
Needle in a Haystack – Office Space Edition

Gary Sandine, Portland State University

May 27, 2022

1 Introduction

These notes and the corresponding presentation I will give in the PSU analysis
seminar arose from a practical work situation I encountered in my job in
the PSU Office of Information Technology (OIT). We moved into a new (for
us) office space on the PSU campus, and office assignments were made with
the assumption that all of our approximately 100 regular employees would
be working on campus 3 or more days per week post-pandemic. A refined
remote work program and capability was developed out of necessity during
the pandemic, and it worked so well for us and our employees that it was
determined that remote work was a possibility indefinitely for not all but
many positions within OIT, and 20% or so of our staff has opted to work
remotely most of the time. Thus, the initial office assignments resulted in a
suboptimal usage of our office space based on who was actually coming to
campus for work. A project was initiated to choose a new office assignment
floor plan based on who was actually coming to campus for work and subject
to optimality criteria and several constraints.

The best identified way to approach this task was to use an online program
called Lucidchart with an image of the offices and to locate small boxes repre-
senting individuals on top of the office they would inhabit. This proved to be
cumbersome and severely limits the number of potential floor plans that can
easily be explored (it would take me about an hour to start from an empty
diagram and generate one floor plan to fill in the space in a way that meets
the objectives and constraints). Additionally, this approach naturally encour-
ages one to fit ones own units with whom one has familiarity into space that
accommodates those units and their needs well, leaving the remaining units

1

2 LINEAR PROGRAMMING (LP) 2

and space to be assigned in a way that is naturally less optimal due to lack of
familiarity with the intricacies of those other units.

After several false starts and a couple of weeks of intermittently thinking
about the problem consciously (and subconsciously while sleeping and during
periods of solitude and downtime), I awoke one Sunday morning with a clear
way to formulate the problem that looks simple and obvious once written
down but which provides tremendous flexibility with regard to optimizing for
the objectives and meeting constraints. This offers us the additional ability
to somewhat objectively compare floor plan proposals with regard to how well
they meet our optimization criteria as long as we have captured those properly.

2 Linear Programming (LP)

Linear programming formalism appeared in the 1940s out of a need to
address profoundly impactful WWII-era optimization problems, for example
for planning expenditures to reduce costs and increase tactical effectiveness,
and for allocating resources for maximal effectiveness with minimal financial
and personnel losses.

The basic LP problem looks like

maximize: cTx

subject to: Ax ≤ b

x ∈ Rn
+

where c, x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and the inequalities are component-wise.
The function x 7→ cTx is referred to as the objective function, and points
x that satisfy the constraint inequality are referred to as feasible points.
If there are no feasible points, the problem is called infeasible. A situation
with no solution can also arise when the feasible region is unbounded in a
direction of increase for the objective function.

There are methods for adding additional variables to turn the constraint in-
equality Ax ≤ b into an equality, thereby transforming the problem into a
canonical form that can be easily solved following the simplex algorithm which
was developed by George B. Dantzig in the 1940s while tackling planning
problems in the US Air Force. Other early pioneers include economists Leonid
Kantorovich and T.C. Koopmans and mathematician John von Neumann who
introduced duality methods for framing and solving LPs.

3 INTEGER LINEAR PROGRAMMING (ILP) 3

For an LP problem with a solution, the simplex method effectively starts on a
vertex and traverses the feasible polyhedron from vertex to vertex improving
the cost function at each step until it arrives at a point providing an optimal
objective function value. This movement is called pivoting, and there are
various pivot rules one can follow such as a greedy pivot rule that moves in the
direction that offers the most rapid improvement to the objective function.

3 Integer Linear Programming (ILP)

An integer linear programming problem is an LP problem with the
additional constraint that the variable x assumes integral values only:

maximize: cTx

subject to: Ax ≤ b

x ∈ Zn
+.

Whereas with an LP problem one can use the simplex method to solve it
efficiently, the method used to solve an ILP problem is typically problem-
dependent. Some common methods are brute force enumeration, implicit enu-
meration with a branch and bound method, rounding non-integer solutions
to integers, or using a cutting plane method. The simplex method using any
pivot rule generally completes in polynomial time for LP problems (in fact, it
generally completes in linear time in the number of constraints m in practice),
whereas there is no known polynomial time algorithm for solving a general
ILP problem. In fact, the minimum vertex cover problem is NP-hard and it
can be reduced to an ILP problem, meaning that ILP is NP-hard (it is at least
as hard as min vertex cover) [2].

