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Abstract. We consider the problem of calculating resonance frequencies and radiative losses of
an optical resonator. The optical resonator is in the form of a thin membrane with variable dielectric
properties. This work provides two very different approaches for doing such calculations. The first is
an asymptotic method which exploits the small thickness and high index of the membrane. We derive
a limiting resonance problem as the thickness goes to zero, and for the case of a simple resonance,
find a first order correction. The limiting problem and the correction are in one less space dimension,
which can make the approach very efficient. Convergence estimates are proved for the asymptotics.
The second approach, based on the finite element method with a truncated perfectly matched layer, is
not restricted to thin structures. We demonstrate the use of these methods in numerical calculations
which further illustrate their differences. The asymptotic method finds resonance by solving a dense,
but small, nonlinear eigenvalue problem, whereas the finite element method yields a large, but linear
and sparse generalized eigenvalue problem. Both methods reproduce a localized defect mode found
previously by finite difference time domain methods.

1. Introduction. This paper deals with the calculation of resonances of thin
high contrast dielectric structures. Specifically, we are motivated by recent develop-
ments in photonic band gap (PBG) devices. PBG materials are artificially created
structures having a refraction index which is spatially periodic, often on the nanoscale.
As the name suggests, electromagnetic waves of frequencies in a ‘band gap’ cannot
propagate within PBG materials. These materials thus offer interesting possibilities
for radical manipulation of light through introduction of defects, hence the increasing
interest in them.

While the existence of band gaps has been definitively demonstrated for certain
infinite periodic structures, practical PBG devices are of finite extent. When a band
gap exists in a medium of infinite extent, it is possible to create a so-called ‘defect
mode’ which is a standing wave of frequency in the band gap by introducing a localized
defect into the medium [6]. nSuch a mode corresponds to an eigenfunction of the
partial differential equation governing the system. However, when the medium is of
finite extent, such an eigenvalue no longer exists, but instead we may have a localized
resonance mode.

A particularly interesting class of PBG structures are high index thin film devices
where light is confined to the film by total internal reflection, and the PBG effect
is achieved by drilling an array of air holes. Examples of such thin film devices can
be found in [5, 19, 20]. The present work is aimed at calculating resonances for
such structures. The dielectric properties of these structures are the restrictions of
a periodic function to a bounded thin region in R3. Additionally they have a local
“defect”, i.e., a break in the periodic pattern. We want to identify resonance modes
that are localized near the defect region, if any.

To model such structures, we consider the simplest equation for time harmonic
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wave propagation, namely the Helmholtz equation,

∆u + k2ε(x)u = 0, x ∈ R
n, (1.1)

where n = 2 or 3, and u and ε are functions of x in R
n. By an abuse in terminology

we will call ε(x) the dielectric constant. The geometry is captured by the variable
coefficient ε(x) which is set to unity in the background (air). The function ε(x) − 1
is assumed to have compact support. To find resonances, we must find a nontrivial
‘radiating’ mode u and a complex number λ ≡ k2 such that

−∆u = λε(x)u, in R
n. (1.2)

When k is real, a mathematically precise form of the condition that u is ‘radiating’ (or
‘outgoing’) is the well known Sommerfeld radiation condition at infinity. Writing (1.2)
together with the Sommerfeld condition as Au = λBu, the resolvent (A − λB)−1 is
well defined for λ in the positive real axis, because the Sommerfeld condition gives
uniqueness of Helmholtz solutions. When k (or λ) is complex, one way to make the
‘outgoing’ condition precise is by analytic continuation from the positive real axis.
For instance, for a slightly different scattering problem studied in [13], the resolvent
was proved to be a meromorphic function of λ and resonances were characterized as
its poles occurring in the lower half of the complex plane.

The resonance modes u satisfying equations like (1.2) are sometimes also known
as quasi-normal modes [12]. They are non-physical and grow exponentially when k is
in the fourth quadrant. To give a physical interpretation of resonance, we must go to
the time domain and consider

∆U − ε(x)Utt = 0, x ∈ R
n.

Resonance in this context is a time-dependent solution of the equation that resembles
a standing wave except for the amplitude decay. Such a solution, especially when
the decay is slow, is well captured by a superposition of quasi-normal modes with
eikt modulation [12]. Generally these slowly decaying resonance modes are computed
by using finite difference time domain methods (FDTD), which are computationally
intensive. In this work we propose two other ways to calculate resonances.

For thin devices, we propose a direct approach based on the Lippman-Schwinger
reformulation. We assume a structure which fits into the following high contrast
model, namely the dielectric occupies the region Ω×(−h/2, h/2). In three dimensions,
Ω is a bounded planar domain, while in two space dimensions, Ω is bounded domain
on the real line. Thus, in either case, Ω is of one space dimension less than n. Let
x = (x, z) for x ∈ R2 and z ∈ R. We assume that

ε(x, z) =







ε0(x)

h
, if |z| < h/2 and x ∈ Ω

1, otherwise.
(1.3)

Note that whenever we have a membrane whose dielectric properties vary negligibly
across its thickness h, we can satisfy this assumption by setting ε0 to hε. In [14], we
studied scattering by this type of structure, and found a limiting, or effective problem
as h→ 0, with a correction term that improved the approximation. In this paper, we
study the related resonance problem.
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We define the resonant frequency k as a number in the complex plane for which
there is a nontrivial resonance mode u satisfying

u(x, z) = λ

∫

Ω

∫ h/2

−h/2

(

1 − ε0(x
′)

h

)

Gλ(x, z, x′, z′)u(x′, z′) dz′dx′. (1.4)

Here λ ≡ k2 (which we will call the resonance value) and G is the Helmholtz fun-
damental solution (in 2D or 3D). One can show by variational arguments that such
a λ must necessarily be in the lower half plane, and hence k must be in the fourth
quadrant. This integral equation is arrived at from (1.1) by the same standard ma-
nipulations used in deriving the Lippman-Schwinger equation for scattering problems
(see Theorem 8.3 of [4]). However, since λ has negative imaginary part, the solutions
to (1.4) are exponentially growing at infinity, and such manipulations are only formal.
Nevertheless this suggests that the definition of resonances using (1.4) is equivalent
to (1.2). As another way to see why this is the case [8], consider the operator

(∆ + k2ǫ)

for real k. One can then write the outgoing Green’s function to characterize the
inverse of this operator with Sommerfeld radiation conditions,

R(k) = (∆ + k2ǫ)−1.

If one continues this operator to negative complex k, the classical definition of reso-
nance is its poles. Now we can rewrite this operator as

R(k) = (∆ + k2 + k2(ǫ− 1))−1

=
[

(∆ + k2)(I + (∆ + k2)−1k2(ǫ− 1))
]−1

=
[

I + (∆ + k2)−1k2(ǫ− 1)
]−1

(∆ + k2)−1.

Since the term (∆ + k2)−1 is characterized by the free space Green’s function, it has
no poles. So, the poles of R(k) are exactly where

I + (∆ + k2)−1k2(ǫ− 1)

has a null space, i.e. where (1.4) has a solution. Note that our theoretical analysis
neither refers to nor deals with this equivalence. Indeed, our analysis takes (1.4) as
the definition of resonances and proceeds to examine how such resonance values vary
with h. Since G depends on λ, (1.4) is a nonlinear eigenvalue problem.

Another approach for numerical approximation of resonances is to directly ap-
proximate the eigenvalue problem in (1.1) with an outgoing boundary condition. A
standard technique to handle outgoing boundary conditions at infinity is by introduc-
ing a perfectly matched layer [1] (PML) away from all inhomogeneities and eventually
truncating the layer to obtain a finite computational domain. This suggests the use
of PML for computing resonances by solving a linear eigenvalue problem in a trun-
cated domain. We investigate this approach numerically, comparing the results with
an exact solution as well as with approximations from the asymptotic approach. For
the case of thin structures we can use both approaches to validate one another. A
significant finding of this paper is that with both the asymptotic method and the
PML calculations we can reproduce the high quality factor (low loss) resonance mode
found in [5] by FDTD methods.
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The next section contains a derivation and analysis of an asymptotic approxima-
tion to resonance solutions of (1.4) with respect to the thickness parameter h. Within
this section, we prove convergence of the related operators, convergence of the res-
onance values, and then finally derive a correction term for the resonances utilizing
an eigenvalue approximation theorem of Osborn [16]. Section 3 contains a numerical
study of both asymptotic/nonlinear eigenvalue and PML approaches to find the reso-
nance solutions. In § 3.1, we find exact solutions for the resonances of a disk and use
them to analyze the convergence of PML solutions. In § 3.2 we return to a thin high
contrast structure. We compute resonances with both PML and asymptotics for the
same problem and compare the results. In § 3.3 we study a thin periodic structure
with a defect from [5], which was previously found to exhibit a localized low loss
mode. The concluding section summarizes our results.

