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Abstract. Certain Friedrichs systems can be posed on Hilbert spaces normed with a

graph norm. Functions in such spaces arising from advective problems are found to

have traces with a weak continuity property at points where the inflow and outflow

boundaries meet. Motivated by this continuity property, an explicit space-time finite

element scheme of the tent pitching type, with spaces that conform to the continuity

property, is designed. Numerical results for a model one-dimensional wave propagation

problem are presented.

1. Introduction

A commonly used approach for constructing numerical methods to solve time-dependent

problems is based on the method of lines, where a discretization of all space derivatives is

followed by a discretization of time derivatives. The resulting methods are called implicit

or explicit depending on whether one can advance in time with or without solving a

spatially global problem. The study in this paper targets a different class of methods

referred to as locally implicit space-time finite element methods, which advance in time

using calculations that are local within space-time regions of simulation. Examples of

such methods are provided by “tent pitching” schemes, which mesh the space-time region

using tent-shaped subdomains and advance in time by varying amounts at different points

in space.

Ideas to advance a numerical solution in time by local operations in space time regions

were explored even as early as [20]. Recurrence relations on multiple slabs of rectan-

gular space-time elements were considered in [14], whose ideas were generalized to non-

rectangular space-time elements for beams and plates in [2]. These works are not so

related to the current work as some of the more modern references. Closest in ancestry

to the method we shall consider is found in [22] where it was called explicit space-time

elements. The space-time discontinuous Galerkin (SDG) method was announced almost

at the same time in [17] and continues to see active development [18, 21, 28]. Against

this backdrop, we highlight two papers that brought tent pitching ideas into the numeri-

cal analysis community [10, 19]. The questions we choose to ask in this work have been

heavily influenced by these two works. We should note that the name “tent pitching”
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Figure 1. Tent pitching (read column by column)

has been traditionally used for meshing schemes that advance a space-time front [6, 25],

but in this paper tent pitching refers to the discretization scheme together with all the

required meshing.

To give an overview of what is involved in a tent pitching scheme, consider the case of

a hyperbolic problem posed in one space dimension with time as the second dimension.

Given a spatial mesh, we pitch a tent by erecting a tent pole (vertically in time) at a vertex,

as in Figure 1. (Precise definitions of “tents” etc. appear later – see Definition 4.8.) In the

plots of Figure 1, the horizontal and vertical dimensions are space and time, respectively.

The height of the tent pole must be chosen small enough in relation to the hyperbolic

propagation speed, so that the domain of dependence of all points in the tent remains

within the tent’s footprint. We then use the given initial data to solve, by some numerical

scheme, the hyperbolic problem restricted to the tent. Proceeding to the next vertex

where the second tent is pitched in Figure 1, we find that the initial data combined with

the solution in the previous tent, provides inflow data to solve the hyperbolic problem

there. Solution on the newer tents proceeds similarly. This shows the sense in which tent

pitching schemes are locally implicit: they only involve solving local problems tent by

tent.

Having explained tent pitching schemes in general, we should now emphasize that the

main result of this paper is not a new tent pitching scheme (although one is included to

show relevance). Rather, this paper is mainly concerned with answering a few theoretical

questions motivated by tent pitching schemes. Indeed, our main result is a characterization
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of traces of a Friedrichs space on a tent-shaped domain and builds on the recent advances

in Friedrichs theory [1, 7, 9, 11]. To explain the Friedrichs connection, we should first note

that all the previous tent pitching schemes use non-conforming space-time discontinuous

Galerkin discretizations. Design of tent pitching methods within a conforming setting,

while holding the promise of locally adaptive time marching with fewer unknowns, pose

interesting questions: What is the weak formulation that the tent pitching scheme should

conform to? What are the spaces? What are the finite element subspaces one should

use? These questions form the motivation for this study and while attempting to answer

them, Friedrichs spaces and their traces appear naturally, as we shall see. While we are

far from answering the above questions for a general Friedrichs system, our modest aim in

this paper is to provide some answers for a few simple problems in one space dimension.

Accordingly, there are two parts to this paper. The first and the main part of the

paper consists of Sections 2–4. While results of Sections 2 and 3 are applicable to any

abstract Friedrichs system, Section 4 focusses mainly on an advection example and its

implications for hyperbolic systems. This leads to observations on the traces of certain

Friedrichs spaces. The theory clarifies a weak continuity property of the traces at the

points where inflow and outflow part of boundaries (defined precisely later) meet. It is

relevant in the tent pitching context because in the tent-shaped domains used in tent

pitching schemes, inflow and outflow boundaries always meet. The second part of the

paper, consisting of Sections 5 and 6, designs an explicit space-time finite element scheme

of the tent pitching type using the spaces and weak formulations motivated by the first

part. The method we construct is a low order method that works on unstructured grids.

On uniform grids, comparison with a standard low order finite difference method does

not reveal any striking advantages for the new method, as we will see in Section 7. Yet

we hope that this study will pave the way to a better understanding of conforming tent

pitching discretizations, the spaces involved, and eventually lead to high order methods

on unstructured grids for multidimensional problems. We begin with some preliminaries

on Friedrichs systems in the next section.

2. Friedrichs systems

Our approach is influenced by the modern take on the classical work of Friedrichs [11],

as presented in [7, 8, 9]. Let L be a Hilbert space over R with inner product (·, ·)L and

norm ‖ · ‖L, and let D be a dense subspace of L. Suppose A and Ã are linear maps from

D into L satisfying

(Aφ, ψ)L = (φ, Ãψ)L, ∀φ, ψ ∈ D,(2.1a)

∃ c > 0 : ‖(A+ Ã)φ‖L ≤ c‖φ‖L, ∀φ ∈ D.(2.1b)

Let W0 be the completion of D in the norm ‖φ‖W = (‖φ‖2
L + ‖Aφ‖2

L)
1/2

. Then, with L

as a pivot Hilbert space, identified to be the same as its dual L′, we have D ⊆ W0 ⊆ L ≡
L′ ⊆ W ′

0. It is now standard to extend A and Ã as bounded linear operators from W0 into

L, i.e., A, Ã ∈ L(W0, L). Moreover, it is also well-known that Assumption (2.1) implies
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that they can be further extended to A, Ã ∈ L(L,W ′
0) via

(2.2) 〈A`,w0〉W0 = (`, Ãw0)L, 〈Ã`, w0〉W0 = (`, Aw0)L, ∀` ∈ L, w0 ∈ W0.

Here and throughout, we use 〈·, ·〉X to denote the duality pairing in X. Next, defining

W = {v ∈ L : Av ∈ L}, we observe that W0 ⊆ W and that W normed with ‖ · ‖W defined

above is a Hilbert space. Hereon, the norm on any normed linear space X will be denoted

by ‖ · ‖X .

An important ingredient in Friedrichs theory is the “boundary” operator D in L(W,W ′)

defined by

(2.3) 〈Du, v〉W = (Au, v)L − (u, Ãv)L ∀u, v ∈ W.

This is an abstraction of an integration by parts identity. For any operator B ∈ L(W,W ′),

we defineB∗ ∈ L(W,W ′) by 〈B∗u, v〉W = 〈Bv, u〉W for all u, v ∈ W . For subspaces S ⊆ W

and R ⊆ W ′, define the right and left annihilators by

S⊥ = {w′ ∈ W ′ : 〈w′, s〉W = 0 for all s ∈ S},
⊥
R = {w ∈ W : 〈s′, w〉W = 0 for all s′ ∈ R}.

These results are well known [9]:

Proposition 2.1. The following are consequences of Assumption (2.1):

(a) D∗ = D.

(b) The norm ‖w‖W̃ = (‖w‖2
L + ‖Ãw‖2

L)1/2 is equivalent to ‖w‖W for all w ∈ W .

(c) kerD = W0.

(d) ranD = W⊥
0 .

We will henceforth tacitly assume (2.1) throughout this section. In the traditional

Friedrichs theory, another “boundary operator” M , also in L(W,W ′), plays a leading role.

This is a generalization of certain matrices used by Friedrichs [11] to impose boundary

conditions. In the generalization of Friedrichs theory to the Hilbert space setting, as

described in [9], the operator M is assumed to satisfy

〈Mw,w〉W ≥ 0, ∀w ∈ W,(2.4a)

W = ker(D −M) + ker(D +M).(2.4b)

The theory in [9] addresses the unique solvability of two problems: The first is to find

a u ∈ W, given any f ∈ L, satisfying Au = f (typically a partial differential equation),

and (D −M)u = 0 (typically a boundary condition). The second problem is the “dual”

problem of solving Ãu = f satisfying (D + M∗)u = 0. These two problems are uniquely

solvable if and only if the following two conditions hold, respectively:

A : ker(D −M)→ L is a bijection, and(2.5a)

Ã : ker(D +M∗)→ L is a bijection.(2.5b)

Some sufficient conditions for (2.5) to hold can be found in [7, 9].
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In [9], an intrinsic approach without the operator M was discovered. It uses the double

cones

C+ = {w ∈ W : 〈Dw,w〉W ≥ 0},
C− = {w ∈ W : 〈Dw,w〉W ≤ 0}.

The intrinsic approach replaces (2.4) by the following assumption on two subspaces of W

denoted by V and V ∗:

V ⊆ C+, V ∗ ⊆ C−,(2.6a)

V = ⊥D(V ∗), V ∗ = ⊥D(V ) .(2.6b)

Clearly, (2.6b) implies that both V and V ∗ are closed, and moreover,

(2.7) kerD = W0 ⊆ V ∩ V ∗.