Implicit enumeration using branch and bound is applicable to the problem
that motivated this talk, and we provide a small example that we could easily
solve with brute force enumeration but that nicely demonstrates the features
of branch and bound implicit enumeration. The idea is, relax the integral re-
quirement and solve an identical LP. For a maximization problem, this puts an
upper bound on the solution of the actual ILP (the nearest integer less than or
equal to the solution to the relaxed LP problem), and from there, the problem
“branches” into multiple subproblems by adding additional constraints bound-
ing non-integer solutions by integers on either side of the non-integer values

3 INTEGER LINEAR PROGRAMMING (ILP) 4

that were found as optimal points for the associated LP. Likewise, any in-
tegral objective-function evaluations within sub-problems place lower bounds
on the maximum value of the actual ILP. These lower bounds allow us to
discard relaxed LP branches associated with sub-problems whose optimal LP
solution values are less than a previously identified lower bound for the actual
ILP problem. Similarly, the upper bound found in the first relaxed LP allows
one to stop, say when a lower bound attained along the way is within some
percentage of the identified upper bound.

This is best demonstrated with a small example from [1]:

maximize: f(x1, x2) = 5x1 + 8x2 = z (1)

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0, x1, x2 ∈ Z

Fist, we relax the integral requirement and solve an identical LP using the
simplex method – call this problem L0:

L0 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

The solution to problem L0 is

(x1, x2) = (2.25, 3.75) maximal value z0 = 41.25.

Now z0 is an upper bound for the actual integer programming problem since
the actual maximal value for the problem (when the problem is bounded on
the feasible set) will occur at a point (x∗

1, x
∗
2) in the integral subset F of the

feasible set F for the associated, relaxed LP. That is,

sup
(x1,x2)∈F

f(x1, x2) ≤ sup
(x1,x2)∈F

f(x1, x2) since F ⊂ F .

Such an upper bound for the initial LP relaxation of the problem can be useful
in practice because for each evaluation of the objective function at an integral
feasible point, one immediately has an estimate for how close one is to the

3 INTEGER LINEAR PROGRAMMING (ILP) 5

true optimum value of the ILP. Since x1, x2 ∈ Z, we now know that if z∗ is
the optimal value, then z∗ ≤ 41 since it too must be an integer, and then any
z value from feasible (x1, x2) ∈ Z2

+ is within 41− z of z∗.

Now we have the option to branch on x1 or x2 obtaining new relaxed LP
problems L1 and L2 by adding two integral constraints for either x1 or x2 from
the list

x1 ≤ 2, x1 ≥ 3, x2 ≤ 3, and x2 ≥ 4

from the continuous LP solution (x1, x2) = (2.25, 3.75) to L0. We branch on
x2 obtaining relaxed linear programming problem L1 by adding the constraint
x2 ≥ 4 to problem L0 and L2 by adding the constraint x2 ≤ 3 to problem L0:

L1 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x2 ≥ 4

x1, x2 ≥ 0

L2 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x2 ≤ 3

x1, x2 ≥ 0

Next, solve problem L1 obtaining

(x1, x2) = (1.8, 4) maximal value z1 = 41,

and solve problem L2 obtaining

(x1, x2) = (3, 3) and maximal value z2 = 39.

No further branching is required on problem L2 – the maximum value over all
real numbers in the feasible region for problem L2 is obtained at (x1, x2) =
(3, 3), thus 39 is also a lower bound for z∗. We note here that (3, 3) is the first
integral feasible point at which we have evaluated the objective function.

3 INTEGER LINEAR PROGRAMMING (ILP) 6

However, we can branch on x1 from problem L1 adding the constraints x1 ≥ 2
and x1 ≤ 1 to get new problems L3 and L4:

L3 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x2 ≥ 4

x1 ≥ 2

x1, x2 ≥ 0

L4 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x2 ≥ 4

x1 ≤ 1

x1, x2 ≥ 0

In L3, the constraints x1 ≥ 2, x2 ≥ 4 (inherited from the upstream problem
L1), and 5x1 + 9x2 ≤ 45 (inherited from the upstream problem L0) are con-
tradictory and thus problem L3 is infeasible. We can solve problem L4 though
obtaining

(x1, x2) = (1, 4.4) and maximal value z4 = 40.5.

This tells us that z∗ is bounded above by 40.

