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A mass conserving mixed stress formulation for the Stokes equations
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We propose a new discretization of a mixed stress formulation of the Stokes equations. The velocity u is
approximated with H(div)-conforming finite elements providing exact mass conservation. While many
standard methods use H1-conforming spaces for the discrete velocity, H(div)-conformity fits the con-
sidered variational formulation in this work. A new stress-like variable σ equalling the gradient of the
velocity is set within a new function space H(curldiv). New matrix-valued finite elements having contin-
uous “normal-tangential” components are constructed to approximate functions in H(curldiv). An error
analysis concludes with optimal rates of convergence for errors in u (measured in a discrete H1-norm),
errors in σ (measured in L2) and the pressure p (also measured in L2). The exact mass conservation prop-
erty is directly related to another structure-preservation property called pressure robustness, as shown by
pressure-independent velocity error estimates. The computational cost measured in terms of interface
degrees of freedom is comparable to old and new Stokes discretizations.
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1. Introduction

We introduce a new method for the mixed stress formulation of the Stokes equations. Let u and p be
the velocity and pressure respectively. Assume that we are given an external force f , the kinematic
viscosity ν and a bounded domain Ω ⊂ Rd (d = 2 or 3) with Lipschitz boundary ∂Ω . The standard
velocity-pressure formulation


−div(ν∇u)+∇p = f in Ω ,

div(u) = 0 in Ω ,

u = 0 on ∂Ω ,

(1.1)
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can be reformulated by introducing the variable σ = ν∇u as follows

1
ν

σ −∇u = 0 in Ω ,

div(σ)−∇p =− f in Ω ,

div(u) = 0 in Ω ,

u = 0 on Γ .

(1.2)

Many authors have studied this formulation previously, e.g., Farhloul & Fortin (2002, 1997, 1993);
Farhloul (1995). The initial interest in this formulation as a numerical avenue appears to be due to the
fact that fluid stresses can be computed merely by algebraic operations on σ (i.e., no differentiation of
computed variables is needed). In this paper, we study the discretization errors and certain interesting
structure-preserving features of a new numerical method based on (1.2).

Although both formulations are formally equivalent, the mixed stress formulation (1.2) requires less
regularity on the velocity field u. When considering a variational formulation of the classical velocity-
pressure formulation (1.1), the proper spaces for the velocity and pressure are given by H1

0 (Ω ,Rd)
and L2

0(Ω), respectively. Here H1
0 (Ω ,Rd) is the standard vector valued Sobolev space of order one

with zero boundary conditions and L2
0(Ω) is the space of square integrable functions with zero mean

value. This pair of spaces fulfills the inf-sup condition or the LBB condition. Moreover, the divergence
operator from H1

0 (Ω ,Rd) to L2
0(Ω) is surjective. Finite element discretizations of the velocity-pressure

formulation (1.1) is an active area of research John et al. (2017). While many pairs of discrete velocity-
pressure spaces are known to satisfy the discrete LBB condition (needed to prove stability), not all of
them have the property that the divergence operator from the discrete velocity space to the discrete
pressure space is surjective. Methods that have this surjectivity property are particularly interesting
because they provide numerical velocity approximations that are exactly divergence free, leading to
exact mass conservation.

Exact mass conservation (and consistency) further leads to a structure-preservation property called
pressure robustness. A feature of solutions of (1.1) is that when the load f changes irrotationally (i.e.,
when f is perturbed by a gradient field), then the fluid velocity u does not change (since the additional
force can be balanced solely by a pressure gradient). Indeed, since divergence-free functions are L2-
orthogonal to the irrotational part of f , and since the velocity u is uniquely determined within the
divergence free subspace of H1

0 (Ω ,Rd), the velocity cannot be altered by irrotational changes in f .
This property is not preserved by all finite element discretizations – see Linke (2014) – leading to
velocity error estimates that depend on the pressure approximation. A practical manifestation of this is
a phenomenon akin to “locking,” where the velocity error increases as ν → 0 (even if the pressure error
remains under control). Methods that do not exhibit this limitation are called pressure robust methods.
In the recent works of Brennecke et al. (2015); Lederer et al. (2017a); Linke (2012); Linke et al. (2016),
considering different velocity and pressure spaces, it was shown that a (non-conforming) modification
of the load (right hand side) allows one to obtain optimal pressure-independent velocity error estimates.

An alternative to this load modification approach is the use of finite element spaces which lead to
exactly divergence-free velocity approximations. In this case, no load modification is needed and the
velocity error does not exhibit locking. A well-known example is the H1-conforming Scott-Vogelius
element. However, it demands a special barycentric triangulation of Ω . Another approach, leading to
exactly divergence-free discretizations, is to abandon full H1-conformity and retain only the continuity
of the normal component of the velocity, i.e., use H(div)-conforming finite elements for approximating
u instead of H1-conforming finite elements. Such discretizations, tailored to approximate the incom-
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pressibility constraint properly, were introduced by Cockburn et al. (2005, 2007) and for the Brinkman
Problem by Könnö & Stenberg (2012). Therein, and also in the work by Lehrenfeld & Schöberl (2016),
the H1-conformity is treated in a weak sense and a hybrid discontinuous Galerkin method is constructed.
Their choice of velocity and pressure space fulfills the discrete LBB condition and moreover Lederer &
Schöberl (2017) shows that it is robust with respect to the polynomial order.