Note that the reflexivity of Hilbert spaces and (2.6b) imply that

(V ∗)⊥ = ( ⊥D(V ))
⊥

= D(V ),(2.8)

V ⊥ = ( ⊥D(V ∗))
⊥

= D(V ∗).

The theory in [9] provides sufficient conditions for unique solvability of two problems:

The first is to find a u ∈ W, given any f ∈ L, satisfying

Au = f (typically a partial differential equation),(2.9a)

u ∈ V (typically a boundary condition).(2.9b)

The second is the “dual” problem of solving for a u ∈ V ∗ satisfying Ãu = f . These two

problems are uniquely solvable if and only if

A : V → L is a bijection, and(2.10a)

Ã : V ∗ → L is a bijection.(2.10b)

A coercivity condition on A+ Ã is sufficient for (2.10) to hold, as proved in [9]. However,

for operators like the transient wave operator considered later, A+ Ã is zero and cannot

be coercive.

Hence, our first point of departure from [9] is the introduction of another simple suf-

ficient condition for unique solvability. It requires that the operator A be bounded from

below, a condition which is often easy to verify for time-dependent problems (see e.g. [26]).

Although the next theorem requires both A and Ã to be bounded below, one of these

conditions can be easily removed in most applications, as detailed in Remark 2.3.

Theorem 2.2. Suppose (2.1) and (2.6) hold. If there is a constant c > 0 such that

A : V → L satisfies

‖Au‖L ≥ c‖u‖W ∀u ∈ V, and(2.11a)

‖Ãu‖L ≥ c‖u‖W ∀u ∈ V ∗,(2.11b)

then (2.10) holds.
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Proof. Inequality (2.11a) implies that A : V → L is injective and has closed range. Hence

A is a bijection if its adjoint is injective, i.e., if

(2.12) {` ∈ L : (Av, `)L = 0 for all v ∈ V } = {0}.

To prove (2.12), consider an ` satisfying (Av, `)L = 0 for all v ∈ V . Then, for all

w0 ∈ W0 ⊆ V , we have by (2.2) that 〈Ã`, w0〉W0 = 0, from which it follows, by the density

of W0 in L, that Ã` = 0 and ` ∈ W. Hence we may apply (2.3), which yields

(2.13) 〈Dv, `〉W = (Av, `)L − (v, Ã`)L = 0, ∀v ∈ V.

Thus ` ∈ ⊥D(V ) = V ∗, and so (2.11b) implies ` = 0. This proves (2.12).

That Ã is a bijection is proved similarly. �

Remark 2.3. Note that under the assumptions of Theorem 2.2, if (2.11a) holds and Ã is

injective, then (2.11b) holds with the same constant c. This is most easily seen by viewing

A as a closed (possibly unbounded) operator on L with dom(A) = V . From (2.7), we

know that D ⊂ W0 ⊂ V ⊂ L. Since D is dense in L, the domain of A is dense in L.

Hence the adjoint A′ is a well defined closed operator on L satisfying (Av, s)L = (v,A′s)L
for all v ∈ dom(A) and s ∈ dom(A′). By definition, dom(A′) consists of all s ∈ L for

which there exists an ` ∈ L with the property (s, Av)L = (`, v)L for all v ∈ dom(A) = V .

In particular, whenever s ∈ dom(A′), by (2.2), (s, Aw0)L = 〈Ãs, w0〉W0 = (`, w0)L for

all w0 ∈ W0 ⊂ V , so Ãs = ` and consequently s ∈ W . Thus, whenever s ∈ dom(A′),

both (s, Av)L and (Ãs, v)L coincide with (`, v)L for all v ∈ V , which by (2.3), implies

that 〈Dv, s〉W = 0, which by (2.6), implies that s ∈ V ∗ = ⊥D(V ), i.e., dom(A′) ⊆ V ∗.

Combining with the easily provable reverse inclusion, dom(A′) = V ∗. Next, we claim that

A′ is the same as Ã: Indeed, (Av, s)L− (v, A′s)L = 〈Dv, s〉W = 0 for all v ∈ dom(A) = V

and s ∈ dom(A′) = V ∗ = ⊥D(V ), thus proving the claim. Now, since (2.11a) implies

that the ran(A) is closed, by the Closed Range Theorem for closed operators [15], we

conclude that ran(A′) = ran(Ã) is closed. Hence if Ã is also injective, then by standard

arguments, (2.11b) follows.

To summarize, we have discussed two known approaches to abstract Friedrichs systems

and introduced a new sufficient condition for unique solvability of Friedrichs problems.

The first approach via (2.4) is closer to the classical theory (the M -approach) while the

second is the approach via (2.6) (the V -approach). Whether these two approaches are

equivalent is a natural question. It was shown in [9] that if an operator M exists that

satisfies (2.4), then V = ker(D−M) and V ∗ = ker(D+M∗) satisfies (2.6). The converse

remained unknown until it was proven in [1]. In the remainder of this paper, we will use

only the V -approach.
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3. A weak formulation with boundary fluxes

Consider the following abstract boundary value problem: Given f ∈ L and g ∈ W , find

u ∈ W satisfying

Au = f,(3.1a)

u− g ∈ V.(3.1b)

Space-time Friedrichs systems with non-homogeneous conditions on space-time bound-

aries (which includes initial conditions) can be abstracted into this form.

To derive a weak formulation, we multiply (3.1a) by a test function v ∈ W and use (2.3),

to obtain (u, Ãv)L + 〈Du, v〉W = (f, v)L. This implies

(3.2) (u, Ãv)L + 〈D(u− g), v〉W = F (v),

where

(3.3) F (v) = (f, v)L − 〈Dg, v〉W .

Now, we let D(u − g) in (3.2) be an independent “flux” variable q. This leads us to

formulate the following variational problem:

(3.4)
Find u ∈ L and q ∈ (V ∗)⊥ such that

(u, Ãv)L + 〈q, v〉W = F (v), ∀v ∈ W.

The bilinear form on the left hand side will be denoted by b((u, q), v). Our approach to

the construction and analysis of this weak formulation is close (but not identical) to the

approach in [3].

A similar derivation for the adjoint problem of finding a ũ ∈ W , given f ∈ L and

g ∈ W , such that

Ãũ = f,(3.5a)

ũ− g ∈ V ∗,(3.5b)

suggests the following dual weak formulation:

(3.6)
Find ũ ∈ L and q̃ ∈ V ⊥ such that

(ũ, Av)L − 〈q̃, v〉W = F̃ (v), ∀v ∈ W,

where

(3.7) F̃ (v) = (f, v)L + 〈Dg, v〉W .

The bilinear form on the left hand side will now be denoted by b̃((ũ, q̃), v).

In applications, the 〈·, ·〉W terms can typically be identified as boundary terms, so q

and q̃ can be interpreted as boundary fluxes. Finally, note that by virtue of (2.8), we can

equivalently use D(V ) and D(V ∗) as the flux spaces in (3.4) and (3.6), respectively.
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3.1. Wellposedness. Next, we prove that the new weak formulation is well posed and

is equivalent to the classical formulation (3.1) in the following sense.

Theorem 3.1. Suppose (2.6) and (2.10) hold. Then the following statements hold:

(a) Given any F ∈ W ′, there is a unique (u, q) ∈ L× (V ∗)⊥ that solves (3.4). Moreover,

if F is as in (3.3) for some given f ∈ L and g ∈ W , then the solution (u, q) of (3.4)

satisfies

(3.8) Au = f, u− g ∈ V, q = D(u− g).

(b) Given any F̃ ∈ W ′, there is a unique (ũ, q̃) ∈ L× V ⊥ that solves (3.6). Moreover, if

F̃ is as in (3.7) for some given f ∈ L and g ∈ W , then the solution (ũ, q̃) of (3.6)

satisfies

Ãũ = f, ũ− g ∈ V ∗, q̃ = D(ũ− g).

To prove this theorem, we will verify a uniqueness and an inf-sup condition in the

following lemmas.

Lemma 3.2 (Uniqueness). Suppose (2.6) and (2.10a) hold. Then, whenever u ∈ L and

q ∈ (V ∗)⊥ satisfies b((u, q), v) = 0 for all v ∈ W , we have (u, q) = 0.

Proof. Suppose

(3.9) (u, Ãv)L + 〈q, v〉W = 0 ∀v ∈ W.

Since q ∈ (V ∗)⊥, we have 〈q, v〉W = 0 for all v ∈ W0 due to (2.7). Hence, choosing v = v0 ∈
W0 in (3.9), we conclude that (u, Ãv0)L = 0. Hence, using (2.2), we have 〈Au, v0〉W0 = 0

for all v0 ∈ W0, which implies, by density, that Au = 0 in L. In particular, this shows that

u is in W . We may therefore apply (2.3) to (3.9) to get (Au, v)L−〈Du, v〉W +〈q, v〉W = 0,

for all v ∈ W. Since Au = 0,

〈Dv, u〉W = 〈q, v〉W ∀v ∈ W.

Since q ∈ (V ∗)⊥, the right hand side vanishes for all v ∈ V ∗, so u ∈ ⊥D(V ∗). Hence

by assumption (2.6), u ∈ V . By (2.10a), u = 0. Using this in (3.9), it also follows that

q = 0. �

Lemma 3.3 (Inf-sup condition). Suppose (2.6) and (2.10a) hold. Then, there is a C > 0

such that for all v ∈ W ,

C‖v‖W ≤ sup
(u,q)∈L×(V ∗)⊥

|b((u, q), v)|
‖(u, q)‖L×W ′

, ∀v ∈ W.