2. An asymptotic limit. In this section we develop an asymptotic approach to
the resonance approximation for these thin, high contrast structures. The resonance
problem is then formulated in terms of operator equations, and we prove operator con-
vergence, that is, we show that the operators depend continuously on the thickness
and frequency parameters. In the subsections that follow, we show that the reso-
nance values converge and prove an error estimate. In the case of a simple resonance
value, we introduce a correction term that increases the accuracy of the asymptotic
approximation.

Assume that we have a dielectric with geometry defined by (1.3). A resonance
value λh is a complex number for which there is a nontrivial function uh satisfying

uh(x, z) = λh

∫

Ω

∫ h/2

−h/2

(

1 − ε0(x
′)

h

)

Gλh
(x, z, x′, z′)uh(x′, z′)dz′dx′ (2.1)

where ε0 is assumed to be piecewise continuous and G is the Helmholtz fundamental
solution (in 2 or 3 d) with complex λh = k2. That is, when n = 3,

Gλ(x, z, x′, z′) = − 1

4π

ei
√

λ
√

|x−x′|2+|z−z′|2
√

|x− x′|2 + |z − z′|2

and when n = 2,

Gλ(x, z, x′, z′) = − i

4
H

(1)
0 (

√
λ
√

|x− x′|2 + |z − z′|2)

where H
(1)
0 is a Hankel function of the first kind. We note that we are taking the

branch of the square root in the complex plane for which the cut is on the negative
real axis, and hence there is analyticity away from this cut. With the scaling in the
z direction, z = hζ, let

ũh(x, ζ) = uh(x, z)

to obtain

ũh(x, ζ) = λh

∫

Ω

∫ 1/2

−1/2

(h− ε0(x
′))Gλh

(x, hζ, x′, hζ′)ũh(x′, ζ′)dζ′dx′. (2.2)

Now, if we let h → 0, this leads us to guess the limiting resonance problem: Find
nontrivial solutions (u0, λ0) to

u0(x) = −λ0

∫

Ω

ε0(x
′)Gλ0

(x, 0, x′, 0)u0(x
′)dx′. (2.3)
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Although still a nonlinear eigenvalue problem, this has one dimension less than we
started with.

In order to analyze the validity of this asymptotic limit, it is useful to express
these problems in operator form. Let S be the scaled, fixed domain

S = Ω × [−1/2, 1/2].

Consider, for v ∈ L2(S), the operators Th(λ) and T0(λ), with complex parameter λ,
are defined by

Th(λ)v =

∫ 1/2

−1/2

∫

Ω

(h− ε0(x
′))Gλ(x, hζ, x′, hζ′)v(x′, ζ′)dx′dζ′

and

T0(λ)v = −
∫ 1/2

−1/2

∫

Ω

ε0(x
′)Gλ(x, 0, x′, 0)v(x′, ζ′)dx′dζ′.

The operators Th(λ) and T0(λ) are both compact from L2(S) to L2(S), by the proof
of [14, Lemma 2]. (Unlike in that Lemma, here since λ is not necessarily real, we are
not ensured the invertibility of (I − λTh(λ)) or (I − λT0(λ)), hence the presence of
resonance values.) We say that λh is a resonance value of Th if there exists nontrivial
uh ∈ L2(S) such that

uh = λhTh(λh)uh.

Similarly, λ0 is a resonance value of T0 if there exists nontrivial u0 such that

u0 = λ0T0(λ0)u0.

The operators Th, T0 are compact on C0(S) as well as L2(S), but here we will use
L2(S) for its Hilbert space structure. We use 〈, 〉 to denote the standard L2(S) inner
product over C;

〈u, v〉 :=

∫

S

uv

where v is the complex conjugate of v.

2.1. Operator convergence. We first prove a lemma showing convergence of
the fundamental solutions when n = 3. The same result also holds for n = 2. This is
an extension of [14, Lemma 1] to complex λ. Here we also give the explicit dependence
of the constant on λ. Recall the definition of the scaled domain

S = Ω × (−1/2, 1/2).

Lemma 2.1. There exists a constant C independent of h, ζ′, and λ, such that

sup
(x,ζ)∈S

∫

Ω

|Gλ(x, 0, x′, 0) −Gλ(x, hζ, x′, hζ′)|dx′ ≤ Ch(1 + |
√
λ|)e|Im

√
λ|diam(Ωh).
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Proof The difference of these fundamental solutions can be written as

G(x, hζ, x′, hζ′) −G(x, 0, x′, 0)

=
1

4π

ei
√

λ|x−x′|

|x− x′| − 1

4π

ei
√

λ
√

|x−x′|2+h2|ζ−ζ′|2
√

|x− x′|2 + h2|ζ − ζ′|2

=
1

4π
ei

√
λ|x−x′|

[

1

|x− x′| −
1

√

|x− x′|2 + h2|ζ − ζ′|2

]

+
1

4π

1
√

|x− x′|2 + h2|ζ − ζ′|2
[

ei
√

λ|x−x′| − ei
√

λ
√

|x−x′|2+h2|ζ−ζ′|2
]

. (2.4)

We first work on the second term on the right-hand side of (2.4). By a standard
Taylor expansion,

ei
√

λ
√

|x−x′|2+h2|ζ−ζ′|2 = ei
√

λ|x−x′| + i
√
λ
(

√

|x− x′|2 + h2|ζ − ζ′|2 − |x− x′|
)

ei
√

λξ

for some ξ between |x − x′| and
√

|x− x′|2 + h2|ζ − ζ′|2. Since we know that for
(x, ζ) ∈ S,

√

|x− x′|2 + h2|ζ − ζ′|2 − |x− x′| ≤ h,

we obtain
∣

∣

∣
ei

√
λ|x−x′| − ei

√
λ
√

|x−x′|2+h2|ζ−ζ′|2
∣

∣

∣
≤ |

√
λ|he|Im

√
λ|ξ

≤ |
√
λ|he|Im

√
λ|diam(Ωh). (2.5)

Also,

1
√

|x− x′|2 + h2|ζ − ζ′|2
≤ 1

|x− x′| ,

which is integrable with respect to x′ on Ω, we have that
∫

Ω

dx′
√

|x− x′|2 + h2|ζ − ζ′|2

is bounded independently of h, ζ′, λ, and (x, z) ∈ S. This along with (2.5) gives that
we can choose C independent of h, ζ′ and (x, ζ) ∈ S such that

∫

Ω

1

4π

|ei
√

λ|x−x′| − ei
√

λ
√

|x−x′|2+h2|ζ−ζ′|2 |
√

|x− x′|2 + h2|ζ − ζ′|2
dx′ ≤ Ch|

√
λ|e|Im

√
λ|diam(Ωh). (2.6)

The integral of the first term on the right-hand side of (2.4) can be bounded

∫

Ω

∣

∣

∣

∣

∣

1

4π
ei

√
λ|x−x′|

[

1

|x− x′| −
1

√

|x− x′|2 + h2|ζ − ζ′|2

]∣

∣

∣

∣

∣

dx′

≤ 1

4π
e|Im

√
λ|diam(Ωh)

∫

Ω

∣

∣

∣

∣

∣

1

|x− x′| −
1

√

|x− x′|2 + h2|ζ − ζ′|2

∣

∣

∣

∣

∣

dx′

=
1

4π
e|Im

√
λ|diam(Ωh)

∫

Ω

(

1

|x− x′| −
1

√

|x− x′|2 + h2|ζ − ζ′|2

)

dx′
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since the integrand is non-negative. Now choose R large enough so that if BR(x) is
the ball of radius R centered at x in R2,

Ω ⊂ BR(x)

for all x ∈ Ω. Then the integral over Ω above is bounded by

≤
∫

BR(x)

(

1

|x− x′| −
1

√

|x− x′|2 + h2|ζ − ζ′|2

)

dx′.

Change to polar coordinates centered at x with

r = |x− x′|.