In this work, the idea of employing an H(div)-conforming velocity space is taken to an infinite di-
mensional variational setting to obtain insights into possible spaces for σ . Obviously such a variational
formulation cannot be derived using the standard velocity-pressure formulation (1.1) as it demands
too much regularity on the velocity. In contrast, the mixed stress formulation (1.2) is a perfect fit. It
leads to a variational formulation requiring less regularity for u and a new function space for σ , namely
H(curldiv,Ω). We call this formulation the mass conserving mixed formulation with stresses (MCS). To
obtain a discretization, we design new non-conforming finite elements for H(curldiv,Ω), motivated by
the TDNNS method for structural mechanics introduced by Pechstein & Schöberl (2017, 2011); Sinwel
(2009). Even though the resulting method, called the MCS method, includes the introduction of another
variable, the computational costs are comparable to other standard methods. In two dimensions, after a
static condensation step, where local element degrees of freedom are eliminated, the approximation of
the velocity with polynomials of order k requires k+ 1 coupling degrees of freedom on each element
interface for the H(div)-conforming velocity space and k for the stress space. This is the same num-
ber as for the reduced stabilized (projected jumps) H(div)-conforming hybrid discontinuous Galerkin
method introduced in Lehrenfeld & Schöberl (2016). By a small modification, one could even reduce
the coupling of the velocity space by considering only relaxed H(div)-conformity by the same technique
utilized in Lederer et al. (2017b, 2018). Then the costs (for k = 1) are the same as for the lowest order
non-conforming H1-based method. Similar cost comparisons can be made in three dimensions.

There appears to be multiple approaches for the analysis of our new scheme. In this paper, we focus
on one of these possible approaches, which uses a discrete H1-like norm for u and a L2 norm for σ . Even
though u is approximated using H(div)-conforming elements, the use of the discrete H1-like norm for
velocity errors permits easy comparison with the classical velocity-pressure formulation. An analysis
in more “natural” norms i.e., the H(div)-norm for u and H(curldiv,Ω)-norm for σ ) is the topic of a
forthcoming work. A discrete H1-like norm for the velocity was also used in the works by Cockburn &
Sayas (2014) and Fu et al. (2018) where related hybridized DG discretizations of the MCS formulation
were introduced and analysed.

The paper is organized as follows. We begin with Section 2 where we define the notation and prove
certain preliminary results that we shall use throughout this work. In Section 3 we present the new MCS
variational formulation of the Stokes problem. Section 4 defines the discrete variational formulation
and the MCS method. After revealing the continuity requirements across element interfaces necessary
for being conforming in H(curldiv,Ω), we then define new non-conforming finite elements for the
σ variable in Section 5. All technical details needed to prove stability in certain discrete norms and
convergence of the new method are included in Section 6. In Section 7 we present various numerical
examples to illustrate the theory.

2. Preliminaries

In this section we define the notation we use throughout and establish properties of certain Sobolev
spaces we shall need later.

Let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary Γ := ∂Ω . Throughout, d is
either 2 or 3. Let D(Ω) or D(Ω ,R) denote the set of infinitely differentiable compactly supported
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real-valued functions on Ω and let D ′(Ω) denote the space of distributions as usual. To indicate vector
and matrix-valued functions on Ω , we include the range in the notation: D(Ω ,Rd) = {u : Ω →Rd | ui ∈
D(Ω)}. Such notation is extended in an obvious fashion to other function spaces as needed. E.g., while
L2(Ω) = L2(Ω ,R) denotes the space of square integrable real-valued functions on Ω , analogous vector
and matrix-valued function spaces are defined by

L2(Ω ,Rd) :=
{

u : Ω → Rd∣∣ui ∈ L2(Ω)
}

and L2(Ω ,Rd×d) :=
{

σ : Ω → Rd×d∣∣σi j ∈ L2(Ω)
}
.

Similarly, D ′(Ω ,Rd) denotes the space of distributions whose components are distributions in D ′(Ω),
Hm(Ω ,Rd×d), denotes the space of matrix-valued functions whose entries are in the standard Sobolev
space Hm(Ω) for any m ∈ R, etc.

Certain differential operators have different definitions depending on context. By “curl” we mean
any of the following three differential operators

curl(φ) = (−∂2φ ,∂1φ)T, for φ ∈D ′(Ω ,R) and d = 2,

curl(φ) =−∂2φ1 +∂1φ2, for φ ∈D ′(Ω ,R2) and d = 2,

curl(φ) = (∂2φ3−∂3φ2,∂3φ1−∂1φ3,∂1φ2−∂2φ1)
T for φ ∈D ′(Ω ,R3) and d = 3,

where (·)T denotes the transpose and ∂i abbreviates ∂/∂xi. The type of the operand determines which
operator definition to apply in any context, so there will be no confusion. Similarly, ∇ is to be understood
from context as an operator that results in either a vector whose components are [∇φ ]i = ∂iφ for φ ∈
D ′(Ω ,R) or a matrix whose entries are [∇φ ]i j = ∂ jφi for φ ∈ D ′(Ω ,Rd). Finally, in a similar manner,
we understand div(φ) as either ∑

d
i=1 ∂iφi for vector-valued φ ∈ D ′(Ω ,Rd), or the row-wise divergence

∑
d
j=1 ∂ jφi j for matrix-valued φ ∈D ′(Ω ,Rd×d).