Proof. By (2.10a), there is a c > 0 such that given any v ∈ W , there is a unique w ∈ W
satisfying

Aw = v,(3.10a)

w ∈ V,(3.10b)

‖w‖W ≤ c‖v‖L.(3.10c)
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Then, since w ∈ V = ⊥D(V ∗), we have 〈Dv∗, w〉W = 0 for any v∗ ∈ V ∗. Therefore,

q = Dw is in (V ∗)⊥. Moreover,

‖v‖2
L + ‖Ãv‖2

L = (Aw, v)L + (Ãv, Ãv)L by (3.10a)

= (w + Ãv, Ãv)L + 〈Dw, v〉W by (2.3)

Note that the right hand side equals b((w + Ãv, q), v) as q = Dw. Continuing,

‖v‖2
L + ‖Ãv‖2

L =
b((w + Ãv, q), v)

‖(w + Ãv, q)‖L×W ′
‖(w + Ãv, q)‖L×W ′

≤

(
sup

(z,r)∈L×(V ∗)⊥

|b((z, r), v)|
‖(z, r)‖L×W ′

)
‖(w + Ãv, q)‖L×W ′ .

By Proposition 2.1(b) and (3.10c), ‖w + Ãv‖L ≤ ‖w‖L + ‖v‖W̃ ≤ C‖v‖W for a C > 0

depending on c. Moreover, if d denotes the norm of D, then ‖q‖W ′ ≤ d‖w‖W ≤ cd‖v‖W .

Using these estimates to bound ‖(w + Ãv, q)‖L×W ′ , the lemma is proved. �

Proof of Theorem 3.1. Lemmas 3.2 and 3.3 verify the conditions of the Babuška-Brezzi

theory, from which the stated unique solvability follows.

Now suppose F is expressed in terms of f and g as in (3.3). Then choosing v = v0 ∈ W0

within the weak formulation,

(u, Ãv0)L + 〈q, v0〉W = (f, v0)L − 〈Dg, v0〉W = (f, v0)L

we obtain (u, Ãv0)L = 〈Au, v0〉W = (f, v0)L. This proves, by density, that Au = f in L,

and consequently u ∈ W . Then, returning to (3.4) and using (2.3) together with Au = f ,

we obtain 〈q, v〉W = 〈D(u− g), v〉W for all v ∈ W , i.e., q = D(u − g). Finally to show

that u− g ∈ V = ⊥D(V ∗), consider an arbitrary v∗ ∈ V ∗. Then note that q ∈ (V ∗)⊥, so

0 = 〈q, v∗〉W = 〈D(u− g), v∗〉W = 〈Dv∗, u− g〉W .

This proves (3.8). The remaining statements are proved similarly using (2.10b) in place

of (2.10a). �

4. Examples

The assumptions on which the previous theory is based can be verified for several

examples. We begin with the simplest example in one space dimension in § 4.1 where

all the ideas are transparent. We then generalize to the example of multidimensional

advection in § 4.2 and establish a new trace theorem for the associated graph space.

The final example in § 4.3 considers a general symmetric hyperbolic system in one space

dimension and leads into the discussion on the wave equation in the subsequent section.

4.1. An example with no space derivatives. We begin with a simple example in one

space dimension that illustrates the essential points. Let K denote the open triangle in

space-time (x, t) ∈ R× R, with vertices at (x, t) = (0, 0), (1, 0), and (1, 1). Set

(4.1) L = L2(K), D = D(K), Au =
∂u

∂t
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(where D(K) denotes the set of compactly supported infinitely differentiable functions

on K). Obviously, Ã = −∂t, so (2.1) is satisfied. We split the boundary of K into an

inflow, outflow, and a characteristic part:

∂iK = {(x, t) ∈ ∂K : t = 0}, ∂oK = {(x, t) ∈ ∂K : x = t},
∂cK = {(x, t) ∈ ∂K : x = 1}.

Because dist(∂iK, ∂oK) = 0, although the operator D is defined on all W , we must

be careful in speaking of traces of functions in W on these boundary parts. Indeed,

w(x, t) = x−1/2 is in W , but its restriction to ∂iK is not in L2(∂iK).

To study this further, define the maps

τi : v(x, t) 7→ v(x, 0) and τo : v(x, t) 7→ v(x, x),

whose application to any function gives its traces on ∂iK and ∂oK, respectively. These

maps are obviously well defined for smooth functions. Below we prove that they extend

to W . Let L2
w(S) denote the set of all measurable functions s on S with finite

∫
S
ws2.

Lemma 4.1. For the W in this example, the following maps are continuous:

τi : W → L2
x(0, 1), τo : W → L2

x(0, 1), and τi − τo : W → L2
1/x(0, 1),

i.e., there is a constant C0 > 0 such that

(4.2)

∫ 1

0

x|τiw|2 dx+

∫ 1

0

x|τow|2 dx+

∫ 1

0

|τiw − τow|2

x
dx ≤ C0‖w‖2

W

for all w ∈ W .

Proof. A general density result in [13, Theorem 4] implies that C1(K̄) is dense in W , so

it suffices to prove (4.2) for all w ∈ C1(K̄). Beginning with the fundamental theorem of

calculus,

τiw(x) = w(x, r)−
∫ r

0

∂tw(x, s) ds,

squaring, integrating over r, and overestimating,

x|τiw(x)|2 =

∫ x

0

|τiw(x)|2 dr ≤ 2

∫ x

0

|w(x, r)|2 dr + 2

∫ x

0

r

∫ r

0

|∂tw(x, s)|2 ds dr.

Now integrating over x and overestimating again,

1

2

∫ 1

0

x|τiw(x)|2 dx ≤
∫ 1

0

∫ x

0

|w(x, r)|2 dr dx+

∫ 1

0

∫ 1

0

1

∫ x

0

|∂tw(x, s)|2 ds dr dx

= ‖w‖2
W .

A similar argument shows that the same inequality holds with τi replaced by τo.

To complete the proof, we therefore only need to show that

(4.3)

∫ 1

0

|τiw − τow|2

x
dx ≤ ‖w‖2

W .
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But this follows from

|τiw(x)− τow(x)|2 =

∣∣∣∣∫ x

0

∂tw(x, s) ds

∣∣∣∣2 ≤ x

∫ x

0

|∂tw(x, s)|2 ds,

dividing through by x and integrating over x. �

Lemma 4.2. Assumption (2.6) holds for this example after setting

V = {w ∈ W : τiw = 0},(4.4a)

V ∗ = {w ∈ W : τow = 0}.(4.4b)

Proof. For v, w ∈ C1(K̄), the definition of D implies that

〈Dw, v〉W =

∫ 1

0

∫ x

0

(∂tw)v + w(∂tv) dt dx

=

∫ 1

0

(τow)(τov) dx−
∫ 1

0

(τiw)(τiv) dx.(4.5)

In order to apply the density argument, we rewrite this expression:

〈Dw, v〉W =

∫ 1

0

(x1/2τow)

(
τov − τiv

x1/2

)
dx+

∫ 1

0

(
τow − τiw

x1/2

)
(x1/2τiv) dx.(4.6)

Now, one can immediately verify using Cauchy-Schwarz inequality and Lemma 4.1, that

both the integrals extend continuously to W . Hence (4.6) holds for all v and w in W .

Similarly, the expression

〈Dw, v〉W =

∫ 1

0

(
τow − τiw

x1/2

)
(x1/2τov) dx+

∫ 1

0

(x1/2τiw)

(
τov − τiv

x1/2

)
dx,(4.7)

also holds for all v and w in W .

Let us verify (2.6a). For any v ∈ V , since τiv = 0, we have from (4.7) that

〈Dv, v〉W =

∫ 1

0

(
τov − 0

x1/2

)
(x1/2τov) dx ≥ 0.

Hence V ⊆ C+. Similarly, V ∗ ⊆ C−.

To prove (2.6b), let v ∈ V . Then using (4.6) and putting τiv = 0, we have,

〈Dv∗, v〉W =

∫ 1

0

(x1/2τov
∗)

(
τov − 0

x1/2

)
dx

which vanishes for any v∗ ∈ V ∗. Hence V ⊆ ⊥D(V ∗). For the reverse inclusion, let

v⊥ ∈ ⊥D(V ∗). Then, since τov
∗ = 0 for all v∗ ∈ V ∗, we have from (4.6) that

〈Dv∗, v⊥〉W =

∫ 1

0

(
τov
∗ − τiv

∗

x1/2

)
(x1/2τiv

⊥) dx = −
∫ 1

0

(τiv
∗)(τiv

⊥) dx.

Since all functions in D(0, 1) can be written as τiv
∗ for some v∗ ∈ V ∗, this implies that

τiv
⊥ = 0 a.e. in (0, 1), so v⊥ ∈ V . Thus, V = ⊥D(V ∗). A similar argument shows that

V ∗ = ⊥D(V ) . �
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Remark 4.3. Note that although the two integrals in (4.5) need not generally exist for all

w, v ∈ W , those in the identities (4.6) and (4.7) exist for all w, v ∈ W .

Remark 4.4. It is proved in [9, Lemma 4.4] that if V + V ∗ is closed, then an M that

satisfies (2.4) can be constructed. They then write, “it is not yet clear to us whether

properties (2.6a)–(2.6b) actually imply that V + V ∗ is closed in W .” This issue was

settled in [1] where they showed by a counterexample that (2.6a)–(2.6b) does not in

general imply V +V ∗ is closed. Our study above provides another simpler counterexample:

Specifically, for n ≥ 2, let χn denote the indicator function of the interval [1/n, 1]. Then

vn(x, t) = χn(x)t/x is in V and v∗n = χn(x)(x − t)/x is in V ∗. Clearly, as n → ∞, the

sequence vn + v∗n = χn ∈ V + V ∗ converges in W . But its limit, the function 1, is not in

V +V ∗. Indeed, if 1 were to equal v+v∗ for some v ∈ V and v∗ ∈ V ∗, then by Lemma 4.1,∫ 1

0

1

x
dx =

∫ 1

0

|τiv + τov
∗|2

x
dx ≤ 2

∫ 1

0

|τiv|2

x
+
|τov

∗|2

x
dx ≤ 2C

(
‖v‖2

W + ‖v∗‖2
W

)
which is impossible.