We branch one more time on x2 adding the constraint x2 ≤ 4 to get problem

3 INTEGER LINEAR PROGRAMMING (ILP) 7

L5 and adding the constraint x2 ≥ 5 to get problem L6:

L5 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x2 ≥ 4

x1 ≤ 1

x2 ≤ 4 (so x2 = 4 down this branch)

x1, x2 ≥ 0

L6 – maximize: f(x1, x2) = 5x1 + 8x2

subject to: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x2 ≥ 4 (this constraint is no longer needed)

x1 ≤ 1

x2 ≥ 5

x1, x2 ≥ 0

Solving L5 gives the solution

(x1, x2) = (1, 4) and maximal value z5 = 37.

This is the second integral feasible point at which we evaluated the objective
function, and it is not as good as the point (3, 3) from problem L2.

we next solve problem L6 and get

(x1, x2) = (0, 5) and maximal value z6 = 40.

We have thus found the maximal value z∗ = 40 attained at (x1, x2) = (0, 5).
While there were 25 feasible integral (x1, x2) pairs, we only had to evaluate
the objective function at 3 of them before we found an optimal pair while
implicitly checking all 25 feasible integral pairs (although we did have to solve
7 linear programs).

4 BINARY ILP – IMPLICIT BRUTE FORCE 8

4 Binary ILP – Implicit Brute Force

A special type of ILP problem is a binary integer linear programming
problem, where the variables may assume the values 0 or 1 only:

maximize: cTx

subject to: Ax ≤ b

x ∈ {0, 1}n.

This type of problem can capture any yes-no decision problem, and the office
assignment problem that motivated this talk can be captured in a binary ILP
framework (yes or no to the assignment of office i to person j). When the
objective function assumes a special form such that all 0s or all 1s provide an
optimal value, it is possible to apply a special branch and bound procedure
to solve these problems without having to solve LP problems along the way!
The solution spaces for these problems quickly become intractable (there are
2n 0-1 combinations for an n-variable problem) and for this method rather
than dropping the integrality constraint, we maintain the 0-1 constraint but
drop the linear inequality constraints and rule out large swaths of the solution
space time and again until we arrive at a solution.

To apply this method, the objective function x 7→ cTx takes on a special form
where either c ≤ 0 or c ≥ 0 holds (component-wise). Then, for example, in the
c ≤ 0 case, the max occurs when xi = 0 for every i and the min occurs when
xi = 1 for every i. Once we start developing bounds for the optimum value,
we use this feature to rule out large swaths of the solution space. Each branch
starts with a subset of variables that are fixed and the remaining are free to
be set to all 0s or all 1s (depending on the objective function and if it is a min
or a max problem). As we will see below, branches in this special branch and
bound situation are implicitly fully explored if one of three conditions arise
(here enumerated for c ≤ 0 and a max problem):

1. there are no feasible points in a branch;

2. setting all free variables to 0 results in a feasible point (this provides the
best possible objective function value in a branch); or

3. the objective value obtained by setting all free variables to 0 is no better
than a feasible solution previously generated.

4 BINARY ILP – IMPLICIT BRUTE FORCE 9

This too is nicely demonstrated with a small example, again from [1]:

maximize: f(x) = −8x1 − 2x2 − 4x3 − 7x4 − 5x5 = z (2)

subject to: − 3x1 − 3x2 + x3 + 2x4 + 3x5 ≤ −2

−5x1 − 3x2 − 2x3 − x4 + x5 ≤ −4

xi ∈ {0, 1} for i = 1, . . . , 5

Note that in this problem, if any variables are fixed at 0 or 1, then setting the
remaining free variables to 0 provides an upper bound for the best one can do
given the current fixed variables. This is the principle that will be used again
and again in this special branch and bound process.

We begin by setting xi = 0 for all i. While this x is not feasible, note that
f(x) = 0 and this is an upper bound for the maximal value. Since it is not
feasible, we begin our branching process starting (arbitrarily) with x1 obtaining
two branches, one for x1 = 1 and one for x1 = 0. As mentioned above, the
best possible objective function value in each branch are attained by setting
x2 = · · · = x5 = 0.

Branch 1 (x1 = 1): Here, x1 = 1 and x2 = · · · = x5 = 0 is a feasible point,
thus the best objective function value in this entire branch is z1 := −8 attained
at x = (1, 0, 0, 0, 0). We have effectively checked all 16 possibilities down this
branch by checking a single point. Additionally, since (1, 0, 0, 0, 0) is a feasible
point, we have that z1 is a lower bound for the optimum value, or z∗ ≥ −8.
This will allow us to rule out additional branches whose best values are no
better than z1.