Let d̃ = d(d−1)/2 (so that d̃ = 1 and 3 for d = 2 and 3, respectively). The following Sobolev spaces
for d = 2,3 are essential in our study:

H(div,Ω) = {u ∈ L2(Ω ,Rd) : div(u) ∈ L2(Ω)},

H(curl,Ω) = {u ∈ L2(Ω ,Rd) : curl(u) ∈ L2(Ω ,Rd̃)},

H−1(curl,Ω) = {φ ∈ H−1(Ω ,Rd) : curl(φ) ∈ H−1(Ω ,Rd̃)},

H(curldiv,Ω) = {σ ∈ L2(Ω ,Rd×d) : curl(div(σ)) ∈ H−1(Ω ,Rd̃)}.

A well-known trace theorem permits us to define H0(div,Ω) = {u ∈ H(div,Ω) : u · n|Γ = 0}. Here, n
denotes the outward unit normal on Γ . In other occurrences, it may denote the unit outward normal on
boundaries of other domains determined from context.

The action of a continuous linear functional f on an element x of a topological space X is denoted by
〈 f ,x〉X , e.g., the action of a distribution F ∈D ′(Ω ,Rd) on a φ ∈D(Ω ,Rd) is denoted by 〈F,φ〉D(Ω ,Rd).
We omit the subscript in 〈·, ·〉 when its obvious from context. When X is a Hilbert space, we use X∗ to
denote its dual space. Recall that H1

0 (Ω)∗ = H−1(Ω). Note that any functional f ∈ H−1(Ω) is also a
distribution and that

〈 f ,φ〉H1
0 (Ω) = 〈 f ,φ〉D(Ω) (2.1)

for all φ ∈ D(Ω). The inner product of X is denoted by (·, ·)X . When X is L2(Ω),L2(Ω ,Rd), or
L2(Ω ,Rd×d), we abbreviate (·, ·)X to simply (·, ·).
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LEMMA 2.1 If F ∈ H0(div,Ω)∗, then F is in H−1(curl,Ω) and for all v ∈ H1
0 (Ω),

〈curl(F),v〉H1
0 (Ω) = 〈F,curl(v)〉H0(div,Ω).

Proof. For any F ∈ H0(div,Ω)∗, by the Reisz representation theorem, there exists a qF ∈ H0(div,Ω)
satisfying

〈F,v〉H0(div,Ω) = (qF ,v)+(div(qF),div(v)). (2.2)

for v∈H0(div,Ω). Choosing v∈D(Ω ,Rd) we conclude that F is the distribution F = qF−∇div(qF)∈
H−1(Ω ,Rd). This implies that curl(F) = curl(qF) ∈ H−1(Ω ,Rd̃). Thus F ∈ H−1(curl,Ω).

Moreover, for all φ ∈D(Ω ,Rd), using (2.1),

〈curl(F),φ〉H1
0 (Ω ,Rd) = 〈curl(qF),φ〉H1

0 (Ω ,Rd) = 〈curl(qF),φ〉D(Ω ,Rd) = (qF ,curl(φ)).

By the density of D(Ω ,Rd) in H1
0 (Ω ,Rd), we obtain

〈curl(F),v〉H1
0 (Ω ,Rd) = (qF ,curl(v))

for all v ∈ H1
0 (Ω ,Rd). The proof is now complete due to (2.2). �

In the proof of the next result, we use a “regular decomposition” of H0(div,Ω). Namely, there exists
a C > 0 such that given any v ∈ H0(div,Ω), there is a φv ∈ H1

0 (Ω ,Rd̃) and a zv ∈ H1
0 (Ω ,Rd) such that

v = curl(φv)+ zv, ‖φv‖H1(Ω ,Rd̃)
+‖zv‖H1(Ω ,Rd) 6C‖v‖H(div,Ω). (2.3)

Many authors have stated this decomposition under various assumptions on Ω . Since there are too many
to list here, we content ourselves by pointing to the recent work of (Demlow & Hirani, 2014, Lemma 5)
where one can find the result under the current assumptions on Ω and further references. Results like
the following are known, for example, when d = 2 and Ω is simply connected – see p. 336 of Braess
(2007), eq. (10.4.52) of Boffi et al. (2013), or Brezzi & Fortin (1986). Using the regular decomposition,
we are able to provide a general technique for proving such results below.

THEOREM 2.1 The equality
H0(div,Ω)∗ = H−1(curl,Ω)

holds algebraically and topologically.