The integral transforms to

= 2π

∫ R

0

(

1

r
− 1
√

r2 + h2|ζ − ζ′|2

)

= 2π
[

R−
√

R2 + h2|ζ − ζ′|2 + h|ζ − ζ′|
]

by direct calculation. One can see clearly that this quantity is then O(h), where the
constant is independent of (x, ζ) ∈ S, λ, and ζ′ ∈ (−1/2, 1/2). This, combined with
(2.4) and the estimate (2.6) proves the lemma. �

Next we show that the operators depend continuously on the parameters h and λ.
Proposition 2.1. Assume we have a sequence of pairs {hj , λj}, where hj ∈ R,

the λj are in the complex plane with the negative real axis and the origin removed,

i.e. λj ∈ C \ {R− ∪ {0}}, and for which λj → λ0 for some λ0 ∈ C \ {R− ∪ {0}}, and

hj → 0 as j → ∞. Then

Thj
(λj) → T0(λ0)

in the operator norm on L2(S) as j → ∞. Furthermore, for j large enough there

exists C independent of j such that

‖Thj
(λj) − T0(λ0)‖ ≤ C (hj + |λj − λ0|) .

Proof Consider, for v ∈ L2(S),

(

Thj
(λj) − T0(λ0)

)

v =
(

Thj
(λj) − T0(λj)

)

v + (T0(λj) − T0(λ0)) v.

We will expand out the second term on the right hand side

(T0(λj) − T0(λ0)) v =

∫ 1/2

−1/2

∫

Ω

ε0(x
′)(Gλ0

(x, 0, x′, 0) −Gλj
(x, 0, x′, 0))v(x′, ζ′)dx′dζ′.

We can use the Mean Value Theorem , for |x− x′| 6= 0,

Gλj
(x, 0, x′, 0) −Gλ0

(x, 0, x′, 0) =
1

4π

ei
√

λ0|x−x′|

|x− x′| − 1

4π

ei
√

λj |x−x′|

|x− x′|

= (λ0 − λj)
i

8π
√
η
ei

√
η|x−x′|
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for some η on the line in C joining λ0 and λj . So, since λ0 is bounded away from the
negative real axis, for large enough j we have

‖Gλ0
(x, 0, x′, 0) −Gλj

(x, 0, x′, 0)‖∞ ≤ C|λ0 − λj |

for some C independent of j. From this we easily obtain

‖ (T0(λj) − T0(λ0)) v‖L2(S) ≤ C|λ0 − λj |‖v‖L2(S). (2.7)

Now, for the other term,

(Thj
(λj) − T0(λj))v = hj

∫

S

Gλj
(x, hjζ, x

′, hjζ
′)v(x′, ζ′)dx′dζ′

−
∫

S

ε0(x
′)
[

Gλj
(x, hjζ, x

′, hjζ
′) −Gλj

(x, 0, x′, 0)
]

v(x′ζ′)dx′dζ′. (2.8)

Now, since Gλj
is a kernel which is bounded in L1 independently of h, it follows from

Generalized Young’s Inequality [7] that the function

w(x, ζ) =

∫

S

Gλj
(x, hjζ, x

′, hjζ
′)v(x′, ζ′)dx′dζ′,

satisfies

‖w‖L2(S) ≤ C‖v‖L2(S),

which shows that the first term in (2.8) is O(hj). For the second term, we appeal to
Lemma 2.1, which tells us that the kernel difference can be bounded:

‖Gλj
(x, hjζ, x

′, hjζ
′) −Gλj

(x, 0, x′, 0)‖L1(S) ≤ Chj

where C is independent of j. Since ε0 is bounded in L∞, again using Generalized
Young and the triangle inequalities in (2.8) we obtain,

‖(Thj
(λj) − T0(λj))v‖L2(S) ≤ Chj‖v‖L2(S).

Combining this with (2.7), the result follows. �

2.2. Convergence of the resonance values. Define the modified resolvent
type operator valued functions on C

Rh(λ) = (I − λTh(λ))−1

and

R0(λ) = (I − λT0(λ))
−1.

An important note is that if Rh(λ) does not exist as a bounded linear operator from
L2(S) to itself, then λ is a resonance value of Th. This is because if Rh(λ) does not
exist, then 1/λ is in the spectrum of the compact operator Th(λ). Hence 1/λ must
be an eigenvalue, and (I − λTh(λ)) must have nontrivial and finite dimensional null
space. The same holds for the limiting operator R0(λ).

In the following theorem, we show that, with an assumption of nonzero residue,
the resonance values converge.
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Theorem 2.2. Assume that λ0 is a resonance value of T0, and that R0 and Rh

are meromorphic in some region of C containing λ0. Assume also that R0 has nonzero

residue at λ0. Then for any ball B around λ0, there exists h0 > 0 such that Th has a

resonance in B for all h < h0. Conversely, if {λh} is a sequence of resonance values

of Th that converges as h → 0, the limit is a resonance value of T0. Proof We
first note that we know from [14] that λ0 /∈ R. So, we can choose B, a ball around
λ0 which does not intersect the negative real axis R−, and such that T0 has no other
resonance values in B.

We will also use a well known result about the inverses of perturbed operators,
see for example [10] p. 31: If S − T = A and T−1 exists, then for ‖A‖ < 1

‖T−1‖ , S−1

exists and

‖S−1 − T−1‖ ≤ ‖A‖‖T−1‖2

1 − ‖A‖‖T−1‖ . (2.9)

Apply this, with

S = I − λTh(λ)

T = I − λT0(λ)

to get

‖Rh(λ) −R0(λ)‖ ≤ ‖λ(T0(λ) − Th(λ))‖‖R0(λ)‖2

1 − ‖λ(T0(λ) − Th(λ))‖‖R0(λ)‖
,

which, from Proposition 2.11 yields

‖Rh(λ) −R0(λ)‖ ≤ Ch‖R0(λ)‖2

1 − Ch‖R0(λ)‖
(2.10)

for C independent of h, for h small enough. The constant C does in general depend
on λ, but for λ on a compact subset of C bounded away from the real line, C can be
chosen independent of λ.

Let Γ = ∂B, positively oriented. By the choice of B, Γ does not intersect with
R

− , and λ0 is the only pole of R0 in the closed disk. Then R0(λ) is continuous with
respect to λ on Γ, hence ‖R0(λ)‖ is uniformly bounded for λ on Γ. Using (2.10), we
have that

Rh(λ) → R0(λ)

in norm as h→ 0, uniformly for λ ∈ Γ. This implies that the operator valued integral

1

2πi

∫

Γ

Rh(λ)dλ → 1

2πi

∫

Γ

R0(λ)dλ

in norm as h→ 0. From the residue theorem, the integral

1

2πi

∫

Γ

R0(λ)dλ

gives us the coefficient of the (λ − λ0)
−1 term in the Laurent series expansion for

R0(λ), which by assumption is nonzero. Hence the integrals must all be nonzero for
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h small enough. This means that all Rh must have at least one pole in B for h small
enough. That is, for h small enough, all Th have a resonance value in B. This proves
the first part of the statement of the proposition. For the converse, if λ0 is not a
resonance value of T0, then R0(λ) exists in some neighborhood of λ0. The formula
(2.10) implies that Rh(λ) also exists in that neighborhood for h small enough. Hence
the resonance values of Th are bounded away from λ0 for h small enough. �

Some remarks about the assumptions in this theorem:
• The operator functions I − λTh(λ) and I − λT0(λ) are analytic with respect

to λ away from the negative real axis. This, combined with the fact that the
T ’s are compact, means that the inverses are meromorphic.

• If λ0 is a resonance of T0, then the classical resolvent of T0(λ0), given by
(zI − T0(λ0))

−1, automatically has nonzero residue at z = 1
λ0

; its residue is
the projection onto the generalized eigenspace [10]. It is not clear how the
residue of R0 relates to the nonlinear eigenspace. However, if λ0 is a simple
pole, this is a special case of nonzero residue.

• We do not need the assumption about nonzero residue for the converse.

2.3. A higher order correction. Once we know that we have a convergent
sequence of resonance values as h → 0, we can use standard eigenvalue perturbation
theorems. In the resonance value expansion, we employ a result of Osborn [16] which
is valid for non-selfadjoint operators and also yields a correction term. The actual
result in [16] is more general, but we state it here for the case of norm convergence
on a Hilbert space.

Suppose X is a Hilbert space and Tn : X → X is a sequence of compact linear
operators such that Tn → T in norm. It then follows that the adjoint operators also
converge in norm. Let µ be a nonzero eigenvalue of T of algebraic multiplicity m.
It is well known that for n large enough, there exist m eigenvalues of Tn, µn

1 , . . . µ
n
m

(counted according to algebrai multiplicity) such that µn
j → µ as n → ∞, for each

1 ≤ j ≤ m.
Let E be the spectral projection onto the generalized eigenspace of T correspond-

ing to eigenvalue µ. The space X can be decomposed in terms of the range and null
space of E: X = R(E) ⊕N(E).