Lemma 4.5. The inequalities of (2.11) hold for this example.

Proof. Given any v ∈ V , by the density of C1(K̄) in W , there is a sequence wn ∈ C1(K̄)

converging to v in W . Let vn(x, t) = wn(x, t) − (τiwn)(x). Clearly vn ∈ V ∩ C1(K̄).

Moreover,

‖vn − v‖W ≤ ‖wn − v‖W + ‖τiwn‖L2(K)

= ‖wn − v‖W +

(∫ 1

0

∫ x

0

|wn(x, 0)|2 dt dx
)1/2

= ‖wn − v‖W + ‖τiwn‖L2
x(0,1)

= ‖wn − v‖W + ‖τi(wn − v)‖L2
x(0,1).

This, together with Lemma 4.1, and the convergence of wn to v in W , imply the conver-

gence of vn to v in W . Thus V ∩C1(K̄) is dense in V . Similarly, V ∗ ∩C1(K̄) is dense in

V ∗. Hence, it suffices to prove the inequalities of (2.11) for the dense subsets.

For any C1(K̄) function v in V , we have

v(x, t)2 =

∫ t

0

∂

∂s

(
v(x, s)2

)
ds =

∫ t

0

2v(x, s)
∂

∂s
v(x, s) ds,

which implies∫ 1

0

∫ x

0

v(x, t)2 dt dx ≤ 2

∫ 1

0

∫ x

0

(∫ t

0

v(x, s)2 ds

)1/2
(∫ t

0

∣∣∣∣ ∂∂sv(x, s)

∣∣∣∣2 ds
)1/2

dt dx,

≤ 2

∫ 1

0

(∫ x

0

∫ t

0

v(x, s)2 ds dt

)1/2
(∫ x

0

∫ t

0

∣∣∣∣ ∂∂sv(x, s)

∣∣∣∣2 ds dt
)1/2

dx.

Since x ≤ 1, this shows that ‖v‖L ≤ 2‖Av‖L for all v ∈ V ∩ C1(K̄) and hence for all

v ∈ V . The proof of (2.11b) is similar. �
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Theorem 4.6. Formulations (3.4) and (3.6) are well posed for this example.

Proof. By Lemmas 4.2 and 4.5, assumptions (2.6) and (2.11) hold, so Theorem 2.2 implies

that (2.10) holds. Therefore, Theorem 3.1 gives the required result. �

4.2. Unidirectional advection. The above calculations have a straightforward gener-

alization to multidimensional tent-shaped domains. We say that K0 is a vertex patch

around a point p if it is an open polyhedron in Rd (d ≥ 1) that can be partitioned into a

finite number of d-simplices with a common vertex p ∈ Rd.

We first consider domains K built on (spatial) vertex patches of the form

(4.8) K = {(x, t) : x ∈ K0, gi(x) < t < go(x)}

(and later, after Definition 4.8 below, specialize to tent-shaped domains). Above, go(x)

and gi(x) are Lipschitz functions on K0 such that K is a nonempty open set in Rd+1. Then

the unit outward normal vector n = (nx, nt) exists a.e. on ∂K. Continuing to consider

the same operator as in (4.1), namely A = ∂t, but on the new domain K, the following

defines inflow, outflow, and characteristic parts of the boundary:

∂iK = {(x, t) ∈ ∂K : nt < 0}, ∂oK = {(x, t) ∈ ∂K : nt > 0},(4.9a)

∂cK = {(x, t) ∈ ∂K : nt = 0}.(4.9b)

We can immediately prove the following by extending the arguments of §4.1.

Theorem 4.7. Let K be as in (4.8) and let A = ∂t. Then the inflow and outflow trace

maps, τi : v(x, t) 7→ v(x, gi(x)) and τo : v(x, t) 7→ v(x, go(x)), extend to continuous linear

operators

τi : W → L2
go−gi(K0), τo : W → L2

go−gi(K0), and τi − τo : W → L2
1/(go−gi)(K0).

As in (4.4), set V = ker(τi) and V ∗ = ker(τo). Then, the assumptions of (2.6) and the

inequalities of (2.11) hold. Hence the formulations (3.4) and (3.6) are well-posed.

Identities similar to (4.6) and (4.7) prove the continuity properties of the trace maps

stated above. To prove the stated wellposedness, we need to verify the assumptions

in (2.6) and (2.11), which can be done by simple generalizations of the arguments in the

proofs of Lemmas 4.2 and 4.5. Next, we proceed to consider a convection operator on

tent-shaped domains.

Definition 4.8. Suppose K and K0 are as in (4.8). If, in addition, K can be divided into

finitely many (d + 1)-simplices with a common edge {(p, t) : gi(p) < t < go(p)}, then we

call K a space-time tent. We refer to the common edge as its tent pole. Clearly, in this

case, go and gi are linear on each simplex of K0. We split the tent’s boundary into the

these parts:

∂iK = {(x, gi(x)) : x ∈ K0}, ∂oK = {(x, go(x)) : x ∈ K0},(4.10a)

∂bK = ∂K \ (∂iK ∪ ∂oK).(4.10b)
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We refer to the two parts in (4.10a) as the tent’s inflow and outflow boundaries, respec-

tively. (Using such terms without regard to an underlying flow operator is an abuse of

terminology that we overlook for expediency.)

The equation modeling advection along a fixed direction α ≡ (αi) ∈ Rd is of the form

Au = f with

(4.11) Au =
∂u

∂t
+

d∑
i=1

αi
∂u

∂xi
.

Setting L = L2(K), D = D(K), and noting that Ã = −A, we can put this into the

Friedrichs framework since the prerequisite (2.1) holds.

Let n ∈ Rd+1 denote the outward unit normal on ∂K. We often write it separating its

space and time components as n = (nx, nt) with nx ∈ Rd. We now assume that the tent

boundaries are such that

∂iK ⊆ {(x, t) ∈ ∂K : n at (x, t) satisfies nt + α · nx < 0}(4.12a)

∂oK ⊆ {(x, t) ∈ ∂K : n at (x, t) satisfies nt + α · nx > 0}.(4.12b)

The vertical part of the boundary, namely ∂bK, is further split into three parts ∂+
b K, ∂

−
b K,

and ∂0
bK where nt+α·nx = α·nx is positive, negative, and zero, respectively (see Figure 2).

Let Γi and Γo denote the closures of ∂iK ∪ ∂−b K and ∂oK ∪ ∂+
b K, respectively, and let

Γio = Γi ∩ Γo.

Define δ(z) = dist(z, Γio). We will use the restriction of this function to Γi and Γo as weight

functions while describing the norm continuity of traces below. For smooth functions w

on K, let

τiw = w|Γi
, τow = w|Γo .

Theorem 4.9. Let K be a tent and A be given by (4.11). Suppose (4.12) holds. Then

the above-defined maps τi and τo extend to continuous linear operators

τi : W → L2
δ(Γi) and τo : W → L2

δ(Γo).

Hence V = ker(τi) and V ∗ = ker(τo) are closed subspaces of W . When restricted to these

subspaces, the traces have an additional continuity property, namely

(4.13) τi : V ∗ → L2
1/δ(Γi) and τo : V → L2

1/δ(Γo)

are continuous. Finally, with this V and V ∗, the weak formulations (3.4) and (3.6) are

well-posed.

Proof. The idea is to use a change of variable that brings the operator to the previously

analyzed operator ∂t. The new variables are x̂ = x− αt and t̂ = t, i.e.,[
x

t

]
= H

[
x̂

t̂

]
where H =

[
I α

0 1

]
.
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Let K̂ = H−1K. (Note that K̂ is not a tent, in general.) Pulling back functions w on K

to functions ŵ = w ◦H on K̂, the chain rule gives

(4.14) Âŵ = (Aw) ◦H, where Â =
∂

∂t̂
.

Thus w ∈ W if and only if ŵ ∈ Ŵ = {ẑ ∈ L2(K̂) : Âẑ ∈ L2(K̂)}.
Next, let n̂ = (n̂x̂, n̂t̂) denote the unit outward normal on ∂K̂. Then n̂ = (n̂x̂, n̂t̂) =

H tn/‖H tn‖2. Defining ∂iK̂, ∂oK̂, and ∂cK̂ as in (4.9), we claim that

∂iK̂ ≡ {(x̂, t̂) ∈ ∂K̂ : n̂t̂ < 0} = H−1(∂iK ∪ ∂−b K)(4.15a)

∂oK̂ ≡ {(x̂, t̂) ∈ ∂K̂ : n̂t̂ > 0} = H−1(∂oK ∪ ∂+
b K),(4.15b)

∂cK̂ ≡ {(x̂, t̂) ∈ ∂K̂ : n̂t̂ = 0} = H−1(∂0
bK).(4.15c)

For example, to sketch a proof of the first identity, note that n at (x, gi(x)) is in the

direction of (∇xgi,−1) where ∇x denotes the gradient with respect to x. Hence, because

of (4.12), we have α ·∇xgi− 1 < 0 on ∂iK̂. Since the mapped normal n̂ is in the direction

of

H tn =

[
I 0

αt 1

] [
∇xgi

−1

]
=

[
∇xgi

α · ∇xgi − 1

]
we conclude that n̂t̂ < 0. Applying similar arguments on the remaining parts of the

boundary, the claim (4.15) is proved.