Proof. Lemma 2.1 shows that H0(div,Ω)∗ ⊆ H−1(curl,Ω). To show H−1(curl,Ω)⊆ H0(div,Ω)∗, let
g ∈ H−1(curl,Ω). Using the decomposition (2.3), set

〈G,v〉H0(div,Ω) := 〈curl(g),φv〉H1
0 (Ω ,Rd̃)

+ 〈g,zv〉H1
0 (Ω ,Rd). (2.4)

Due to the stability estimate of (2.3), G is a continuous linear functional in H0(div,Ω)∗. By Lemma 2.1,
G is in H−1(curl,Ω). It suffices to show G coincides with g (as an element of H−1(Ω ,Rd)). To this
end, let w ∈ H1

0 (Ω ,Rd). Since H1
0 (Ω ,Rd) ↪→ H0(div,Ω), we have 〈G,w〉H1

0 (Ω ,Rd) = 〈G,w〉H0(div,Ω), so
using decomposition (2.3),

〈G,w〉H1
0 (Ω ,Rd) = 〈curl(g),φw〉H1

0 (Ω ,Rd̃)
+ 〈g,zw〉H1

0 (Ω ,Rd).
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Since both w and zw are in H1
0 (Ω ,Rd) the equality w= curl(φw)+zw implies that curl(φw)∈H1

0 (Ω ,Rd).
Hence there is a C > 0 such that for any w ∈ H1

0 (Ω ,Rd) we have

‖curl(φw)‖H1(Ω ,Rd) 6C‖w‖H1(Ω ,Rd). (2.5)

Let wn ∈ D(Ω ,Rd̃) converge to w in H1
0 (Ω ,Rd̃) as n→ ∞, and further define the regular decom-

position wn = curlφwn + zwn . By the construction of the regular decomposition components (see e.g.,
Costabel & McIntosh (2010)), φwn ∈D(Ω ,Rd̃). Moreover, using (2.1),

〈curl(g),φwn〉H1
0 (Ω ,Rd̃)

= 〈curl(g),φwn〉D(Ω ,Rd̃)
= 〈g,curl(φwn)〉D(Ω ,Rd) = 〈g,curl(φwn)〉H1

0 (Ω ,Rd).

Since curl(g) is in H−1(Ω ,Rd), the left-most term converges to 〈curl(g),φw〉H1
0 (Ω ,Rd). The right-most

term must converge to 〈g,curl(φw)〉H1
0 (Ω ,Rd) because (2.5) implies ‖curl(φwn−φw)‖H1(Ω ,Rd)→ 0. Thus

〈curl(g),φw〉H1
0 (Ω ,Rd) = 〈g,curl(φw)〉H1

0 (Ω ,Rd) and consequently,

〈G,w〉H1
0 (Ω ,Rd) = 〈g,curl(φw)+ zw〉H1

0 (Ω ,Rd) = 〈g,w〉H1
0 (Ω ,Rd).

This proves that G = g, so g ∈ H0(div,Ω)∗.
Finally, the stated topological equality follows if we show that ‖ f‖H0(div,Ω)∗ ∼ ‖ f‖H−1(curl,Ω), where

“∼” denotes norm equivalence. Note that by (2.3) and triangle inequality, ‖φv‖H1(Ω ,Rd̃)
+‖zv‖H1(Ω ,Rd)

∼ ‖v‖H(div,Ω). For any f ∈ H0(div,Ω)∗,

‖ f‖H0(div,Ω)∗ = sup
v∈H0(div,Ω)

〈 f ,v〉H0(div,Ω)

‖v‖H(div,Ω)

∼ sup
φ∈H1

0 (Ω ,Rd̃), z∈H1
0 (Ω ,Rd)

〈 f ,curl(φ)+ z〉H0(div,Ω)

‖φ‖H1(Ω ,Rd̃)
+‖z‖H1(Ω ,Rd)

by (2.3)

= sup
φ∈H1

0 (Ω ,Rd̃), z∈H1
0 (Ω ,Rd)

〈curl( f ),φ〉H1
0 (Ω ,Rd̃)

+ 〈 f ,z〉H1
0 (Ω ,Rd)

‖φ‖H1(Ω ,Rd̃)
+‖z‖H1(Ω ,Rd)

by Lemma 2.1

∼ ‖ f‖H−1(Ω ,Rd)+‖curl( f )‖H−1(Ω ,Rd).

Thus the H0(div,Ω)∗ and H−1(curl,Ω) norms are equivalent. �

3. Derivation of the MCS formulation of the Stokes equations

The goal of this section is to quickly derive a variational formulation of the mixed stress formulation of
the Stokes system (1.2). Using the trace of a matrix tr(τ) := ∑

d
i=1 τii we define the deviatoric part by

dev(τ) = τ− tr(τ)
d

Id,

where Id denotes the identity matrix. Observe that due to div(u) = 0, we have

dev(σ) = dev(ν∇u) = ν∇u− ν

d
tr(∇u) Id = ν(∇u− 1

d
div(u) Id) = ν∇u. (3.1)



MCS FORMULATION FOR THE STOKES EQUATIONS 7 of 34

Thus σ = ν∇u in (1.2) only represents the deviatoric part of the velocity gradient. Hence we revise
(1.2) to

1
ν

dev(σ)−∇u = 0 in Ω , (3.2a)

div(σ)−∇p =− f in Ω , (3.2b)
div(u) = 0 in Ω , (3.2c)

u = 0 on Γ . (3.2d)

We proceed to develop a variational formulation for (3.2).
For the reasons described in the introduction, we want to derive a weak formulation where the

velocity u and the pressure p belong respectively to the following spaces.

