Chem 223-Exam 2 answers

1a) at lower temperatures b) always spontaneous

2. ΔG=-RTlnK=0.008314*(359)*ln(5.3*10³)=-25.6KJ

3. K= $e^{-(\Delta G/RT)}$ = $e^{-(23.1/(.008314*298))}$ =8.9*10⁻⁵

4. $\Delta S = \Delta H/T = 16.1 \text{KJ}/213 \text{K} = 0.075 \text{KJ}/\text{K} = 75 \text{J}/\text{K}$

5. a)Au³⁺ + Fe²⁺ <=> Au ⁺ + Fe³⁺ n=2 E°=1.40-0.77=0.63V ΔG° = -nFE° = -2(95.5)(0.63)= -122KJ K=e^(nEo/0.0257) = e^(2*0.63/0.0257)=1.96*10²¹

b) $I_2 + 2Hg(l) \ll 2I^- + Hg_2^{2+}$ $E^\circ = 0.54 - 0.80 = -0.26V$ $\Delta G^\circ = -nFE^\circ = -2(95.5)(-0.26) = 50.2KJ$ $K = e^{(nE_0/0.0257)} = e^{(2^* - 0.26/0.0257)} = 1.63 \times 10^{-9}$

6a) $14H^{+} + Cr_2O_7^{2-} + 3Fe \le 2Cr^{3+} + 3Fe^{2+} + 7H_2O$ b) $2OH^{-} + SO_3^{2-} + 4ClO_2 \le S(s) + 4ClO_3^{-} + H_2O$

7. As written the reaction is nonspontaneous since nitrate is below Mn^{2+} in the EC series. Thus the reaction will be driven left to right. The cathode is the site of reduction. Left to right the reduction is $NO_3^- \Rightarrow NO$ for which n=3 and the product is NO(gfw=30). Coulombs=amps*t(sec)= $3.2*2.90*3600=3.34*10^4$ Faradays=couls/96500= $3.34*10^4$ /96500=0.346moles NO=0.346/3=0/115 Mass=0.115*30=3.45g

8. $OH^{-} + F_2 + Cl_2 \ll F^{-} + ClO^{-} + H_2O$

9. $V|V^{3+}||Sn^{4+},Sn^{2+}|C(s)|$

10. $Q=1/([H^+]^{6*}[MnO_4^-]^2)=1/(.5^{5*}.2^2)=1600$ n=6 (2*3(for the MnO₄⁻) E=1.68-0.0257/6*ln(1600)=1.65V

11. a) $F_2 + Fe \leq F_2 + Fe^{2+}$; **yes**- F_2 is at the top of the EC series and will oxidize everything b) $Co^{2+} + Br^- \leq Co(s) + Br_2$, **no** $Co^{2+}(OA)$ is below $Br^$ c) $Fe^{2+} + Ni(s) \leq Fe(s) + Ni^{2+}$, **no** $Fe^{2+}(OA)$ is below Ni(s) d) $S(s) + Cd(s) \leq H_2S + Cd^{2+}$, **yes** S(s)(OA) is above Cd(s) e) numerous possibilities-any oxidizing agent between Sn(s) (-0.14V) and Fe²⁺(0.77V)

12.a) Faraday's calculations deal with each $\frac{1}{2}$ reaction independently so the balanced equation is not needed

b) chrome plating is a physical barrier to water and oxygen so it must remain intact. Galvanization provides a sacrificial anode which makes the iron cathodic

c) permanganate reactions require high concentrations of H^+ (4 H^+ + MnO₄⁻ =>MnO₂ + 2H₂O) to go to any real degree. This corresponds to low pH.

d) ΔH and ΔS have the same sign (both positive or both negative)