Let K̂0 be the projection of K̂ on the t̂ = 0 plane. There are (continuous piecewise

linear) functions ĝo and ĝi such that ∂oK̂ and ∂iK̂ are graphs of ĝo and ĝi, respectively,

over K̂0. On K̂, since Â = ∂t̂, we apply Theorem 4.7 to conclude that τ̂iŵ = ŵ|∂iK̂
and τ̂oŵ = ŵ|∂oK̂ extend to continous linear operators τ̂i : Ŵ → L2

ĝo−ĝi(K̂0) and τ̂o :

Ŵ → L2
ĝo−ĝi(K̂0). Hence V̂ = ker(τ̂i) and V̂ ∗ = ker(τ̂o) are closed subspace of Ŵ . By

the additional continuity of τ̂i − τ̂o : Ŵ → L2
1/(ĝo−ĝi)(K̂0) (also given by Theorem 4.7), we

conclude that

τ̂i : V̂ ∗ → L2
1/(ĝo−ĝi)(K̂0), τ̂o : V̂ → L2

1/(ĝo−ĝi)(K̂0),

are also continuous.

These continuity results are more conveniently mapped toK by using δ̂(z) = dist(z, Γ̂io).

Note that ĝo − ĝi vanishes at Γ̂io = H−1Γio. To restate the continuity properties of τi in

terms of δ̂, we prove that there are c1, c2 > 0 such that

(4.16) c1 δ̂(x̂, ĝi(x̂)) ≤ ĝo(x̂)− ĝi(x̂) ≤ c2 δ̂(x̂, ĝi(x̂)), ∀x̂ ∈ K̂0,

(and similarly for τo). When a point N = (x̂, ĝi(x̂)) on ∂iK̂ is sufficiently near to Γ̂io, the

point P nearest to it on Γ̂io, together with O = (x̂, ĝo(x̂)) form a triangle (as shown in

Figure 2). Now we may restrict ourselves to the two-dimensional plane containing this

triangle.

Consider the case when the segment PO lies on or below the plane of constant t̂ passing

through P , so that PO makes an angle θo ≥ 0 with that plane. Let θ be the angle made
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∂−b K

∂iK

∂oK

x

t

∂iK̂ ∂iK̂

∂oK̂

x̂

t̂K K̂

H−1

Γio

Γio

P

N

Oθ
θo

Figure 2. On the left is a tent K with A = ∂t+0.5∂x that satisfies (4.12).

On the right is K̂ obtained after applying the map in the proof of Theo-

rem 4.9 with mapped over operator Â = ∂t̂.

by PN and PO at P . Then, by elementary geometry,

(4.17) ‖P −N‖2 =
cos θo
sin θ

‖O −N‖2.

Note that θ > 0 and 0 ≤ θo < π/2. Therefore, observing that ‖P − N‖2 = δ̂(N) and

‖O − N‖2 = ĝo − ĝi, (4.17) proves (4.16). For the remaining geometrical configurations,

identities similar to (4.17) can be derived to prove (4.16). Having established (4.16), we

find that after mapping back to K, the stated continuity properties of τiw = (τ̂iŵ) ◦H−1

and τow = (τ̂oŵ) ◦H−1 are proved.

It now only remains to prove the stated wellposedness of the weak formulations. By

Theorem 4.7, for any F̂ ∈ Ŵ ′, there is a unique û ∈ L2(K̂) and q̂ = D̂ẑ ∈ (V̂ ∗)⊥ satisfying

(4.18) − (û, Âv̂)L2(K̂) + 〈D̂ẑ, v̂〉Ŵ = F̂ (v̂), ∀ v̂ ∈ Ŵ ,

where D̂ ∈ L(Ŵ , Ŵ ′) is defined as before by 〈D̂v̂, ŵ〉Ŵ = (Âv̂, ŵ)L2(K̂) + (v̂, Âv̂)L2(K̂).

Here we have used (2.8) to find a ẑ ∈ V̂ such that q̂ = D̂ẑ. (While q̂ is unique, ẑ need

not be unique.) It now follows from the properties of the mapping that û and q̂ = D̂ẑ

satisfies (4.18) if and only if u = û ◦H−1 and z = ẑ ◦H−1 satisfies

(4.19) − (u,Av)L2(K) + 〈Dz, v〉W = F̂ (v ◦H), ∀ v ∈ W.

Here we have used the fact that (4.14) implies (û, Âv̂)L2(K̂) = (u,Av)L2(K) and conse-

quently, 〈D̂ẑ, v̂〉Ŵ = 〈Dz, v〉W . This shows that the weak formulations on K̂ and K are

equivalent, so the wellposedness of the latter, namely (3.4), follows from the former. The

wellposedness of (3.6) is proved similarly. �
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Remark 4.10. Under additional assumptions, including dist(∂iK, ∂oK) > 0, a stronger

trace result is proved in [9, Lemma 5.1]. However, on tents, dist(∂iK, ∂oK) is always zero,

so we are unable to use their result.

4.3. A linear symmetric hyperbolic system in one space dimension. Let C ∈
Rm×m be an m × m real symmetric matrix and let K be a tent as in §4.2. Set L =

L2(K)m,D = D(K)m and

(4.20) Au =
∂u

∂t
+ C

∂u

∂x

where ∂tu and ∂xu are vectors in Rm with their `th component equal to ∂tu` and ∂xu`,

respectively. Since C is symmetric, Ã = −A, so assumption (2.1) is obviously satisfied.

Let Q be an orthogonal matrix and Λ = diag(λ`) be a diagonal matrix such that

C = QΛQt. Let ∂iK, ∂oK and ∂bK be as defined in (4.10). In this subsection, we assume

– instead of (4.12) – that

∂iK ⊆ {x ∈ ∂K : ntI + nxC is negative definite},(4.21a)

∂oK ⊆ {x ∈ ∂K : ntI + nxC is positive definite}.(4.21b)

For each ` = 1, . . . ,m, we decompose ∂bK into ∂+,`
b K, ∂−,`b K, and ∂0,`

b K where λ`nx is

positive, negative, and zero, respectively. Then we have the following theorem, which is

proved using the diagonalization of C to separate each component and then appealing to

the analysis in § 4.2. We now opt for a brief statement of the theorem, leaving the tacitly

used properties of the traces to the proof.

Theorem 4.11. Suppose (4.21) holds for the tent K and the operator A in (4.20). Then,

the formulations (3.4) and (3.6) with

V = {z ∈ W : [Qtz]`
∣∣
∂iK∪∂−,`

b K
= 0, for all ` = 1, . . . ,m},(4.22a)

V ∗ = {z ∈ W : [Qtz]`
∣∣
∂oK∪∂+,`

b K
= 0, for all ` = 1, . . . ,m},(4.22b)

are well-posed.

Proof. Let Ă = QtAQ, W̆ = {v̆ ∈ L2(K)m : Ăv̆ ∈ L2(K)m}, and D̆ be the corresponding

boundary operator on W̆ . Then clearly, v ∈ W if and only if v̆ = Qtv is in W̆ . Moreover,

Ăw̆ = ∂tw̆ + Λ∂xw̆, i.e., its `th component equals

Ă`w̆` ≡ ∂tw̆` + λ`∂xw̆`.

Note that Ă` is a Friedrichs operator on K of the form (4.11) and has its associated graph

space W̆` and boundary operator D̆`.

Now, the assumptions of (4.21) imply that (4.12) holds for each Ă` (with α = λ`)

so Theorem 4.9 yields the continuity of the maps τ̆ `i : w̆ 7→ w̆`|Γ `
i

and τ̆ `o : w̆ 7→ w̆`|Γ `
o

on W̆ , where Γ `
i = ∂iK ∪ ∂−,`b K and Γ `

o = ∂oK ∪ ∂+,`
b K. Therefore, the full trace maps

τ̆i = (τ̆ 1
i , . . . , τ̆

m
i ) and τ̆o = (τ̆ 1

o , . . . , τ̆
m
o ) are continuous on W̆ . Set V̆ = ker(τ̆i) and
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V̆ ∗ = ker(τ̆o). Then the following variational equation for ŭ ∈ L2(K)m and q̆ = D̆z̆ with

z̆ ∈ V̆ ,

(4.23) − (ŭ, Ăv̆)L2(K)m + 〈q̆, v̆〉W̆ = F (v̆), ∀v̆ ∈ W̆ ,

splits into m decoupled equations, namely

(4.24) − (ŭ`, Ă`v̆`)L2(K) + 〈D̆`z̆`, v̆`〉W̆`
= F (v̆`), ∀v̆` ∈ W̆`, ∀` = 1, . . . ,m.

Here ŭ` ∈ L2(K) and z̆` ∈ V̆` ≡ ker(τ̆ `i ) are the `th components of ŭ and z̆, respectively.

By Theorem 4.9, there is a unique ŭ` ∈ L2(K) and q̆` = D̆`z̆` ∈ (V̆ ∗` )⊥ solving (4.24) for

each `. This in turn proves the wellposedness of (4.23).

To transfer these results for Ă to A, we define

τiw = τ̆i(Q
tw), τow = τ̆o(Qtw).