V := H0(div,Ω) = {u ∈ H(div,Ω) : u ·n = 0 on Γ },

Q := L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
.

We begin with (3.2c). Multiplying (3.2c) with a test function q ∈ Q and integrating over the domain Ω ,
we obtain the familiar equation

(div(u),q) = 0. (3.3)

Proceeding next to (3.2b), which must be tested with a v ∈ V , we see that σ in addition to being in
L2(Ω ,Rd×d), must also be such that div(σ) can continuously “act” on v, i.e., div(σ) ∈ H(div,Ω)∗. By
Theorem 2.1, this is the same as requiring that

div(σ) ∈ H−1(curl,Ω). (3.4)

Since any σ in L2(Ω ,Rd×d) has div(σ) ∈ H−1(Ω ,Rd), the non-redundant requirement that emerges
from (3.4) is that curl(div(σ)) ∈ H−1(Ω ,Rd̃). This leads to the definition

Σ = {τ ∈ H(curldiv,Ω) : tr(τ) = 0}

where the requirement tr(τ) = 0 is motivated by (3.1). Thus, testing (3.2b) with a v ∈ H0(div,Ω)∗ and
integrating the pressure term by parts, we have

〈div(σ),v〉H0(div,Ω)+(div(v), p) = 0. (3.5)

Finally, we multiply (3.2a) with a test function τ ∈ Σ to obtain (ν−1 dev(σ),τ)− (∇u,τ) = 0. Since

(τ,∇v) =−〈div(τ),v〉H0(div,Ω), for all τ ∈ Σ , v ∈ H1
0 (Ω ,Rd), (3.6)

and tr(τ) = 0, using the fact that the exact velocity is in H1
0 (Ω ,Rd), we obtain

(ν−1 dev(σ),dev(τ))+ 〈div(τ),u〉H0(div,Ω) = 0. (3.7)

Note that in this derivation, while the normal trace of the velocity is an essential boundary condition
included in the space V , the zero tangential velocity boundary conditions was incorporated weakly as a
natural boundary condition in (3.7).
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Collecting (3.7), (3.5) and (3.3), we summarize the derived weak formulation: given f ∈H0(div,Ω)∗,
find (σ ,u, p) ∈ Σ ×V ×Q such that

(ν−1 dev(σ),dev(τ))+ 〈div(τ),u〉H0(div,Ω) = 0 for all τ ∈ Σ ,

〈div(σ),v〉H0(div,Ω)+(div(v), p) =−〈 f ,v〉H0(div,Ω) for all v ∈V,

(div(u),q) = 0 for all p ∈ Q.

(3.8)

In the remainder of the paper, we present an approximation of the weak formulation (3.8). It is possible
to prove that (3.8) is well posed. However, since we shall focus on a discrete analysis of a nonconforming
scheme based on (3.8), we shall not make direct use of the wellposedness in this work. As a final remark
on (3.8), we note that functions in Σ equal its deviatoric. Thus we could remove “dev” in the first term
of (3.8). However, we keep it to remind ourselves that σ only approximates the deviatoric part of ν∇u.

REMARK 3.1 (Boundary conditions) In this work we only consider homogeneous Dirichlet boundary
conditions of the velocity, u = 0 on Γ . However, also other types of boundary conditions as for example
slip boundary conditions for the velocity and homogeneous Neumann boundary conditions (−ν∇u+
p Id) · n = (−σ + p Id) · n = 0 are possible. A detailed analysis regarding this topic is included in a
forthcoming work.

4. A discrete formulation

We present the discrete MCS method in this section. It is a non-conforming method based on the MCS
weak formulation (3.8). We shall begin by understanding the conformity requirements of H(curldiv,Ω)
and then present the method.

Suppose Ω is partitioned by a shape regular and quasiuniform triangulation Th consisting of trian-
gles and tetrahedrons in two and three dimensions, respectively. Here h denotes the maximum of the
diameters of all elements in Th. Due to quasiuniformity h≈ diam(T ) for any T ∈Th. The set of element
interfaces and boundaries is denoted by Fh. This set is further split into facets on the domain boundary
F ⊂Fh∩Γ =: F ext

h and facets in the interior F ⊂Fh∩Ω =: F int
h . There holds Fh =F int

h ∪F ext
h . On

each facet F ∈F int
h we denote by [[·]] the usual jump operator. For facets on the boundary the jump op-

erator is just the identity. On each element boundary, and similarly on each facet on the global boundary,
using the outward unit normal vector n, the normal and tangential trace of a smooth enough u : Ω →Rd

is defined by

un = u ·n and ut = u−unn.