Theorem 2.3 (Osborn). Let φ1, φ2, . . . φm be a normalized basis for R(E). Then

there exists a constant C such that
∣

∣

∣

∣

∣

∣

µ− 1

m

m
∑

j=1

µn
j − 1

m

m
∑

j=1

〈(T − Tn)φj , φj〉

∣

∣

∣

∣

∣

∣

≤ C‖(T − Tn)|R(E)‖ · ‖(T ∗ − T ∗
n)|R(E∗)‖

To simplify the statement of the following theorem, we define the lower dimen-
sional operator DT0(λ) by

DT0(λ)v = −
∫

Ω

ε0(x
′)
∂G

∂λ
(x, 0, x′, 0)v(x′)dx′, (2.11)

and we leave off the subscripts j for the sequence {hj} of values of h going to zero.
Theorem 2.4. Assume we have a sequence {λh} ∈ C of resonance values of Th

for which λh → λ0 as h → 0, where λ0 ∈ C is a simple resonance value of T0 with

normalized resonance function u0 satisfying λ0T0(λ0)u0 = u0. Assume also that

λ2
0〈DT0(λ0)u0, u0〉 6= −1. (2.12)
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Then there exists C independent of h such that

|λh − λ0| ≤ Ch,

and furthermore

λh = λ0 + λ2
0

〈(T0(λ0) − Th(λ0))u0, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
+O(h2) (2.13)

Proof Note that

λhTh(λh)uh = uh

and

λ0T0(λ0)u0 = u0,

that is, 1
λh

is an eigenvalue of Th(λh) and 1
λ0

is an eigenvalue of T0(λ0). Also, from
Proposition 2.1, we know that

Th(λh) → T0(λ0)

in the operator norm. So, what we have are the eigenvalues of a convergent sequence
of compact operators. These operators, {Th(λh), T0(λ0)} , are not self-adjoint, but it
follows from the norm convergence that the adjoints also converge:

T ∗
h (λh) → T ∗

0 (λ0)

in the operator norm, with the same norm error. Since we assume that 1
λ0

is a simple
eigenvalue of T0(λ0), Theorem 2.3 yields

∣

∣

∣

∣

1

λ0
− 1

λh
− 〈(T0(λ0) − Th(λh))u0, u0〉

∣

∣

∣

∣

≤ ‖(T0(λ0) − Th(λh))u0‖ · ‖(T ∗
0 (λ0) − T ∗

h (λh))u0‖, (2.14)

Since

‖T ∗
0 (λ0) − T ∗

h (λh)‖ = ‖T0(λ0) − Th(λh)‖,

we have from Proposition 2.1,

∣

∣

∣

∣

1

λ0
− 1

λh
− 〈(T0(λ0) − Th(λh))u0, u0〉

∣

∣

∣

∣

≤ C (h+ |λ0 − λh|)2 .

If we multiply everything by λ0λh,

|λh − λ0 − λ0λh〈(T0(λ0) − Th(λh))u0, u0〉| ≤ C (h+ |λ0 − λh|)2 ,

which we manipulate to get

λh = λ0 + λ2
0〈(T0(λ0) − Th(λh))u0, u0〉

+ λ0(λh − λ0)〈(T0(λ0) − Th(λh))u0, u0〉 +O
(

(h+ |λh − λ0|)2
)

.
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Again using Proposition 2.1,

λh = λ0 + λ2
0〈(T0(λ0) − Th(λh))u0, u0〉 +O

(

(h+ |λh − λ0|)2
)

. (2.15)

Now, since the correction term above depends on λh, we need to expand the term
further. We can write

T0(λ0) − Th(λh) = (T0(λ0) − Th(λ0)) + (Th(λ0) − Th(λh)) (2.16)

and compute

(Th(λ0) − Th(λh)) =

∫

S

(h− ε0(x
′))(Gλ0

−Gλh
)(x, hζ, x′, hζ′)u0(x

′)dζ′dx′.

Note that since the range of T0 contains only functions that are independent of ζ, u0

must be independent of ζ. Since we are bounded away from the negative real axis, G
is analytic with respect to λ and so by standard Taylor expansion we obtain

(Th(λ0)−Th(λh)) =

∫

S

(h−ε0(x′))(λ0−λh)
∂G

∂λ

∣

∣

∣

λ=λ0

(x, hζ, x′, hζ′)u0(x
′)dx′dζ′+O(|λ0−λh|2).

Note that the integrand is now continuous. This yields, after expanding the exponen-
tial or Hankel function about h = 0,

(Th(λ0)−Th(λh)) =

∫

S

ε0(x
′)(λh−λ0)

∂G

∂λ

∣

∣

∣

λ=λ0

(x, 0, x′, 0)u0(x
′)dx′dζ′+O

(

(h+ |λ0 − λh|)2
)

.

(2.17)
Note the above integrand is independent of ζ′. Combining (2.17), (2.16) , and (2.15),

λh = λ0+λ
2
0〈(T0(λ0)−Th(λ0))u0, u0〉−λ2

0(λh−λ0)〈DT0(λ0)u0, u0〉+O
(

(h+ |λ0 − λh|)2
)

where DT0 is defined by (2.11). We now collect terms for (λh − λ0) to get

(λh−λ0)
(

1 + λ2
0〈DT0(λ0)u0, u0〉

)

= λ2
0〈(T0(λ0)−Th(λ0))u0, u0〉+O

(

(h+ |λ0 − λh|)2
)

.

At this point we need to use the assumption (2.12) to obtain

λh = λ0 +
λ2

0〈(T0(λ0) − Th(λ0))u0, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
+O

(

(h+ |λ0 − λh|)2
)

.

Recall that by the proof of Proposition 2.1,

‖T0(λ0) − Th(λ0)‖ = O(h)

in the operator norm, and so we have

λh − λ0 = O(h) +O
(

(h+ |λ0 − λh|)2
)

.

Since we assume that λh − λ0 → 0, this can only hold if

λh − λ0 = O(h).

This completes the proof. �

Remark 2.1. It is possible that the hypothesis (2.12) is related to the residue
of the generalized resolvent R0(λ). In particular, we conjecture that for a simple
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resonance value, (2.12) holds if and only if the residue is nonzero, i.e. the requirement
for convergence in Proposition 2.2.

The correction term above is not difficult to compute since it involves only apply-
ing integral operators to the limiting resonance function u0. However, one may want
to have an expression of the form

λh ≈ λ0 + hλ(1)

in which λ(1) is independent of h. The numerator of the correction we have studied
exactly in [14], for the case when λ0 was real. By that same analysis,

(T0(λ0) − Th(λ0))u0 = −h
∫

Ω

∫ 1/2

−1/2

Gλ0
(x, hζ, x′, hζ′)u0dζ

′dx′

+

∫

Ω

∫ 1/2

−1/2

ε0(x
′)(Gλ0

(x, hζ, x′, hζ′) −Gλ0
(x, 0, x′, 0))u0(x

′)dζ′dx′

= −h
∫

Ω

Gλ0
(x, 0, x′, 0)u0(x

′)dx′

+ h
ε0(x)u0(x)

2

(

ζ2 +
1

4

)

+ o(h). (2.18)

This yields the following corollary.
Corollary 2.5. Assume the hypotheses as in Theorem 2.4. Then

λh = λ0 + hλ2
0

〈g, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
+ o(h),

where

g(x) = −
∫

Ω

Gλ0
(x, 0, x′, 0)u0(x

′)dx′ +
ε0(x)u0(x)

2

(

ζ2 +
1

4

)

.

Note however that here the error is no longer guaranteed to be O(h2).

3. Numerical techniques. In this section, we investigate two numerical ap-
proaches for the computation of resonances of thin membranes. The first is via
Bérenger’s perfectly matched layer (PML) [1]. The second is a collocation discretiza-
tion of the integral equation formulation combined with the asymptotics developed
in the previous section. The numerical analyses of both these approaches for reso-
nance computation are presently open. Nonetheless, considerable insight into these
computational approaches can be gained by comparing them with each other.

First, we will exhibit an example with a disk where we can compute resonances
exactly. We will compute the approximations to these exact resonances using the
PML approach and compare. Since no error analysis is known for the PML eigenvalue
approximations, this will serve as validation of our first approach. Note that although
PML has been increasingly used for computation of open resonances [9, 11, 17], we
have not been able to locate a comparison of approximate and exact resonances in
the literature – another reason for including such a comparison here.