Then (4.22) is the same as V = ker(τi) and V ∗ = ker(τo). Note that z ∈ V if and only if

z̆ = Qtz ∈ V̆ . Also note that a ŭ ∈ L2(K)m and z̆ ∈ V̆ solves (4.23) if and only if u = Qŭ

and z = Qz̆ satisfies

−(u,Av)L2(K)m + 〈Dz, v〉W = F (Qtv), ∀v ∈ W.

Here we have used (ŭ, Ăv̆)L2(K)m = (u,Av)L2(K)m and consequent identities for the cor-

responding boundary operators. Thus the stated wellposedness of (3.4) follows from the

established wellposedness of (4.23). The proof of wellposedness of (3.6) is similar. �

Remark 4.12. Consider a tent K with empty ∂bK. Then, under the assumptions of

Theorem 4.11, a function in V has all its m components equal to zero on the inflow

boundary ∂iK. Moreover, if v ∈ V ∩ C(K̄), then applying the additional continuity

property (4.13) to the operators τ̆ `o in the above proof, we find that the outflow trace of

each component of v must approach zero as we approach Γio where the inflow and outflow

boundary parts meet.

5. The wave equation

We now apply the previous ideas to the important example of the wave equation and

work out the resulting weak formulation in detail. Our model problem is to find a real-

valued function φ on the space-time domain Ω = (0, S)× (0, T ), satisfying

c−2∂ttφ− ∂xxφ = g, 0 < x < S, 0 < t < T,(5.1a)

∂tφ = φ = 0, t = 0, 0 < x < S,(5.1b)

∂tφ− c ∂xφ = 0, x = 0, 0 < t < T,(5.1c)

∂tφ+ c ∂xφ = 0, x = S, 0 < t < T,(5.1d)

where c > 0 is the wave speed. Here, we have imposed the outgoing impedance boundary

conditions (but other boundary conditions can also be considered – see Section 7).
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The above second order system for φ arises from a system of first order physical princi-

ples, which also matches the form of the problems we have been studying, namely (2.9).

Set

u =

[
c ∂xφ

∂tφ

]
and observe that ∂tu1 = c ∂xtφ = c ∂xu2 and ∂tu2 = ∂ttφ = c ∂xu1 + c2g. These two

equations give the first order system Au = f where

(5.2) Au = ∂tu−
[
0 c

c 0

]
∂xu, f =

[
0

c2g

]
.

It fits into the framework of §4.3 after the diagonalization

C ≡ −
[
0 c

c 0

]
= QΛQt, Q =

1√
2

[
1 1

1 −1

]
, Λ =

[
λ1 0

0 λ2

]
.

where λ1 = −c and λ2 = c.

Analogous to (4.9), we define ∂iΩ = (0, S) × {0}, ∂oΩ = (0, S) × {T} and ∂bΩ =

∂Ω \ (∂iΩ ∪ ∂oΩ). The vertical parts ∂bΩ are further split into

∂+,1
b Ω = ∂−,2b Ω = {0} × [0, T ], ∂−,1b Ω = ∂+,2

b Ω = {S} × [0, T ].

Set Γ `
i and Γ `

o to the closures of ∂iΩ∪∂−,`b Ω and ∂oΩ∪∂+,`
b Ω, respectively, Γ `

io = Γ `
i ∩Γ `

o ,

and δ`(x, t) = dist((x, t), Γ `
io) for ` = 1, 2. By a minor modification of the arguments in

Section 4, one can prove that the global trace maps

τi

[
z1

z2

]
=

[
(z1 + z2)

∣∣
Γ 1
i

(z1 − z2)
∣∣
Γ 2
i

]
, τi : W → L2

δ1
(Γ 1

i )× L2
δ2

(Γ 2
i )

τo

[
z1

z2

]
=

[
(z1 + z2)

∣∣
Γ 1
o

(z1 − z2)
∣∣
Γ 2
o

]
, τo : W → L2

δ1
(Γ 1

o )× L2
δ2

(Γ 2
o )

are continuous. Set

V (Ω) = ker(τi), V ∗(Ω) = ker(τo).

These spaces can be used to give a global weak formulation on Ω, but our focus in on

local solvers.

In space-time tent pitching methods, we are required to numerically solve the wave

equation on space-time tents, ordered so that inflow data on a tent can be provided by

the outflow solution on previously handled tents or through given data. Hence we now

focus on the formulation and discretization on one tent K.

5.1. Weak formulation on a tent. Consider the analogue of (5.1) on one tent K, with

zero initial data on the inflow boundaries and with boundary conditions inherited from

the global boundary conditions (5.1c)–(5.1d).
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Define, as before, the boundary parts of a tent K, by

∂iK = {(x, t) ∈ ∂K : nt < 0}, ∂oK = {(x, t) ∈ ∂K : nt > 0}, ∂bK = ∂K \ (∂iK ∪ ∂oK),

∂+,1
b K = ∂−,2b K = {(x, t) ∈ ∂bK : cnx < 0},

∂+,2
b K = ∂−,1b K = {(x, t) ∈ ∂bK : cnx > 0}.

Note that the boundary part ∂bK may be empty in some tents. We consider the tent

problem of solving for u satisfying

Au = f on K, u1 − u2 = 0 on ∂+,1
b K,

u = 0 on ∂iK, u1 + u2 = 0 on ∂+,2
b K.

To obtain a well-posed weak formulation on one tent, we proceed to use Theorem 4.11.

To this end, we must assume that the tent satisfies Assumption (4.21), which now reads

∂iK ⊆ {x ∈ ∂K : nt ± nxc < 0},(5.3a)

∂oK ⊆ {x ∈ ∂K : nt ± nxc > 0}.(5.3b)

Since Ã = −A in this example, the weak formulation (3.4) reads

(5.4) u ∈ L, q ∈ (V ∗)⊥ : − (u,Av)L + 〈q, v〉W = F (v), ∀v ∈ W,

where the spaces are set following (4.22), namely

V =

{[
z1

z2

]
∈ W :

[
z1 + z2

z1 − z2

]
`

∣∣∣∣
∂iK∪∂−,`

b K

= 0, for ` = 1, 2

}
,

V ∗ =

{[
z1

z2

]
∈ W :

[
z1 + z2

z1 − z2

]
`

∣∣∣∣
∂oK∪∂+,`

b K

= 0, for ` = 1, 2

}
.

Theorem 4.11 shows that (5.4) is a well-posed weak formulation on K provided the tent

K satisfies (5.3). Note that the above spaces change from tent to tent and may arguably

be better denoted by V (K), V ∗(K), etc., but to avoid notational bulk we will suppress

the K-dependence.

5.2. CFL condition. Let us take a closer look at (5.3). First note that each tent, in this

application, consists of either two triangles (on either side of the tent pole), or just one

triangle. The tents are thus divided into three types, as shown in Figure 3.

The length of the tent pole is k, the numbers pl and pr are such that plk and prk give the

heights of the outflow boundaries on the left and right side of the tent pole, respectively,

and the spatial mesh size are hr, hl ≥ 0. Writing down the normal vector on the tent

boundaries, we immediately find that condition (5.3) on a tent is equivalent to

(5.5)

∣∣∣∣ckprhr
∣∣∣∣ < 1 and

∣∣∣∣ckplhl
∣∣∣∣ < 1.

Clearly, by controlling the size of the tent pole we can satisfy these inequalities.
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hl

hrk

plk
prk

Type I: hr > 0, hl > 0

hr
k

prk

Type L: hr > 0, hl = 0

hl

k

plk

Type R: hr = 0, hl > 0

Figure 3. Three types of tents

The well-known Courant-Friedrichs-Levy (CFL) condition [5] identifies stability con-

ditions as constraints on the time step size in terms of space mesh size in numerical

discretizations. In our case, this condition manifests itself as geometrical constraints (5.5)

on the tent. For this reason, we will refer to (5.3) – or (5.5) – as the CFL condition of

our method.

6. The numerical scheme

In this section, continuing to work with the wave operator A defined by (5.2), we give

an explicit numerical scheme for approximating u(x, t) satisfying

Au = f, 0 < x < S, 0 < t < T,(6.1a)

ui(x, 0) = u0
i (x), 0 < x < S, i = 1, 2,(6.1b)

u1(0, t)− u2(0, t) = 0, 0 < t < T,(6.1c)

u1(1, t) + u2(1, t) = 0, 0 < t < T.(6.1d)

The scheme will allow varying spatial and temporal mesh sizes. Here f and u0 are assumed

to given smooth functions. We begin by describing the calculations within each tent,

followed by the tent pitching technique to advance in time.

6.1. Conforming discretization on a tent. As seen above, a tent is comprised of one

or two triangles. Let the space of continuous functions on a tent K whose restrictions to

these triangles are linear be denoted by P h
1 (K). We construct a conforming discretization

of (5.4) within K using the discrete space

(6.2) V1 = V ∩ (P h
1 (K))2.

By definition, V1 ⊆ V , and consequently, functions in V1 must satisfy the essential bound-

ary conditions of V . Depending on the tent geometry, different boundary conditions must

be imposed on different tents.

To examine what this entails for the nodal coefficients on mesh vertices, let ζ ∈ P h
1 (K)

be the continuous scalar function (unique Lagrange basis function) that equals one at the

“apex” of the tent K, equals zero at all its other vertices. The apex of a tent, irrespective
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of whether it consists of one or two triangles, is the vertex in ∂oK that is away from ∂iK.

Now, suppose µ ≡ [ µ1µ2 ] in R2 is such that

µ1 − µ2 = 0 if ∂+,1
b K is nonempty,(6.3a)

µ1 + µ2 = 0 if ∂−,1b K is nonempty.(6.3b)

(Note that if ∂bK is empty, then µ is an arbitrary vector in R2.) Then, it is easy to see

that

(6.4) V1 = {µζ : µ satisfies (6.3)}

provides an alternate characterization of (6.2).