According to this definition the normal trace is a scalar function and the tangential trace is a vector
function. In two dimensions, we may fix the symbol t to a unit tangent vector, obtained say by rotating n
anti-clockwise by 90 degrees (thus t = n⊥), so that ut = (u · t)t. In a similar manner for a smooth enough
σ : Ω → Rd×d we set

σnn = σ : (n⊗n) = nT
σn and σnt = σn−σnnn.

Thus we have a scalar “normal-normal component” and a vector-valued “normal-tangential component,”
and in two dimensions t may be thought of as a unit tangent vector and σnt = (tTσn)t.

We need to understand the conformity requirements of H(curldiv,Ω). Just as continuity of the
normal component across element interfaces is needed for H(div,Ω)-conformity, we shall see that con-
tinuity of the normal-tangential component of tensors is needed for H(curldiv,Ω)-conformity. Let

Hm(Th) := {v ∈ L2(Ω) : v|T ∈ Hm(T ) for all T ∈Th}.



MCS FORMULATION FOR THE STOKES EQUATIONS 9 of 34

For ω ⊂Ω we use (·, ·)ω to denote the inner product of L2(ω),L2(ω,Rd), or L2(ω,Rd×d) and similarly
also || · ||2ω := (·, ·)ω .

Consider a σ in H1(Th,Rd×d) and σnn|∂T ∈ H1/2(∂T ) for all elements T ∈ Th. Assume that
the normal-tangential trace σnt is continuous across element interfaces. Then we claim that σ is in
H(curldiv,Ω). To see this, the definition of the distributional divergence and integration by parts yields

〈div(σ),φ〉=−
∫

Ω

σ : ∇φ dx = ∑
T∈Th

∫
T

div(σ) ·φ dx−
∫

∂T
σn ·φ ds

for any φ ∈D(Ω ,Rd). Splitting the boundary term into a tangential and a normal part we obtain

∑
T∈Th

−
∫

∂T
σn ·φ ds = ∑

T∈Th

−
∫

∂T
σnnφn ds−

∫
∂T

σnt ·φt ds

= ∑
T∈Th

−
∫

∂T
σnnφn ds− ∑

F∈Fh

∫
F
[[σnt ]] ·φt ds .

As σnt is continuous across element interfaces, the second term vanishes. Hence

〈div(σ),φ〉= ∑
T∈Th

∫
T

div(σ) ·φ dx−
∫

∂T
σnnφn ds (4.1)

6 ∑
T∈Th

||div(σ)||T ||φ ||T + ||σnn||H1/2(∂T )||φn||H−1/2(∂T ) 6 c(σ)||φ ||H(div,Ω),

where c(σ) is a constant depending on σ . Since D(Ω ,Rd) is dense in H0(div,Ω), we conclude that
div(σ) is in H0(div,Ω)∗. Hence by Theorem 2.1, σ ∈ H(curldiv,Ω).

Accordingly, one of the sufficient conditions for conformity in H(curldiv,Ω) is normal-tangential
continuity. Full conformity is obtained under the further condition that σnn ∈H1/2(∂T ), which demands
more continuity: if the normal-normal component trace is continuous at vertices and edges in two and
three dimensions, respectively, then the σ considered above would satisfy σnn ∈H1/2(∂T ). If this latter
constraint is relaxed, much simpler elements can be constructed, as we shall see in Section 5.

The identity (4.1) also shows, due to density, that

〈div(σ),v〉H0(div,Ω) = ∑
T∈Th

[
(div(σ),v)T −〈vn,σnn〉H1/2(∂T )

]
(4.2)

for all v ∈ H0(div,Ω). Identity (4.2) will motivate the definition of some of our bilinear forms later.
Let Pk(T ) denote the space of polynomials of degree at most k restricted to T . Let Pk(T,Rd) and

Pk(T,Rd×d) denote the space of vector and matrix-valued functions on T whose components are in
Pk(T ), and let

Pk(Th) = ∏
T∈Th

Pk(T ), Pk(Th,Rd) = ∏
T∈Th

Pk(T,Rd), Pk(Th,Rd×d) = ∏
T∈Th

Pk(T,Rd×d).

Define

Σh := {τh ∈ Pk(Th,Rd×d) : tr(τh) = 0, [[(τh)nt ]] = 0, (τh)nt ∈ Pk−1(F,Rd−1) for all F ∈Fh} (4.3)

Vh := Pk(Th,Rd)∩V, (4.4)

Qh := Pk−1(Th)∩Q. (4.5)
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Whereas the discrete velocity and pressure space are conforming subspaces of their continuous counter-
parts, the discrete stress space Σh is (slightly) non conforming, Σh 6⊂ H(curldiv,Ω). Furthermore, the
normal-tangential component (τh)nt |F of any τh ∈ Pk(Th,Rd×d) is a tangential vector field whose values
are in the tangent plane parallel to the facet F . By a slight abuse of notation, we do not distinguish be-
tween this tangent plane and the isomorphic Rd−1 (when we write statements like “τnt ∈ Pk−1(F,Rd−1)”
above in (4.3)).