Next, we will examine thin high contrast homogeneous structures. Here will in-
vestigate the asymptotic integral equation approach along with PML. While the PML
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approach reduces to a large sparse generalized eigenvalue computation, the second ap-
proach yields a small dense nonlinear eigenvalue problem. We will establish that the
asymptotics are sound by testing the results against the ones obtained from PML.

Finally, we will use both the PML approach and asymptotics to compute a reso-
nance mode found in [5] for a periodic structure with a defect. The mode is localized
near the defect, that is, it exhibits photonic band gap type behavior. Also, it has
a high quality factor, indicating that in the time domain its decay is slow. In [5]
the mode was computed using a FDTD (finite difference time domain) method, as is
typically the case.

3.1. A disk: exact resonances and PML validation.. We will now calculate
the first few resonance modes of a circular homogeneous dielectric disk of radius a
having (constant) permittivity εd placed in an infinite vacuum. If the mode is written
in the form

U(x, t) = e−iktu(x) =

{

e−iktu+(x), |x| > a,

e−iktu−(x), |x| ≤ a,

the governing equations are

∆u+ + k2u+ = 0, when r > a, (in vacuum), (3.1)

∆u− + k2εdu
− = 0, when r ≤ a, (in the dielectric), (3.2)

(u+ − u−)
∣

∣

r=a
=

∂

∂r
(u+ − u−)

∣

∣

∣

∣

r=a

= 0, (compatibility conditions). (3.3)

In addition, u+ must be an outgoing wave at infinity. We use separation of variables.
Substituting u = R(r)Θ(θ) above and proceeding in the standard way, we conclude
that

u+ = H
(1)
ñ (kr)(Ãeiñθ + B̃e−iñθ) in vacuum, (3.4)

u− = Jn(k
√
εdr)(Ae

inθ +Be−inθ)n in the dielectric. (3.5)

for some integers n, ñ = 0, 1, 2, . . .. Here we have picked solutions that are outgoing
in the vacuum region and bounded inside the dielectric.

Now, the first transmission condition of (3.3) implies n = ñ,

Ã = A
Jn(k

√
εda)

H
(1)
n (ka)

, and B̃ = B
Jn(k

√
εda)

H
(1)
n (ka)

, (3.6)

and the second condition of (3.3) further yields

(R−)′(a)Θ−(θ) = (R+)′(a)Θ+(θ).

where the − and + signify the interior and exterior of the disk respectively. This
implies that for each n, the values of k must satisfy

√
εd J

′
n(k

√
εda)H

(1)
n (ka) = (H(1)

n )′(ka) Jn(k
√
εda). (3.7)

We have not been able to analytically solve this equation for k. However, we can obtain
numerical approximations to high precision by finding the roots of the function

fn = k

(√
εd J

′
n(k

√
εda)H

(1)
n (ka) − (H(1)

n )′(ka) Jn(k
√
εda)

)

, (3.8)
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Table 3.1
A few exact resonance values kn,m

kn,m n = 0 n = 1 n = 2 n = 3
m = 1 0.436676 − 0.303945i 1.115540 − 0.239628i 1.756263 − 0.174352i 2.384047 − 0.121696i

m = 2 1.977701 − 0.279097i 2.716779 − 0.266504i 3.404368 − 0.245056i 4.064044 − 0.220085i

m = 3 3.542742 − 0.276273i 4.298557 − 0.271174i 5.013898 − 0.260996i 5.702569 − 0.248231i

where we have multiplied by k to remove a singularity.

We enumerate the exact resonance values of this problem as kn,m, as for each n,
we have a sequence of roots for (3.8), indexed by m. A few exact resonance values
obtained for the case

a = 1 and εd = 4

are displayed in Table 3.1. Note that for n > 0, each resonance value kn,m is of
multiplicity two (both A and B in (3.5) are degrees of freedom), while for n = 0 the
resonance values k0,m are simple.

Now we report on some discrete approximations to these exact resonances for the
disk. These approximations are computed using finite elements and PML. The exact
problem can be cast as the eigenvalue problem of finding complex numbers λ ≡ k2

and nontrivial eigenfunctions u satisfying

−∆u = λ ε(x)u, on R
2, where ε(x) =

{

4, if |x| ≤ 1,

1, if |x| > 1,

with the additional condition that u is an outgoing wave at infinity. (Note that the
dielectric parameters are the same as that used to obtain Table 3.1.) We will use
PML as an absorbing layer to exponentially damp the solution outside a fixed radius
r1, and then truncate the computational domain for some r3r1. In the truncated
finite domain, we use the finite elements as the discretization method. This is a well
known technique used for source problems [1, 2, 3] with outgoing solutions, although
its applicability to eigenvalue problems is less studied.

We first briefly describe the truncated PML and its finite element approximation.
Our PML parameters are closer to [2, 3] than the original ones of Bérenger [1]. In the
region r < 1, we set the actual coefficients given by our ε. The artificial coefficients
forming PML are set outside radius r = r1 ≥ 1. In the region r1 < r < r2, we have
a transitional variable coefficient, and in the region r2 < r < r3 we have a constant
artificial coefficient. Define

σ̃(r) =



















0, if r < r1,

s(r)

s(r2)
, if r1 < r < r2,

1, if r > r2,

σ(r) =















0, if r < r1,

d

dr
(rσ̃(r)), if r1 < r < r2,

1, if r > r2,

(3.9)
where

s(r) =

∫ r

r1

(t− r1)
2(t− r2)

2 dt.
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(a) The case r3 = 3 (b) The case r3 = 20

Fig. 3.1. Finite element meshes (the dielectric is in darker shade)

Set γ = 1 + iσ and γ̃ = 1 + iσ̃. Then, with the coefficient matrices set to

A(x) =
1

r2

(

γx2 + γ̃y2 xy(γ − γ̃)
xy(γ − γ̃) γy2 + γ̃x2

)

, B(x) = ε(x)γγ̃

(

1 0
0 1

)

,

the weak formulation of the truncated PML resonance problem is to find eigenvalues
λ ≡ k2 satisfying

〈A∇u,∇v〉 = λ〈Bu, v〉, for all v ∈ H1
0 (Br3

), (3.10)

for some nontrivial eigenfunction u in H1
0 (Br3

). Here Br3
= {x ∈ R2 : |x| < r3}, and

〈·, ·〉 denotes the L2(Br3
) inner product. To discretize (3.10), we used Lagrange finite

elements of degree one, on the meshes shown in Figure 3.1(a) and 3.1(b). The two
meshes correspond to the two values of r3 that we will investigate.

The discretization results in a large sparse generalized eigenvalue problem

Ax = λBx, (3.11)

where Aij = 〈A∇φj ,∇φj〉, Bij = 〈Bφj , φi〉, and φi’s are the usual nodal finite element
basis. Note that this is a standard linear eigenvalue problem, because we have used
PML coefficients that do not depend on frequency (unlike the ones in the original paper
of Bérenger [1]). We shall see that in the asymptotic integral equation approach in the
next subsection, we will get a nonlinear eigenproblem. Now, recall the exact resonant
k values calculated in Table 3.1. We compare the square roots of the eigenvalues
computed by (3.11) with the exact values of Table 3.1.

The square root of the full spectrum of (3.11) in the case of the mesh in Fig-
ure 3.1(a) (the r3 = 3 case), together with the first few exact resonance values are
shown in Figure 3.2. As marked in the figure, a number of points in the computed
spectrum lie far away from the exact resonances and must clearly be considered spu-
rious.

Next, we systematically investigate the convergence of the first ten non-spurious
resonance values to the exact value with respect to the discretization meshsize. Start-
ing with the mesh in Figure 3.1(a), we perform a series of successive refinements. The
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Fig. 3.2. Computed resonances for the case r3 = 3

mesh at refinement level J is obtained by joining the midpoint of the edges of each
triangle of the previous level J − 1. At each refinement, the coordinates of the newly
created vertices on the dielectric-air interface are adjusted so that they lie exactly
on the unit circle. Let us denote the by kJ

ℓ the ℓ-th resonance value computed at
refinement level J , where the ordering in ℓ is with respect to increasing real part,
considering only the non-spurious values. The results are tabulated in Table 3.2. The
definitions of mean orders of convergence in the table are as follows:

Apparent mean order of convergence for ℓth resonance :=
1

3

4
∑

J=2

log2

( |kJ
ℓ − kJ−1

ℓ |
|kJ

ℓ − kJ+1
ℓ |

)

,

Actual mean order of convergence for ℓth resonance :=
1

3

4
∑

J=2

log2

(

eJ
ℓ

eJ+1
ℓ

)

,

where for each ℓ, the true error eJ
ℓ is defined by eJ

ℓ = |kJ
ℓ − kn,m| for the n,m values

indicated in the first column of the table (under the title “Compare with kn,m”). The
“apparent” rate quantifies the order of difference of approximations from successive
refinements, and is a standard way to measure convergence rate in cases where we
have no knowledge of the exact solution.

