The Daily News

- Quiz 10 and HW#4 are posted-remember that the Feb 17 assignment includes the "Ice and Water" page
- Correction on Tuesday's notes:
 - $2PBr_3(g) + 3Cl_2(g) \Leftrightarrow 2PCl_3(g) + 3Br_2(g)$
- I will be out of town until late Monday night-feel free to send your usual warm and cuddly emails, but don't expect any replies until Tuesday.

Equilibrium to Date

- "Reversible" chemical reactions must reach a point where the rates of the forward and reverse processes become equivalent.
- At that point, all the concentrations become static, despite the continuing chemical changes
- This is the **equilibrium state**
- A general function Q describes the reaction system under all conditions. Only species with variable []s appear in Q
- When the system is at equilibrium Q=K
- A reversible system is either at equilibrium or moving toward equilibrium.
- Combining kinetics and equilibrium: The kinetics tell us how long it will take for a reversible reaction to reach equilibrium.

Calculating K

- Given the balanced equation and the equilibrium concentrations shown:
 - $COCl_2 => CO + Cl_2$ Equilbrium Concentrations: $COCl_2: 0.0699M$ CO: 0.340M $Cl_2: 0.151M$ What is the value of K^2
 - What is the value of K?

 $K = [CO]_{eq}[Cl_2]_{eq}/[COCl_2]_{eq} = (0.340)(0.151)/(0.0699) = 0.734$

- Given the balanced equation and the equilibrium concentrations shown:
 - $CH_4 + 2H_2S => CS_2 + 4H_2$ Equilbrium Concentrations: $CH_4: 0.437M$ $H_2S: 0.122M$ $CS_2: 0.0891M$ $H_2: 0.482M$ What is the value of K?
- $K = [CS_2]_{eq} [H_2]_{eq}^4 / [CH_4]_{eq} [H_2S]_{eq}^2 = (.891)(.482)^4 / (.437)(.122)^2 = 7.39$

• Given the balanced equation and the equilibrium concentrations shown:

 $2NO_2 => N_2O_4$ Equilbrium Concentrations: $NO_2: 0.339M$ $N_2O_4: 0.0705M$ What is the value of K?

- $K = [N_2O_4]_{eq} / [NO_2]_{eq}^2 = (.0705) / (.339)^2 = 0.613$
- Given the balanced equation and the equilibrium concentrations shown: 2CO + 2NO=>2CO₂ + N₂ Equilbrium Concentrations: CO:0.482M NO:0.238M CO₂:0.275M N₂:0.448M What is the value of K?
- $K = [CO_2]_{eq}^2 [N_2]_{eq}^2 [CO]_{eq}^2 [NO]_{eq}^2 = (.275)^2 (.448)/(.482)^2 (.238)^2 = 2.57$

Calculating []_{eq}

Given the balanced equation, the K value and the partial set of equilibrium

concentrations shown: $2NOBr=>NO + 2 Br_2$ $K=1.61*10^{-1}$ Equilbrium Concentrations: NO:0.194M $Br_2:0.0965M$ What is the concentration of NOBr

- K=0.161= [NO][Br₂]²/[NOBr]²=>
- $0.161 = (.194)(0.0965)^2 / [NOBr]^2 = .00181 / [NOBr]^2$
- [NOBr]²=.0112 [NOBr]=.106
- Checking $(.194)(0.0965)^2/(.106)^2=.161$
- Given the balanced equation, the K value and the partial set of equilibrium concentrations shown:

 $2CO + 2NO => 2CO_2 + N_2$ K=1.82*10¹ Equilbrium Concentrations: CO:0.0325M NO:0.247M N:0.113M

N₂:0.113**M**

What is the concentration of CO_2 ?

- $K=18.2=[CO_2]^2[N_2]/[CO]^2[NO]^2=[CO_2]^2(0.113)/(0.0325)^2(0.247)^2$
- $18.2 = [CO_2]^{2*}1750 \Rightarrow [CO_2]^{2} = .0104 [CO_2] = .101$
- Checking (.101)²(.113)/(.0325)²(.247)²=17.9

Suppose You're not at Equilibrium

- The preceding treatments deal with a system wherein equilibrium has already been established. What sort of analysis can/should be made for a non equilibrium state?
- First, let's exam a bit of a transition case
- The table provides concentration data for the reaction shown going to equilibrium. Use the data to calculate the value of K?

$$2SO_{2} + O_{2} = >2SO_{3}$$
[]_i []_{eq}

$$SO_{3} \quad 0.00 \quad 0.20$$

$$SO_{2} \quad 0.33$$

O₂ 0.40

How many variations can you see on this?

$2CO_2 + N_2 = >2CO + 2NO$		
	[] _I	[] _{eq}
CO	0.00	
NO	0.00	0.053
CO_2	0.440	
N_2	0.110	

$CO_{2} + H_{2}$	$=>CO + H_2O$	
	[] _I	[] _{eq}
CO	0.00	
H ₂ O	0.00	
CO ₂	0.210	
H_2	0.370	0.226

Q vs K-the key to everything

- If a system is not at equilibrium, then it must be moving toward it. Thus, there are two issues in analyzing reversible systems
 - Is it at equilibrium?
 - If not, is which direction is the reaction occurring?
- For any system which is not at equilibrium, Q is constantly changing due to the net chemical change which is occurring.
- The proper evaluation of Q is the key to analyzing a nonequilibrium state. If one rephrases the earlier statement using Q and K it reads: "Q is either equal to K or changing in such a fashion as to eventually equal K." Q can no more diverge from K than a system can move away from equilibrium.
- Q=K-equilibrium state
- Q>K or Q<K: System is not at equilibrium and a net reaction is occurring.
- Q>K what's happening and why?
- Q<K ditto

How Complex Can Things Become?

- $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ K=0.80
- Assume all of the initial concentrations are 0.500.
- What is Q?
- In what direction is the reaction occurring?
- When equilibrium is established-what are the concentrations

Kinetics and Equilibrium

• The reaction $N_2O_4(g) \Leftrightarrow 2NO_2(g)$ follows the rate law: rate=k [N_2O_4]. If the rate constant is $6.30*10^{-2}$ sec-1 and K=2.45, how long will it take for a reaction mixture containing only N_2O_4 initially to reach equilibrium?

K_c and K_p

- $aA + bB \Leftrightarrow cC + dD$
- $K_c = [C]^c [D]^d / [A]^a [B]^b$
- $K_p = P_C^{c*} P_D^d / P_A^{a*} P_B^b$
- P=nRT/V $n/V=\underline{M}$
- $K_p = ([C] * RT)^c ([D] * RT)^d / ([A] * RT)^a ([B] * RT)^b$
- $\Delta n = (c+d) (a+b)$ or moles gaseous prods-moles gaseous reagents
- $K_c = [C]^c [D]^d / [A]^a [B]^b (RT)^{\Delta n} = K_c * (RT)^{\Delta n}$
- $\Delta n=0 K_p=K_c$

Mathematics of K

- $aA + bB \Leftrightarrow cC + dD$ K=2.4
- What is K for the following
- $cC + dD \Leftrightarrow aA + bB$
- $2aA + 2bB \Leftrightarrow 2cC + 2dD$
- $1/3*cC + 1/3*dD \Leftrightarrow 1/3*aA + 1/3*bB$
- Where do you think this is heading?