For the derivation of a discrete variational formulation with these spaces, we return to (3.8) and
identify these bilinear forms:

a : L2(Ω ,Rd×d)×L2(Ω ,Rd×d)→ R, b1 : V ×Q→ R,
a(σ ,τ) := (ν−1 dev(σ),dev(τ)), b1(u, p) := (div(u), p).

To handle the terms with the divergence of stress variables, we define another bilinear form

b2 : {τ ∈ H1(Th,Rd×d) : [[τnt ]] = 0}×{v ∈ H1(Th,Rd) : [[vn]] = 0}→ R

motivated by the identity (4.2):

b2(τ,v) := ∑
T∈Th

∫
T

div(τ) · v dx− ∑
F∈Fh

∫
F
[[τnn]]vn ds . (4.6)

By integration by parts, we find the equivalent representation

b2(τ,v) =− ∑
T∈Th

∫
T

τ : ∇v dx+ ∑
F∈Fh

∫
F

τnt · [[vt ]] ds (4.7)

since [[τnt ]] = 0 and [[vn]] = 0. When trial and test functions are in the domain of these forms, the MCS
weak form (3.8) can be rewritten in terms of these forms.

The discrete MCS method finds (σh,uh, ph) ∈ Σh×Vh×Qh satisfying
a(σh,τh)+b2(τh,uh) = 0 for all τh ∈ Σh,

b2(σh,vh)+b1(vh, ph) = (− f ,vh) for all vh ∈Vh,

b1(uh,qh) = 0 for all qh ∈ Qh.

(MCS)

Note that the velocity space is the well known BDMk space – see for example Boffi et al. (2013). The
pressure space is given by piecewise polynomials of one order less than the velocity space. By this we
have the property div(Vh) = Qh. Therefore, any weakly divergence-free velocity field is also strongly
divergence free:

(div(uh),qh) = 0 ⇔ div(uh) = 0 in Ω . (4.8)

Thus, any velocity field uh computed from the system (MCS) is exactly divergence free.
To conclude this section, we have shown that normal-tangential continuity appears to be natural for

the matrix functions σ arising in fluid mechanics. There are other fields where matrix functions with
tangential-tangential continuity arise naturally, as can be seen from the work of Christiansen (2011) and
the dissertation of Lizao (2018). Finally, normal-normal continuity in matrix functions appears to be
natural when solid mechanics is pursued in the approach of Pechstein & Schöberl (2017), as already
noted previously.
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5. Finite elements

The aim of this section is to construct local finite elements that yield the global finite element space Σh.
We introduce degrees of freedom (linear functionals) on each element which help us impose the normal-
tangential continuity. We also give an explicit construction of a basis on a reference element and provide
an appropriate mapping to an arbitrary physical element of the triangulation. This is especially useful for
the implementation as there is no need to compute a dual shape function basis by biorthogonalization.
The mapping technique permits easy extension to curved elements (although analysis of curved elements
is beyond the scope of this work). We then complete this section by introducing an interpolation operator
that we shall use in the error analysis of the next section.

The restriction of the function space Σh defined in (4.3) to a single element T gives the local finite
element space Σk(T ) :=

{
τh ∈ Pk(T,Rd×d) : tr(τh) = 0, (τh)nt ∈ Pk−1(F,Rd−1) on all faces F ∈FT

}
,

where FT := {F : F ⊂ ∂T} is the set of element facets. Let

D := {M ∈ Rd×d : (M : Id) = 0}.

Then we may equivalently write

Σk(T ) =
{

τh ∈ Pk(T,D) : (τh)nt ∈ Pk−1(F,Rd−1) on all faces F ∈FT

}
. (5.1)

We proceed to study this space in detail, beginning with D.

5.1 Trace-free matrices

As a first step, we construct a basis for the space of matrices D particularly suited to study normal-
tangential components on facets. Let Vi, i ∈ V , denote the vertices of T , where V := {0,1,2} and V :=
{0,1,2,3} in two and three dimensions, respectively. Further let Fi be the face opposite to the vertex Vi
with the normal vector given by ni. The unit tangential vectors along edges are ti j := (Vi−Vj)/|Vi−Vj|.
Finally let λi be the unique barycentric coordinate function that equals one at the vertex Vi. When d = 2,
define three constant matrix functions, one for each i ∈ V ,

Si := dev
(
∇λi+1⊗ curl(λi+2)

)
(5.2)

where the indices i+ 1 and i+ 2 are taken modulo 3. When d = 3, for each i ∈ V , we define the
following two constant matrix functions

Si
0 := dev

(
∇λi+1⊗ (∇λi+2×∇λi+3)

)
, Si

1 := dev
(
∇λi+2⊗ (∇λi+3×∇λi+1)

)
, (5.3)

taking the indices i+1, i+2 and i+3 modulo 4.

