772. doi:10.1289/ehp.8594 558 



 

20 

 

Min, K.-E., Pusede, S.E., Browne, E.C., LaFranchi, B.W., Wooldridge, P.J., Cohen, R.C., 2013. Eddy 559 

covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a 560 

ponderosa pine ecosystem: observational evidence for within canopy removal of NOx. Atmos. 561 

Chem. Phys. Discuss. 13, 12437–12484. doi:10.5194/acpd-13-12437-2013 562 

Novotny, E. V, Bechle, M.J., Millet, D.B., Marshall, J.D., 2011. National satellite-based land-use 563 

regression: NO2 in the United States. Environ. Sci. Technol. 45, 4407–14. doi:10.1021/es103578x 564 

Nowak, D.J., Crane, D.E., Stevens, J.C., 2006. Air pollution removal by urban trees and shrubs in the 565 

United States. Urban For. Urban Green. 4, 115–123. doi:10.1016/j.ufug.2006.01.007 566 

Nyberg, F., Gustavsson, P., Jarup, L., Bellander, T., Berglind, N., Jakobsson, R., Pershagen, G., 2000. 567 

Urban air pollution and lung cancer in Stockholm. Epidemiology 11, 487–495. 568 

Ogawa & Co., USA, I., 2006. NO , NO 2 , NOx and SO 2 Sampling Protocol Using The Ogawa Sampler *. 569 

Ostro, B., Lipsett, M., Mann, J., Braxton-Owens, H., White, M., 2001. Air pollution and exacerbation of 570 

asthma in African-American children in Los Angeles. Epidemiology 12, 200–8. 571 

Pataki, D.E., Carreiro, M.M., Cherrier, J., Grulke, N.E., Jennings, V., Pincetl, S., Pouyat, R. V, Whitlow, 572 

T.H., Zipperer, W.C., 2011. Coupling biogeochemical cycles in urban environments: ecosystem 573 

services, green solutions, and misconceptions. Front. Ecol. Environ. 9, 27–36. doi:10.1890/090220 574 

Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Thurston, G.D., 2002. Lung Cancer, 575 

Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA J. Am. 576 

Med. Assoc. 287, 1132–1141. 577 

Portland Parks & Recreation, 2007. Portland’s Urban Forest Canopy: Assessment and Public Tree 578 

Evaluation. Portland. 579 

Ryan, P.H., LeMasters, G.K., 2007. LUR_review_Ryan2006.pdf. Inhal. Toxicol. 19, 127–133. 580 

Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S., 2000. Fine Particulate Air Pollution and 581 

Mortality in 20 U.S. Cities, 1987 - 1994. N. Engl. J. Med. 343, 1742–1749. 582 

Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.R., Sunyer, J., Bisanti, L., Zmirou, D., 583 

Vonk, J.M., Pekkanen, J., Goodman, P., Paldy, A., Schindler, C., Katsouyanni, K., 2005. Estimating 584 

the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA 585 

Multicity Project. Environ. Health Perspect. 113, 88–95. doi:10.1289/ehp.7387 586 

Setälä, H., Viippola, V., Rantalainen, A.-L., Pennanen, A., Yli-Pelkonen, V., 2012. Does urban vegetation 587 

mitigate air pollution in northern conditions? Environ. Pollut. 183, 104–112. 588 

doi:10.1016/j.envpol.2012.11.010 589 

Sparks, J.P., 2009. Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159, 1–13. 590 

doi:10.1007/s00442-008-1188-6 591 

Straf, K., Cohen, A., Sammet, J., 2013. Air Pollution and cancer, IARC Scientific Publication 161, 592 

International Agency for Reseach on Cancer, World Health Orgnanization, Lyo, FR. 593 

Takahashi, M., Higaki, A., Nohno, M., Kamada, M., Okamura, Y., Matsui, K., Kitani, S., Morikawa, H., 594 

2005. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution 595 

level. Chemosphere 61, 633–9. doi:10.1016/j.chemosphere.2005.03.033 596 



 

21 

 

U.S. EPA (US Environmental Protection Agency), 2010. Environmental Benefits Mapping and Analysis 597 

Program (BenMAP). 598 

United Nations, 2011. World Urbanization Prospects The 2011 Revision. 599 

Yin, S., Shen, Z., Zhou, P., Zou, X., Che, S., Wang, W., 2011. Quantifying air pollution attenuation within 600 

urban parks: an experimental approach in Shanghai, China. Environ. Pollut. 159, 2155–63. 601 

doi:10.1016/j.envpol.2011.03.009 602 

 603 

  604 



 

22 

 

Supporting Information 605 

606 
Fig S1: Map of Portland showing the 144 sites, and measured NO2. 607 

 608 

NO2 Health Impact Endpoints Study Location Valuation Method 

Asthma Exacerbation, Missed 
school days (4-12 years) 

O'Connor et al 
(2008) 7 inner cities 

WTP: 2 x bad asthma 
day, Rowe and 
Chestnut (1986) 

Asthma Exacerbation, One or More 
Symptoms (4-12 years) 

O'Connor et al 
(2008) 7 inner cities 

WTP: Dickie and Ulery 
(2002) 

Emergency Room Visits, Asthma  
(all ages) Ito et al (2007) 

New York 
City COI:  Smith et al. (1997) 

Hospital Admissions, All Respiratory 
(65 and older) Yang et al (2003) 

Vancouver, 
Canada 

COI:  med costs + wage 
loss 

Hospital Admissions, Chronic Lung 
Disease (less Asthma)   (65 and 
older) Yang et al (2005) 

Vancouver, 
Canada 

COI:  med costs + wage 
loss 

Table S1: BenMAP NO2 health impact endpoints and valuation methods considered in this study. 609 
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Descriptive Statistics 

  Unit 
Minimum Maximum Mean 

Std. 
Deviation 

NO2  ppb 4 23 11 5 

FWY_AADT1200 number.m 0 638035958 131756480 160745541 

MAJ_ART500 m 0 6508 976 1162 

ARTERIES350 m 0 3022 417 516 

STREETS(POP)800 m.number 8601 278594583 48044826 61987551 

RAILS250 m 0 2210 253 524 

ELEVATION (centered) ft -251 869 0 203 

(ELEVATION)
2
 ft

2
 1 754968 41095 94816 

TREES400 m
2
 5120 500487 149304 101814 

X_DIST m -34529 24337 0 12289 

Table S2: Descriptive statistics of LUR model predictor variables. 610 

 611 