Branch 2 (x1 = 0): Setting x2 = · · · = x5 = 0 results in an infeasible point
x = (0, 0, 0, 0, 0). However, in this branch we have

f(x) = 0 > −8 = z1

thus it is possible the objective function can be improved by branching further,
so we will branch on x2 (branches 3 and 4).

Branch 3 (x1 = 0, x2 = 1): Here too, x = (0, 1, 0, 0, 0) is infeasible but

f(x) = −2 > −8 = z1

thus it is possible the objective function can be improved by branching further,
so we will branch on x3 (branches 5 and 6).

4 BINARY ILP – IMPLICIT BRUTE FORCE 10

Branch 4 (x1 = 0, x2 = 0): In this branch, it is not possible to satisfy either
of the inequality constraints, thus we have essentially checked all remaining 8
points and they are all infeasible. This branch ends here.

Branch 5 (x1 = 0, x2 = 1, x3 = 1): Here, the point x = (0, 1, 1, 0, 0) is feasible
and f(x) = −6 > z1 so we have a new lower bound z∗ ≥ z5 := −6 and we
have implicitly explored the rest of this branch.

Branch 6 (x1 = 0, x2 = 1, x3 = 0): In this branch, x = (0, 1, 0, 0, 0) is not
feasible but

f(x) = −2 > −6 = z5

so we branch here on x4 (branches 7 and 8).

Branch 7 (x1 = 0, x2 = 1, x3 = 0, x4 = 1): Here, x = (0, 1, 0, 1, 0) is not
feasible and

f(x) = −9 < −6 = z5,

so there is no value attainable down this branch that exceeds the current lower
bound z5. No further exploration is required down this branch.

Branch 8 (x1 = 0, x2 = 1, x3 = 0, x4 = 0): Here, the point x = (0, 1, 0, 0, 0) is
not feasible, nor is the point corresponding to x5 = 1. This branch ends here.

The whole space has implicitly been explored and we have found the maximum
value

z∗ = z5 = −6 is attained at x∗ := (0, 1, 1, 0, 0)

by essentially only evaluating 5 out of 32 potential x values.

This example is visualized in Figure 1.

4 BINARY ILP – IMPLICIT BRUTE FORCE 11

Figure 1: Visualization of binary ILP implicit brute force

5 OFFICE ASSIGNMENT PROBLEM 12

5 Office Assignment Problem

5.1 Problem overview

Our desire is to place 80 staff members into 90 offices, 20 of which have win-
dows. As there are a limited number of offices with windows, an assignment
plan must ensure all 15 members of the OIT leadership team are assigned to
window offices and as many of the remaining 10 OIT managers as possible are
assigned to window offices (thus, 5). Additionally, it would be beneficial for
individuals who work together often and who come to campus for work to have
offices that are near each other. These boil down to the following optimality
criterion:

• minimize the distance between individuals who work together frequently

and the following constraints:

• staff members who come to campus for work have their own office with
floor to ceiling walls and a door that closes;

• all members of the OIT leadership team have offices with windows; and

• as many OIT managers as possible have offices with windows.

There are on the order of 10131 ways to assign 80 people into 90 offices (90!/10!),
therefore a full brute force approach consisting of formulating an objective
function, calculating the cost of all assignments, and choosing an assignment
plan from among the lowest cost feasible assignment plans is out of the ques-
tion. I also considered the possibility of formulating the problem as an integer
program where the variables xi represent people and their values are an office
number between 1 and 90. I can imagine ways to capture the unique office
assignment constraint but was unable to formulate the window constraint or
capture the proximity objective in this format.

This problem has the flavor of a well understood job assignment type problem
where we seek to populate an m×n matrix X corresponding to m jobs (I will
say offices) and n people where xij = 1 if person j is assigned to office i, and
there is a fixed cost matrix C where cij is the cost for assigning person j to
office i. This does not capture this problem either, for in this case, cij would
depend on where teammates were assigned and the distances between those
offices.

5 OFFICE ASSIGNMENT PROBLEM 13

This problem can be captured as a binary integer program – albeit with a
nonlinear cost function – which I will detail in the next subsection.

5.2 Office assignments as an integer program

We begin with the variables we will use to capture the optimization criterion
and the constraints.

• There are m offices and n people with m ≥ n.