It is important to note the difference between the apparent and actual rates
of convergence in the case of some resonance values (see rows with ℓ = 1, 2, 3 in
Table 3.2). These suggest that although the computed resonances appear to converge
at a second order rate, they converge to the wrong limit. We conjecture that this is
due to the spectral changes caused by the truncation of PML at radius r3. Consider
the results in Table 3.3, where we report the resonance values obtained using the mesh
in Figure 3.1(b), with r3 = 20. Clearly there is a marked improvement in the actual
convergence rates, supporting the conjecture that r3 needs to be sufficiently large.

To summarize, we note the following difficulties encountered with the PML ap-
proach:
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Table 3.2
Apparent and actual convergence of computed resonance values

Case r3 = 3

ℓ

ffl

J

Computed resonance approximations kJ
ℓ

(displayed up to 3 digits)

Level 1 Level 2 Level 3 Level 4 Level 5
1 0.441 − 0.202i 0.432 − 0.207i 0.430 − 0.208i 0.429 − 0.209i 0.429 − 0.209i

2 1.173 − 0.239i 1.129 − 0.240i 1.118 − 0.241i 1.115 − 0.241i 1.114 − 0.241i

3 1.175 − 0.236i 1.129 − 0.239i 1.118 − 0.241i 1.115 − 0.241i 1.114 − 0.241i

4 1.901 − 0.209i 1.793 − 0.181i 1.765 − 0.176i 1.759 − 0.175i 1.757 − 0.174i

5 1.902 − 0.151i 1.793 − 0.170i 1.766 − 0.173i 1.759 − 0.174i 1.757 − 0.174i

6 2.176 − 0.356i 2.025 − 0.296i 1.990 − 0.283i 1.981 − 0.280i 1.978 − 0.279i

7 2.692 − 0.125i 2.463 − 0.123i 2.404 − 0.122i 2.389 − 0.122i 2.385 − 0.122i

8 2.700 − 0.150i 2.464 − 0.128i 2.404 − 0.123i 2.389 − 0.122i 2.385 − 0.122i

9 3.070 − 0.380i 2.814 − 0.294i 2.742 − 0.273i 2.723 − 0.268i 2.718 − 0.267i

10 3.128 − 0.374i 2.822 − 0.295i 2.744 − 0.274i 2.724 − 0.268i 2.719 − 0.267i

Apparent mean order Difference between resonances from successive refinements
ℓ of convergence |k1

ℓ
− k2

ℓ
| |k2

ℓ
− k3

ℓ
| |k3

ℓ
− k4

ℓ
| |k4

ℓ
− k5

ℓ
|

1 1.90 0.0100 0.0029 0.0007 0.0002
2 1.97 0.0440 0.0114 0.0029 0.0007
3 1.96 0.0452 0.0118 0.0030 0.0008
4 2.00 0.1119 0.0277 0.0070 0.0018
5 1.99 0.1105 0.0276 0.0070 0.0018
6 2.02 0.1628 0.0372 0.0096 0.0024
7 1.97 0.2282 0.0592 0.0151 0.0038
8 1.98 0.2372 0.0597 0.0153 0.0039
9 1.92 0.2698 0.0744 0.0197 0.0050
10 1.96 0.3160 0.0806 0.0212 0.0054

Compare Actual mean order Actual errors
with kn,m of convergence J = 2 J = 3 J = 4 J = 5

|kJ
1
− k0,1| 0.01 0.0971 0.0957 0.0954 0.0953

|kJ
2
− k1,1| 0.90 0.0134 0.0024 0.0015 0.0021

|kJ
3
− k1,1| 0.92 0.0139 0.0024 0.0015 0.0020

|kJ
4
− k2,1| 1.98 0.0370 0.0093 0.0024 0.0006

|kJ
5
− k2,1| 1.99 0.0370 0.0093 0.0023 0.0006

|kJ
6
− k0,2| 1.98 0.0501 0.0128 0.0033 0.0008

|kJ
7
− k3,1| 1.98 0.0793 0.0201 0.0051 0.0013

|kJ
8
− k3,1| 1.98 0.0802 0.0205 0.0052 0.0013

|kJ
9
− k1,2| 1.96 0.1009 0.0264 0.0067 0.0017

|kJ
10
− k1,2| 1.96 0.1090 0.0285 0.0073 0.0018

Degrees of
freedom: 233 969 3,953 15,969 64,193

Table 3.3
Convergence when the larger domain is used, cf. Table 3.2.

Case r3 = 20
Compare Actual errors Mean order
with kn,m J = 1 J = 2 J = 3 J = 4 J = 5 of convergence

|kJ
1
− k0,1| 0.1096 0.0342 0.0105 0.0034 0.0020 1.44

|kJ
2
− k1,1| 0.1283 0.0411 0.0122 0.0032 0.0008 1.83

|kJ
3
− k1,1| 0.1299 0.0412 0.0122 0.0032 0.0008 1.83

|kJ
4
− k2,1| 0.1763 0.0497 0.0140 0.0036 0.0009 1.90

|kJ
5
− k2,1| 0.1961 0.0545 0.0155 0.0040 0.0010 1.90

|kJ
6
− k0,2| 0.1376 0.0487 0.0130 0.0033 0.0008 1.84

|kJ
7
− k3,1| 0.2965 0.0759 0.0201 0.0051 0.0013 1.97

|kJ
8
− k3,1| 0.3089 0.0781 0.0205 0.0052 0.0013 1.97

|kJ
9
− k1,2| 0.2237 0.0756 0.0182 0.0046 0.0012 1.89

|kJ
10
− k1,2| 0.2229 0.0762 0.0186 0.0047 0.0012 1.89

Degrees of
freedom: 427 1,739 7,021 28,217 113,137
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• It is necessary to separate the true eigenvalues from the spurious eigenvalues.
• Although eigenvalues may appear to converge, they can converge to the wrong

value, if the domain is not large enough.
These problems were readily identified in this validation experiment because we

know the exact solution. However, in a situation without any a priori knowledge of
the exact solution, it is important to keep in mind that such difficulties can occur.
For instance, in our experiments with PML in cases when exact solution is unknown
(reported in later subsections), we needed to separate the true eigenvalues from the
spurious eigenvalues. To identify the true eigenvalues, we used the following tech-
niques: (i) We compared the variations in the computed spectrum when PML param-
eters were varied. (ii) We also compared the spectrum computed with the standard
rectangular (tensor product type [3]) PML with the results from the circular PML
in (3.9). The spectral points that persisted across these changes were considered to be
the real eigenvalues. (We shall not report these details for brevity.) It is more difficult
to overcome the discrepancy between the apparent and actual convergence. We typi-
cally experiment with an increasing set of r3 values, holding meshsize (approximately)
fixed, until the variation in the eigenvalues of interest becomes negligible. This often
requires meshes with a large number of degrees of freedom and hence entails expensive
computations.

3.2. A homogeneous thin membrane.. In this subsection, we will describe
the integral equation approach to the computation of resonances, and compare the
results from it to those obtained with PML. The resonating object is a thin homoge-
neous dielectric membrane occupying the rectangular region [−0.5, 0.5]× [−h/2, h/2].
The dielectric constant is set to the following function:

ε(x, z) =

{

6/h, if |z| < h/2, x ∈ [−0.5, 0.5]

1, otherwise,
(3.12)

i.e., we choose ε0(x) ≡ 6. For our numerical experiments here, we choose a geometri-
cally decreasing sequence of values for h.

Let us first describe the collocation discretization of the asymptotic integral equa-
tion derived in Section 2. The computational domain, which is now [−0.5, 0.5], is
meshed by a grid of evenly spaced points set at a distance δ apart. Discrete ap-
proximations to resonance modes are now in the space Vδ of continuous functions
which are linear in between adjacent grid points. Define the matrix valued function
S : C 7→ CN×N by S(λ) = I − λT(λ), where I denotes the identity matrix, and the
entries of the matrix T(λ) are defined by

[T(λ)]ij = −
∫ 1/2

−1/2

ε0(x
′)Gλ(xi, 0, x

′, 0)ψj(x
′) dx′. (3.13)

Here ψj is the unique function in Vδ which is one at the j-th grid point and zero at all
other grid points. With these notations, the discrete problem is the dense nonlinear

eigenvalue problem of finding complex numbers λ and corresponding nontrivial vectors
x satisfying

S(λ) x = 0. (3.14)

This can be rewritten as a nonlinear system for λ and x, to which Newton’s method or
its variants can be applied. To compute the matrix entries defined by (3.13) we split
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the integral into integrals over each mesh interval (of length δ). On those intervals
where the integrand is smooth, the integrals are approximated by high order Gaussian
quadratures. We must be more careful in the intervals containing the singularity of
Gλ. On such elements, we use an expansion of the integrand to approximate the
integral. In all cases, our integral approximations are at least O(δ7) accurate.