A computable conforming discretization of (5.4) additionally requires finite-dimensional

subspaces of L and (V ∗)⊥. For the latter, observe that (2.8) implies that

D(V1) ⊂ D(V ) = (V ∗)⊥.

Hence we choose an approximation q1 of the solution component q in (5.4) to have the

form

q1 = Dz1, z1 ∈ V1.

Then q1 is clearly in (V ∗)⊥. Next, set L1 ⊂ L to be the space of vector functions whose

components are constant functions on K. Finally, set

(6.5) W1 =
{
w : w = κ+ µζ, κ, µ ∈ R2, κζ ∈ V1

}
.

Our discretization of (5.4) now takes the following form: Find u1 in L1 and q1 ∈ D(V1)

satisfying −(u1, Aw) + 〈q1, w〉 = F (w), for all w ∈ W1. Clearly, dim(W1) is four or three,

depending on whether ∂bK is empty or not. This equation gives rise to an invertible

discrete system, as a consequence of the unisolvency of the following slightly modified

problem:

(6.6)
Find u1 ∈ L1 and z1 ∈ V1 such that

− (u1, Aw) + 〈Dz1, w〉 = F (w), ∀w ∈ W1.

Proposition 6.1. There is a unique solution for Problem (6.6).

Proof. Note the dim(L1) + dim(V1) = dim(W1), so (6.6) gives a square (Petrov-Galerkin)

system. Hence it suffices to set F = 0 and prove that u1 = z1 = 0. With F = 0, writing

z1 = αζ for some α ∈ R2, we have 〈D(αζ), w〉 = 0 for all constant w ∈ W . Since αζ ∈ V1,

by the definition of W1, we may set w = α in (6.6), to get

〈D(αζ), α〉 =

∫
∂oK∪∂bK

Dα · αζ = 0

where

(6.7) D = ntI + Cnx =

[
nt −cnx
−cnx nt

]
.

If ∂bK is empty, then since Dα ·α = (α1 +α2)2(nt− cnx)/2 + (α1−α2)2(nt + cnx)/2, the

CFL condition (5.3) gives α = 0. If ∂bK is nonempty, then whenever αζ ∈ V we have
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either α1 − α2 = 0 or α1 + α2 = 0, so we can continue to conclude that α = 0. Of course

α = 0 implies z1 = 0.

To prove that u1 = 0, we use (2.3) after substituting z1 = 0, to get

〈Dw, u1〉 = 0, ∀w ∈ W1.

Since u1 is a constant function, u1ζ ∈ W1, so we may choose w = u1ζ and conclude that

u1 = 0 by an argument analogous to what we used above. �

Remark 6.2. One can view z1|∂oK as an interface trace variable and q1 = Dz1 as an

interface flux variable. By the trace theory we developed previously, outflow trace z1|∂oK
must vanish at the points where outflow and inflow edges meet in order for z1 to be in

V . This motivates our choice (6.4) of V1 to obtain a conforming method. Other non-

conforming avenues to design approximations within a tent can be found in [10] and [19].

6.2. Advancing in time by tent pitching. We now show how the above ideas yield an

explicit time marching algorithm for solving (6.1). First, we mesh the space-time domain

Ω = (0, S)× (0, T ) by a collection Ωh of tents K with these properties: The first property

is that either ∂bK is empty or

(6.8a) ∂bK ⊆ ∂bΩ,

for all K ∈ Ωh. Second, there exists an enumeration of all tents, K1, K2, . . . , KJ , with

the property that for each j ∈ {1, . . . J},

(6.8b) ∂iKj ⊆
j−1⋃
k=1

∂oKk ∪ ∂iΩ.

Finally, for all j ∈ {1, . . . J},

(6.8c) Kj satisfies the CFL condition (5.5).

It is well-known how to construct an algorithm (not only in one space dimension, but also

in higher dimensions [6, 25]) that produces meshes satisfying (6.8), so we shall not dwell

further on the meshing process.

The discrete space-time approximation on the mesh Ωh is developed using

Vh =
{
z ∈ H1(Ω)2 ∩ V (Ω) : z|K ∈ P h

1 (K)2, ∀K ∈ Ωh, and z(x, 0) = Ihu
0(x)

}
(6.9a)

Lh =
{
α : α|K ∈ R2 is constant on each K ∈ Ωh

}
(6.9b)

Wh = {w : w|K ∈ W1 on each K ∈ Ωh} ,(6.9c)

where Ih denote the linear nodal interpolant on the spatial mesh. The method finds

approximations uh ∈ Lh and zh ∈ Vh satisfying

(6.10)
∑
K∈Ωh

(
−
∫
K

uh · Aw +

∫
∂K

Dzh · w
)

=
∑
K∈Ωh

∫
K

f · w, ∀w ∈ Wh,

where D is as in (6.7).

Because of (6.8), we are able to use a time-marching algorithm to solve (6.10): Proceed

in the ordering of (6.8b), and for each tent K, solve for uh|K and zh|K . Specifically, if α
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is the nodal (vector) value of zh at the apex of K, then defining zKo = αζ, the problem on

one tent is to find uh|K ∈ L1 and zKo ∈ V1 satisfying (6.10), namely

(6.11) −
∫
K

uh · Aw +

∫
∂K

DzKo · w =

∫
K

f · w −
∫
∂K

DzKi · w, ∀w ∈ W1.

where zKi = zh − zKo . Note that zKi on right hand side will be a known quantity if (6.8b)

holds and if we have already solved on every K ′ appearing before K in the ordering of

tents in (6.8). Indeed, zKi is completely determined by its nodal values at (the three or

two) vertices on ∂iK, which either lie at t = 0 or were apex vertices of previous tents.

Problem (6.11) is exactly of the same type we discussed in § 6.1.

6.3. Propagation formula. Since the system (6.11) is small, we can explicitly calculate

its solution. To see how information is propagated from inflow to outflow on a mesh of

tents, we consider the case where the volume source f is zero. Write zh =
[ zh,1
zh,2

]
in (6.10)

and let the nodal values of the scalar Lagrange finite element functions zh,1 and zh,2 be[
Ut

V t

]
,
[
Ub

V b

]
,
[
U l

V l

]
, [ U

r

V r ] , at the top, bottom, left and right vertices, respectively, of a tent

of Type I, as in Figure 3. For the other two tent types, we omit the nodal values at the

missing vertex.

Equation (6.11) finds
[
Ut

V t

]
as a function of the remaining nodal values. After tedious

simplifications (not displayed), this relationship is found to be as follows:[
U t

V t

]
=

[
U b

V b

]
+ w1

[
0 c

c 0

] [
U r − U l

V r − V l

]
+ w2c

[
U r − U l

V r − V l

]
, for Type I,(6.12) [

U t

V t

]
=

[
U b

V b

]
+ w1

[
0 c

c 0

] [
U r − U b

V r − V b

]
+ w2c

[
U r − U b

V r − V b

]
, for Type L,[

U t

V t

]
=

[
U b

V b

]
+ w1

[
0 c

c 0

] [
U b − U l

V b − V l

]
+ w2c

[
U b − U l

V b − V l

]
, for Type R,

where

w1 =
(hr + hl)k

(hr + hl)2 − c2k2(pr − pl)2
, w2 =

c k2(pr − pl)
(hr + hl)2 − c2k2(pr − pl)2

, for Type I,

w1 =
k

2(ck(1− pr) + hr)
, w2 = w1, for Type L,

w1 =
k

2(ck(1− pl) + hl)
, w2 = −w1, for Type R.

6.4. Error analysis on uniform grids. We now work out the stencil given by the

method on a uniform grid where all tents are shaped the same (see Figure 4). The stencil

translates (6.12) into an equation that gives the nodal values of the outflow apex vertex,

given the nodal values at the inflow vertices. Let h > 0 be the uniform spatial mesh size,

k > 0 be the time step size measured, as before, by the height of the tent pole. At a

point (jh/2, kn/2) in the lattice (h/2)Z× (k/2)Z, let (Un
j , V

n
j ) denote the nodal value of

the approximation to zh there. As shown in Figure 4, the scheme uses only a subset of
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h/2

k/2
ten

t

[
Un
j−1

V n
j−1

] [
Un
j+1

V n
j+1

]

[
Un+1
j

V n+1
j

]

[
Un−1
j

V n−1
j

]

Figure 4. The stencil

lattice points in hZ × kZ. Each grid point involved in the scheme has an associated U

value (indicated in the figure by “ ”) and a V value (indicated by “ ”).

Equation (6.12) now simplifies to

Un+1
j = Un−1

j + ac(V n
j+1 − V n

j−1)(6.13a)

V n+1
j = V n−1

j + ac(Un
j+1 − Un

j−1)(6.13b)

where a = k/h. This is simply the non-staggered leapfrog scheme (studied extensively for

scalar equations) applied to the first order system. By a simple Taylor expansion about

the stencil center, we see that the scheme is consistent and that the local truncation error

is of second order (see [23, 24] for definitions of these and related terminology).