• For k ∈ N, we use 1k to represent the vector in Rk consisting of k 1s,
and we use ek to represent the kth standard unit vector in Rn (ek ∈ Rn

and all entries of ek are 0 except for the kth entry which is 1).

• w ∈ Rm is a vector of 0s and 1s with wi = 0 if office i does not have a
window and wi = 1 if it does.

• D ∈ Rm×m is the nonnegative, symmetric office distance matrix
where the i, jth entry dij is the distance from office i to office j.

• ℓ, ℓ ∈ Rn are vectors of 0s and 1s with ℓj = 1, ℓj = 1 if the jth person is in
the OIT leadership team or is an OIT manager, respectively. Note that
all members of the OIT leadership team are managers but not conversely,
thus ℓj = 1 whenever ℓj = 1 and |ℓ| < |ℓ| (|ℓ| =

∑n
j=1 ℓj).

• A ∈ Rn×n is a symmetric affinity matrix where the i, jth entry aij =
eTi Aej is a weight for how important it is for people i and j to be near
each other in an assignment plan.

• X ∈ Rm×n is the binary assignment matrix where the i, jth entry xij

is 1 if person j is in office i and is 0 otherwise. There are constraints on
this matrix that must be captured in the problem constraints – namely,
the rows must sum to 1 or 0 (depending on whether an office is assigned
or not, and each office can be assigned only once) and the columns must
sum to 1 (each person is assigned to 1 and only 1 office).

• T := XTDX ∈ Rn×n is the nonnegative, symmetric staff distance
matrix, where the i, jth entry tij = eTi Tej is the distance from per-
son i to person j according to the assignment plan represented by an
assignment matrix X.

5 OFFICE ASSIGNMENT PROBLEM 14

• For a cost function, we simply add up the products of the distances
between individuals and their affinities:

f(X) :=
n∑

i=1

n∑
j=i+1

(
eTi Aej · eTi XTDXej

)
(3)

=
n∑

i=1

n∑
j=i+1

(
eTi Aej · eTi Tej

)
=

n∑
i=1

n∑
j=i+1

aijtij.

We are now ready to state the binary integer programming problem:

minimize: f(X)

subject to: X1n ≤ 1m (all staff have their own offices)

Xℓ ≤ w (associate directors and up have windows)

Xℓ ≥ w (as many managers as possible have windows)

XT1m = 1n (every person is assigned to an office)

xij ∈ {0, 1} for all i, j.

While the objective function f is nonlinear, it does meet the criteria that all
of the coefficients in the sum (3) are nonnegative, thus with a subset of the
xij variables fixed, setting the remaining free variables to 0 does result in a
minimal value for the objective function. Thus, there is hope that the special
binary ILP implicit brute force method detailed in Section 4 can be applied to
solve this problem (here for a min problem rather than for a max problem).

5.3 Refinements - pre-assignments and minimizing moves

It is possible to make some minor modifications to the problem that allow us to
make some pre-assignments that will appear in any solution. Also, as it would
be disruptive and costly to move everyone, we can also add a parametrized data
fidelity term that penalizes moves that allows us to tune how many moves there
are in an optimal solution. If we let X be a partial assignment matrix consist-
ing of pre-assignments and let X0 be an assignment matrix corresponding to
the current office assignments, solving this modified problem will preserve the

REFERENCES 15

pre-assignments and the parameter λ can be increased to reduce the number
of moves:

minimize: f(X +X) + λ∥X +X −X0∥2

subject to: (X +X)1n ≤ 1m (all staff have their own offices)

(X +X)ℓ ≤ w (associate directors and up have windows)

(X +X)ℓ ≥ w (as many managers as possible have windows)

(X +X)T1m = 1n (every person is assigned to an office)

xij ∈ {0, 1} for all i, j.

When λ = 0, X = 0 does still provide a minimal cost (but infeasible) solution
so the binary implicit brute force method would work. However, that is no
longer the case when λ > 0 and a different solution method would be needed.

References

[1] S.P. Bradley, A.E. Hax, A.C. Hax, and T.L. Magnanti. Applied Mathemat-
ical Programming. Addison-Wesley Publishing Company, 1977.

[2] C. Moore and S. Mertens. The Nature of Computation. OUP Oxford, 2011.

	Introduction
	Linear Programming (LP)
	Integer Linear Programming (ILP)
	Binary ILP – Implicit Brute Force
	Office Assignment Problem
	Problem overview
	Office assignments as an integer program
	Refinements - pre-assignments and minimizing moves