To solve (3.14), we use the residual inverse iteration analyzed by Neumaier [15]:
Algorithm 3.1 (Residual inverse iterations).
1. Input an initial approximation λ0 close to the eigenvalue of interest. If S(λ0)

is invertible, continue.
2. Set (Wilkinson) initial guess x0 for the eigenvector:

(a) Perform the QR-factorization QR = S(λ0).
(b) Let b = Q n, where n is the vector whose components are 1.
(c) Solve the linear system S(λ0)x̃0 = b, by x̃0 = R−1n.
(d) Normalize by x0 = x̃0/e

∗x̃0, where e is the unit vector with one in the
position of the largest entry of x̃0.

(e) Set y∗ = e∗R−1Q∗ for use later.
3. For l = 0, 1, 2, . . . (until a stopping criteria is met) do:

(a) λl+1 = λl −
y∗S(λl)xl

y∗S′(λl)xl
, where [S′(z)]ij =

d

dz
[S(z)]ij .

(b) x̃l+1 = xl − R−1Q∗S(λl+1)xl

(c) Normalize by xl+1 = x̃l+1/‖x̃l+1‖2.
These iterations can be stopped once |λl+1−λl| is smaller than a prescribed tolerance.
In step 3a of the algorithm, we have used one step of a one dimensional Newton iter-
ation. We can substitute this step with multiple Newton iterations or other nonlinear
solvers.

This algorithm works well in our application if good initial approximations λ0

are given. In order to find good initial guesses, we borrowed a technique used for
plotting the pseudospectra [18] of matrices. Namely, if σmin(S) denotes the smallest
singular value of S, then it is easy to see that

σmin(S(λ)) < δ if and only if ‖S(λ)−1‖2 > 1/δ. (3.15)

Motivated by this, before launching the residual inverse iterations for fine meshes,
we first use a coarse mesh to obtain an inexpensive matrix approximation S(λ). We
then compute the minimum singular value σmin(S(λ)) on a grid of λ in the complex
plane. For coarse meshes, S(λ) is a small matrix, so this computation is fast. Because
of (3.15), the plot of the minimum singular values locates regions where the resolvent
S(λ) is nearly singular, thus providing good initial guesses for Algorithm 3.1. For
our current example of the homogeneous thin membrane, a coarse mesh resulting in
a 20 × 20 matrix function S(λ) yields the contour plot of σmin shown in Figure 3.3.
Note that since k =

√
λ is what we shall report, Figure 3.3 shows σmin as a function

of k (rather than λ).
Next, we report the first few resonance values computed using Algorithm 3.1

applied to (3.14). We mesh the interval [−0.5, 0.5] uniformly with a mesh of meshsize
δ0 = 1/20. To perform a study of convergence with respect to meshsize, we refine this
coarse mesh, by splitting each grid element into two equal elements, so the meshsize
at the refinement level J is δJ = 2−(J−1)/20. Denoting the ℓ-th resonance value

computed using the mesh at refinement level J as kJ,∞
ℓ , the differences in the computed

resonance values at successive refinements are are collected in Table 3.4. Examining
these differences, we conjecture that the convergence rate of collocation discretization
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Fig. 3.3. Contour plot indicating the resonant frequencies in the k plane.

Table 3.4
Resonance values (square roots k =

√
λ) from the collocation discretization of the asymptotic

integral equation

ℓ |k
1,∞
ℓ

− k
2,∞
ℓ

| |k
2,∞
ℓ

− k
3,∞
ℓ

| |k
3,∞
ℓ

− k
4,∞
ℓ

| |k
4,∞
ℓ

− k
5,∞
ℓ

| |k
5,∞
ℓ

− k
6,∞
ℓ

| |k
6,∞
ℓ

− k
7,∞
ℓ

| k
∗,∞
ℓ

:= k
7,∞
ℓ

1 0.0002044 0.0000561 0.0000153 0.0000041 0.0000011 0.0000003 0.5650936 − 0.2220208i

2 0.0020219 0.0005452 0.0001460 0.0000389 0.0000103 0.0000027 1.1080760 − 0.0456433i

3 0.0072890 0.0019383 0.0005112 0.0001341 0.0000350 0.0000091 1.5159978 − 0.0284500i

4 0.0163478 0.0043339 0.0011364 0.0002959 0.0000767 0.0000198 1.8255240 − 0.0175582i

5 0.0303687 0.0080609 0.0021085 0.0005468 0.0001411 0.0000363 2.0959593 − 0.0137123i

6 0.0490834 0.0130928 0.0034242 0.0008862 0.0002280 0.0000584 2.3307014 − 0.0110730i

7 0.0733213 0.1801607 0.0073143 0.0018911 0.0004850 0.0001239 2.7440293 − 0.0080844i

8 0.0964783 0.0377803 0.0099407 0.0025712 0.0006591 0.0001681 2.9294654 − 0.0065552i

9 0.0523806 0.0493936 0.0130412 0.0033757 0.0008650 0.0002205 3.1026198 − 0.0063434i

10 0.0090552 0.0628079 0.0166530 0.0043152 0.0011058 0.0002817 3.2674525 − 0.0052055i

for the resonance values is O(δ2) where δ is the meshsize. The last column of Table 3.4
lists the resonance values computed using the finest mesh.

We now compare these resonance values with those obtained using the PML
approach. We enclose the dielectric in [−0.5, 0.5] × [−h/2, h/2] by circles of radius
r1, r2 and r3 and set the PML parameters as described in § 3.1. We experimented
with a number of r3 values and concluded that selecting r3 = 20 seems appropriate
to get good approximations in this example. We also needed to isolate the spurious
eigenvalues from the interesting ones (see remarks at the end of § 3.1). We shall
consider the following geometrically decreasing sequence of membrane thicknesses:

h =
0.25

2L−1
, L = 1, 2, . . . , 7.

For each L value, we mesh the domain (Br3
) such that mesh aligns with the dielectric

boundaries. Furthermore, the meshes are such that for all values of h considered, the
dielectric region will always have four layers of elements. The meshsize inside the
dielectric is thus maintained approximately at h/4 by constraining the angles of the
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Table 3.5
Difference between the asymptotic and PML resonance approximations

ℓ |kpml,1
ℓ − k∗,∞

ℓ | |kpml,2
ℓ − k∗,∞

ℓ | |kpml,3
ℓ − k∗,∞

ℓ | |kpml,4
ℓ − k∗,∞

ℓ | |kpml,5
ℓ − k∗,∞

ℓ |
1 0.0411 0.0205 0.0101 0.0048 0.0021
2 0.1655 0.0864 0.0444 0.0226 0.0115
3 0.4086 0.2144 0.1102 0.0561 0.0284
4 0.7001 0.3684 0.1896 0.0965 0.0488
5 0.6427 0.5498 0.2841 0.1448 0.0733
6 0.7790 0.7500 0.3884 0.1981 0.1003

mesh triangles to never deteriorate below 25 degrees. With ε(x, y) as in (3.12), we
then solve the resulting finite element eigenproblem (3.11) for the first few eigenvalues
and compare them with the resonance approximations previously displayed in the last
column of Table 3.4.

One of our aims in this comparison is the verification of the theoretically predicted
asymptotic convergence rate of O(h) of Theorem 2.4. To realize this goal, we must
avoid discretization errors as much as we can, but without going to prohibitively ex-
pensive meshsizes. Note that the first six resonance values in Table 3.4 have stabilized
up to four digits at the seventh level of refinement, so we denote these six values by
k∗,∞

ℓ , ℓ = 1, 2, . . . , 6, and use them for the comparison with the corresponding first six
resonance approximations from PML. In order to avoid finite element discretization
errors in the comparable PML resonance approximations, we perform multiple refine-
ments of the finite element mesh until their first six resonance approximations have
no variation in at least the first two significant digits. Denoting these approximations
by kpml,L

ℓ for the case of membrane thickness h = 0.25/2L−1, we display in Table 3.5,
the distance of these approximations to the asymptotic ones. The linear asymptotic
convergence rate is clearly apparent.