To examine stability, introduce a new vector variable Xn
j and rewrite the scheme (6.13)

as follows:

Xn+1
j =


[Xn

j ]3 + ac[Xn
j+1 −Xn

j−1]2
[Xn

j ]4 + ac[Xn
j+1 −Xn

j−1]1
[Xn

j ]1
[Xn

j ]2

 , where Xn
j =


Un
j

V n
j

Un−1
j

V n−1
j

 .
To this one-step scheme, we now apply von Neumann analysis [23, 24]. The amplification

matrix G, connecting Xn+1
j to Xn

j can be readily calculated:

G =


0 2ı̂s 1 0

2ı̂s 0 0 1

1 0 0 0

0 1 0 0

 = RΛR−1, where R =


1 1 1 1

1 1 1 1

g−1
1 g−1

2 g−1
3 g−1

4

g−1
1 g−1

2 −g−1
3 −g−1

4

 ,
ı̂ denotes the imaginary unit, the eigenvalues of G are g1 = ı̂s −

√
1− s2, g2 = ı̂s +√

1− s2, g3 = −ı̂s −
√

1− s2, g4 = −ı̂s +
√

1− s2, Λ = diag(gi), s = ac sin(θ), and

θ ∈ [−π, π] gives the frequency in von Neumann analysis. If

(6.14) |ac| < 1
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Figure 5. Comparison with CTCS scheme

then all eigenvalues satisfy |gi| = 1. Furthermore, since detR = 4(g−1
1 − g−1

2 )(g−1
4 − g−1

3 )

remains away from zero whenever (6.14) holds, the powers Gn = RΛnR−1 are uniformly

bounded for all n and all θ. Hence (6.14) implies that the scheme is stable.

We thus conclude, by the Lax-Richtmyer theorem, that the scheme is convergent and

is of second order. Note that the CFL condition we previously found on general meshes,

namely (5.5), when restricted to uniform meshes, gives exactly the same CFL condi-

tion (6.14) obtained above from von Neumann analysis.

7. Numerical results

7.1. Convergence study. First, we report numerical results from our tent pitching (TP)

scheme and compare it with the well-known “central-time central-space” (CTCS) finite

difference scheme (see [5, 23], sometimes also known as the Yee scheme [12, 27]). The

only difference between the two is that while the TP scheme sets the U and V nodes

on the same location (exactly as indicated in Figure 4), the CTCS scheme sets them on

staggered locations on the same grid. Both schemes are applied to the model problem (6.1)

on uniform grids with S = 1. We use a grid like that in Figure 4 for both methods.

To impose the outgoing impedance boundary conditions within the CTCS scheme, we

use the standard finite difference technique of introducing ghost points to the left and

right of the finite grid and eliminating the unknown values at those points using the

boundary condition. In contrast, in the TP scheme, the impedance boundary conditions

are essentially imposed within the finite element spaces, as we have already seen previously.

We set c = 1 and impose the initial condition so that the exact solution is

u1(x, t) = u2(x, t) = e−1000((x+t)−1/2)2 ,

i.e., the solution is a smooth pulse moving to the left at unit speed, eventually clearing

out of the simulation domain. At every other time step (in the uniform space-time grid)

we compute the L2(0, 1)-norm of the difference between the computed and exact solution.
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The evolution of these errors in time on a grid of spatial mesh size h = 0.0025 and k = 0.9h

is shown in Figure 5a.

We observe from Figure 5a that the errors of both methods are comparable and remain

low throughout the simulated time. Note also that after the pulse clears the simulation

domain reflectionlessly (and the solution within [0, 1] vanishes), the errors for both meth-

ods decrease markedly. In Figure 5, we display a log-log plot of the L2(0, 1)-norm of the

errors at t = 0.5 for h = 1/23, . . . , 1/213, and k = 0.9h. The rate of decrease of this error

is clearly seen to be of the order O(h2). This is in accordance with our von Neumann

analysis of § 6.4 (although we did not take into account boundary conditions in that

analysis).

Thus we conclude from Figure 5 that there is negligible difference between the perfor-

mance of the two methods on uniform grids.

7.2. Material interfaces and other boundary conditions. Next, we consider a gen-

eralization of (6.1) given by

∂t

[
κ1 0

0 κ2

] [
u1

u2

]
−
[
0 c

c 0

]
∂x

[
u1

u2

]
= f, 0 < x < 1, 0 < t < T,(7.1a)

u1(x, 0) = u0
1(x), 0 < x < 1,(7.1b)

u2(x, 0) = u0
2(x), 0 < x < 1,(7.1c)

z0u1 − u2 = 0, x = 0, 0 < t < T,(7.1d)

z1u1 + u2 = 0, x = 1, 0 < t < T.(7.1e)

where κ1(x) and κ2(x) are time-independent material parameters and c, z0 and z1 are

constants. Such systems arise from electromagnetics or acoustics [12, 16] on layered

media and the differential equation is often written in the following equivalent, but non-

symmetric form

∂t

[
u1

u2

]
−
[

0 β1

β2 0

]
∂x

[
u1

u2

]
= f̃

where βi(x) = c/κi(x) and f̃ = diag(κ−1
1 , κ−1

2 )f obtained by scaling the equations of (7.1a)

by κ−1
1 and κ−1

2 . When κ1(x) ≡ κ2(x) ≡ 1 and z0 = z1 = 1, we obtain the model formu-

lation we discussed previously in detail. Dirichlet boundary conditions can be imposed

by putting z0 = z1 = 0, while exact outgoing impedance conditions can be imposed us-

ing z0 =
√
κ1/κ2 and z1 =

√
κ1/κ2. Intermediate values of zi give damped impedance

boundary conditions.

Whenever κi is a constant on each spatial mesh interval, a tent pitching scheme is

suggested by a simple generalization of the previous algorithm for homogeneous media.

We define the discrete spaces exactly as in (6.9), but noting that V (Ω) now has different

essential boundary conditions – stemming from (7.1d)–(7.1e) – which are inherited by the

spaces on tents with its tent pole on the boundary. The generalization of the scheme is
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(c) Parts of the tent pitched mesh of the initial

time slab, with varying spatial mesh sizes in the

regions x < 0.5 and x > 0.5.

Figure 6. Wave propagation through an impedance-matched interface

derived by merely setting the A and D in (6.11) by

A =

[
κ1 0

0 κ2

]
∂t −

[
0 c

c 0

]
∂x, D =

[
ntκ1 −cnx
−cnx ntκ2

]
.

Note that this A, appearing on the left hand side of (7.1a), satisfies (2.1). By solving this

general version of (6.11) one can obtain propagation formulas similar to (6.12), but we

omit these details and report only the numerical results.

First we consider the case

κ1 =

{
2, 0 < x < 1/2,

1, 1/2 < x < 1,
κ2 =

{
2, 0 < x < 1/2,

1, 1/2 < x < 1,

and c = 1. The wave speed (equalling c/
√
κ1κ2), jumps from 0.5 in the left half to 1 in

the right half. However, the impedance (equalling κ1/κ2 – see [16]) is one in both regions.

Thus x = 0.5 is an impedance-matched interface about which we do not expect to see any

reflection.

We use the tent pitching method to simulate a wave propagating to the right starting

near x = 0.2. To this end, define a smooth pulse g(x) = e−5000(x−0.2)2 and set the data

in (7.1) by

(7.2) f = 0, u0
1(x) = (c/κ1)g(x), u0

2(x) = −(c/
√
κ1κ2)g(x),

and z0 =
√
κ1/κ2 and z1 =

√
κ1/κ2. We use a spatial mesh of mesh size h = 10−3 in

the left half and h = 2 × 10−3 in the right half. A simple tent meshing algorithm then
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produces a mesh of space-time tents based on this non-uniform spatial mesh that satisfies

the CFL condition (5.5). The meshing algorithm proceeds as illustrated as in Figure 1

by simply picking a point with the lowest time coordinate to pitch a tent. When multiple

locations have the minimal time coordinate, the algorithm picks a tent pitching location

among them randomly, thus giving an unstructured mesh. To minimize the overhead in

constructing the mesh of tents, instead of meshing the entire space-time domain at once,

we first mesh a thin time slab {(x, t) : 0 < t < 0.002, 0 < x < 1} and then repeatedly

stack this mesh in time to cover the entire region of time simulation. The mesh of the

initial slab is shown in Figure 6c.

One of the two components of the computed solution is shown in the remaining two

plots of Figure 6. Clearly, the simulated wave packet travels left across the x = 0.5

interface without any reflected wave and expands as it enters the region of higher wave

speed. In further (unreported) numerical experiments, we have noticed changes in the

discrete wave speed depending on the space-time mesh. For example, the wave speed

differs if one uses uniform space time meshes with positively sloped diagonals only or

negatively sloped diagonals only. Such wave speed differences appear to approach to zero

slowly as h is made smaller. High order methods may be needed to reduce these dispersive

errors.

Our next and final example involves an interface where we expect both reflection and

transmission. We set c = 1 and

κ1 =

{
4, 0 < x < 1/2,

1/2, 1/2 < x < 1,
κ2 =

{
1, 0 < x < 1/2,

1/2, 1/2 < x < 1,

Both the wave speed and the impedance jumps from the left region to the right region

(from 0.5 and 4 to 2 and 1, respectively). We set f and initial data as in the last simulation

by (7.2), but in order to impose Dirichlet boundary condition, we set z0 = z1 = 0. This

time, instead of using a non-uniform mesh, we use a spatially uniform mesh of h = 10−3

and let the tent pitching algorithm adjust k to satisfy the CFL condition (5.5) in each

tent. We found that the mesh obtained, displayed in Figure 7a, while not ideal due to

the thin triangles, is adequate for the simulation. (Better tent pitched meshes can be

obtained using non-uniform spatial mesh spacing, as we saw in the previous example

and Figure 6c.) The solution components u1 and u2 obtained from the simulation are

displayed in Figure 7b. The computed waves are transmitted as well as reflected both

from the interface and the Dirichlet boundaries. The expected features of the solution are

therefore recovered by the method.
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