Next we apply Corollary 2.5 to attempt to improve the asymptotic resonance
approximations from the problem in the previous subsection. Recall that from the
residual correction procedure described there, we have limiting resonance value λ0

and a discrete approximation to the corresponding resonance function u0(x). We will
apply these values to calculate

λ0 + hλ1,

to get what should be a better approximation to the resonance value λh for a given
total slab thickness h. Note that the correction

λ1 = λ2
0

〈g, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
where

g(x) = −
∫

Ω

Gλ0
(x, 0, x′, 0)u0(x

′)dx′ +
ε0(x)u0(x)

2

(

ζ2 +
1

4

)

,

involves merely double integrations over Ω, in this case a one dimensional domain. In
the second term in the numerator the integration in ζ can be calculated exactly. The
integral in the denominator is

〈DT0(λ0)u0, u0〉 = −
∫ .5

−.5

∫ .5

−.5

iε0(x
′)

8
√
λ0

H
(1)
1

(

√

λ0|x− x′|
)

|x− x′|u0(x
′)u0(x)dx

′dx.
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Fig. 3.4. The first six computed resonance values λ in the complex plane for varying slab
thickness.
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Fig. 3.5. Log-log plot of the absolute error between the PML computed and corrected asymptotic
resonance values.

For both of the double integrals, we compute the inner integral using the piecewise
linear basis functions for u0, and for the outer integral we use the trapezoid rule. In
all computations that follow the meshsize was δ = 1/640, the sixth refinement level,
for which we believe the calculations of the first six limiting resonance values λ0 are
accurate up to about four significant digits. Recall that the PML values used from
the previous section are accurate to about two significant digits.

Figure 3.4 shows all of the computed values plotted on the complex plane, and
Figure 3.5 gives a log-log plot of the errors. For the first resonance, the corrected
asymptotic values are within the presumed accuracy of the PML approximation for
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all values of h, hence we see the convergence flattening in the log-log plot. For the
third resonance, the convergence appears only slightly more than linear, but all of the
other values exhibit the significantly better than linear convergence expected from
Corollary 2.5.

Remark 3.1. The approximation from [14] used to obtain Corollary 2.5 deteri-
orates for larger frequencies, and we therefore expect that for the higher numbered
resonances, the formula from Theorem 2.4 will be far superior. The computation of
this more accurate correction will involve computing the application of the higher
dimensional integral operator Th, but will not require any inversion.

3.3. A photonic membrane.. In this subsection, we will describe the results of
computation from a thin photonic membrane having a periodic dielectric pattern with
a defect. The structure is shown in Figure 3.6 and was previously investigated in [5]
by time domain methods. We will give results from both the PML and the asymptotic
integral equation approaches. Unlike the previous subsections, our purpose here is not
a convergence study, but rather a comparison with the results in [5]. The structure
in Figure 3.6 is invariant in the third direction, so the model is reduced to one in
the xz plane perpendicular to the symmetry direction. Note that while fully periodic
structures have band gaps, this structure is not periodic in that it has a defect in the
center and has finite extent in the plane. Hence instead of defect eigenvalues, we seek
resonances.

We choose the dielectric constant as in [5], namely, in the central defect column
and the fourteen off-center columns, ε(x) is 13, while in the remaining region it equals
one. We set the scaling parameter a in Figure 3.6 to 1/14.3 so that the xz cross section
fits into [−0.5, 0.5]× [−h/2, h/2] with h = 0.3a. Since this h is small, it is reasonable
to attempt the asymptotic approach.

For the PML calculations, we enclose the xz cross section of the photonic structure
by disks of radius r1 = 0.6, r2 = 2 and r3 = 10 and set the PML parameters as in
the previous sections. This domain is meshed such that there are at least four layers
of elements across the membrane thickness (and the mesh coarsen away from the
dielectric). The computations then proceed similarly, except that to obtain higher
accuracy, we now use Lagrange finite elements of degree five. The results are shown
in Figure 3.8. The mode shown in Figure 3.8(a) is qualitatively similar to the one in [5,
Fig. 5]. Furthermore, its corresponding resonance value is such that ka/2π ≈ 0.321, a
number close to the frequency of 0.313 reported in [5]. As seen from Figure 3.8(a), this
mode is highly localized near the defect. Although there are many other resonances,
as seen from Figure 3.8(d), localization near the defect or even near the membrane
seems to be uncommon. (One other mode that is somewhat localized within the
membrane is seen in the second plot of Figure 3.8(d).)

For the asymptotic approach, we set ε0 = εh with the ε and h as described above,
and solve the resulting one dimensional nonlinear eigenproblem on Ω = [−0.5, 0.5].
The initial guesses for the nonlinear eigenvalue solver were obtained using the pseudospectrum-
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Fig. 3.8. A few resonances of the photonic membrane. (a) The highly localized resonance mode
corresponding to k ≈ 28.7878 − 0.0017i obtained using PML. (b) The corresponding mode obtained
using the asymptotic approach, plotted on the limiting domain [−0.5, 0.5]. (c) Point plot of a few
resonant k values computed using PML. (d) The modes corresponding to the k values circled in (c).
(In all plots of the resonance modes, only the real part is plotted and only the region r < r1 is
shown.)



26

Table 3.6
A few values of resonances k for the photonic membrane

Values from PML Asymptotic values Corrected asymptotic values
20.3154− 0.4704i 17.8719 − 0.2655i 19.9420− 0.4049i
22.6512− 0.2292i 19.7458 − 0.1116i 22.7624− 0.1228i
24.2375− 0.0658i 20.3675 − 0.0348i 23.7018− 0.0493i
28.7878− 0.0017i 23.0690 − 0.0006i 28.0236− 0.0005i
40.9258− 0.6283i 29.7120 − 0.1592i 39.1908− 0.4074i

like plot in Figure 3.7 (computed as described previously – see Figure 3.3). A few
resonance values obtained using Algorithm 3.1 are reported in Table 3.6. The table
also gives the corresponding resonance approximations from the PML calculations.
There is good agreement between the PML and asymptotic values, especially after
the correction. The most interesting mode is of course the one localized in the defect.
The limiting, uncorrected, resonance value for this mode is such that ka/2π ≈ 0.257,
and produced the nonlinear eigenfunction in Figure 3.8(b). This qualitatively resem-
bles not only the mode plot in [5, Fig. 5], but also the trace of the corresponding mode
obtained from PML (Figure 3.8(a)) on the x-axis (the centerline of the dielectric).
The corrected asymptotic resonance value is such that ka/2π ≈ 0.311, very close to
the value 0.313 reported in [5].

Considering that the PML eigenvalue problem we solved is of size 221201×221201,
while the asymptotic problem is only of size 2289 × 2289, the advantages of the
asymptotic approach are clearly evident for this particular geometry.

4. Discussion. We propose two methods for calculating resonance associated
with the scalar wave equation. The first method is suited for thin, high index struc-
tures which are gaining popularity in the photonic bandgap community. It is an
asymptotic method that exploits the specifics of the problem, and allows for the
calculation of resonance to be carried out in one dimension less than the spatial di-
mension of the problem. The second method, based on the finite element method
with the PML, is a general approach which is not restricted to thin structures. In this
work, we examine the convergence properties of the finite element approach and used
it to verify the approximation properties of the asymptotic method. A final set of
calculations with both methods reproduce a photonic band gap resonance calculation
reported in the literature.

For a thin membrane structure with high index, we find that the asymptotic
method (2.3) is particularly effective. When discretized, it leads to a dense, but small,
nonlinear eigenvalue problem. While we established approximation properties of the
method, the numerical evidence is quite convincing. A higher order correction, which
is easy to implement, provides more accuracy at a low cost. In comparison with the
PML approach, the asymptotic method has the clear advantage of a smaller system,
brought about by the dimensional reduction. Its disadvantage lie in the complications
involved in solving a dense nonlinear eigenproblem.

The finite element PML approach is attractive because the matrices involved are
sparse and the eigenvalue problem to find resonance is linear. It is also more widely
applicable. One challenge in using this method is the presence of spurious modes.
Our experience is that it is possible to identify spurious modes. Another unattractive
feature of the PML approach is that the resonance values may appear to converge
under refinement, but to incorrect limits. Our experience with this method, while
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limited, does gives us hope that it is possible to deal with these difficulties, and that
it is possible to develop a robust finite element based method for calculating resonance.
It remains to be seen however if it is a viable alternative to simple FDTD calculations.

Acknowledgments. The authors thank Joseph Pasciak for several enlightening
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