LEMMA 5.1 The sets {Si : i ∈ V } and {Si
q : i ∈ V , q = 0,1} form a basis of D when d = 2 and

3, respectively. Moreover, the normal-tangential component of Si and Si
q vanishes everywhere on the

element boundary except on Fi,

Si
nt |Fj = 0, (Si

q)nt |Fj = 0, i 6= j, Fj ∈FT , i, j ∈ V ,

while on Fi it does not vanish. When i = j ∈ V and d = 3,

tT
i+2,i+3Si

0ni = 0, tT
i+1,i+2Si

0ni 6= 0, tT
i+3,i+1Si

0ni 6= 0, (5.4a)

tT
i+2,i+3Si

1ni 6= 0, tT
i+1,i+2Si

1ni 6= 0, tT
i+3,i+1Si

1ni = 0. (5.4b)
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Proof. The first statement of the lemma follows once we prove the remaining statements. Indeed,
the linear independence of the given sets follows by examining their normal-tangential components
facet-by-facet using the remaining statements. The spanning property follows by counting.

To prove the remaining statements, we start with the two dimensional case. We define

si, j = dev(∇λi⊗ curl(λ j)).

Then si+1,i+2 = Si. Since the nt-component of the identity vanishes, for any p∈ V and any tp ∈ curl(λp)

tT
p si, jnp = tT

p
[
∇λi⊗ curl(λ j)

]
np = (∇λi · tp)(∇λ j · tp).

All the stated properties in the two-dimensional case now follow easily from this identity together with
the fact that T is not degenerate.

Next, consider the d = 3 case. Let si, j,k = dev
(
∇λi⊗ (∇λ j×∇λk)

)
. If i, j,k, l is any permutation of

V , by elementary manipulations, we see that for any p ∈ V and any tp ∈ n⊥p ,

tT
p si, j,knp = c(ni · tp)(til ·np). (5.5)

for some c 6= 0. Therefore on any facet Fp, we have tT
p (S

i
0)np = tT

p (si+1,i+2,i+3)np = c(ni+1 ·tp)(ti+1,i ·np)
which vanishes for all p 6= i since ni+1 · ti+1 = 0 and ti+1,i ·ni+2 = ti+1,i ·ni+3 = 0. Similarly, we conclude
that (Si

1)nt = 0 on all facets except Fi. Since (5.5) also implies

tT
jksi, j,knl = 0, tT

kisi, j,knl 6= 0, tT
jisi, j,knl 6= 0,

the statements in (5.4) also follow. �

5.2 Normal-tangential bubbles

Let the element space of interior normal-tangential bubbles be defined by

Bk(T ) := {τh ∈ Σk(T ) : (τh)nt = 0} .

LEMMA 5.2 Any b ∈Bk(T ) can be expressed as either

b = ∑
i∈V

µiλiSi or b =
1

∑
q=0

∑
i∈V

µ
q
i λiSi

q, (5.6)

for d = 2 or 3, respectively, where µi,µ
0
i ,µ

1
i ∈ Pk−1(T ). Consequently,

dimBk(T ) =


3
2

k(k+1), if d = 2,

8
6

k(k+1)(k+2), if d = 3.

Proof. We only show the proof in the d = 2 case as the d = 3 case is similar. By Lemma 5.1 applied to
the matrix b(x), we obtain

b(x) = ∑
i∈V

ai(x)Si, (5.7)
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and matching degrees, we conclude that ai ∈ Pk(T ). Let ci equal the constant value of Si
nt |Fi , which is

nonzero by Lemma 5.1. Then tT
i b(x)ni = ciai(x) = 0 for all x ∈ Fi. Since ai(x) vanishes on Fi, it must

take the form ai(x) = µi(x)λi(x) for some µi ∈ Pk−1(T ). This proves (5.6).
The dimension count follows from (5.6): again considering only the d = 2 case, since µi ∈ Pk−1(T )

and {λiSi : i ∈ V } is a linearly independent set, the expansion in (5.6) shows that dimBk(T ) is 3×
dimPk−1(T ). �

5.3 Mappings

Suppose T̂ is the unit simplex (d = 2 or 3) and T ∈ Th. Let φT : T̂ → T be an affine homeomorphism
and set FT := φ ′T . Due to the shape regularity of the mesh,

||FT ||∞ ≈ h and ||F−1
T ||∞ ≈ h−1 and |det(FT )| ≈ hd . (5.8)

The proper transformation for functions in the H(div)-conforming velocity space Vh is the Piola trans-
formation given by P(ûh) := (detFT )

−1FT ûh, where ûh is a given polynomial on the reference element.
The Piola map preserves the normal components on facets, so is useful for enforcing normal continuity.
For functions demanding tangential continuity, the proper transformation is the covariant transformation
given by C (ûh) := F−T

T ûh. Therefore, to enforce the normal-tangential continuity required of tensors in
Σh, we combine the above two transformations and define

M (σ̂h) :=
1

det(FT )
F−T

T (σ̂h ◦φ
−1
T )FT

T , (5.9)

where σ̂h ∈ Σk(T̂ ). Of particular interest to us is how the normal-tangential components on facets F ∈
FT map. To study this, we use the restrictions of the map φT to a reference facet F̂ as well as to a
reference edge Ê (a d−2 subsimplex) in the d = 3 case, denoted by φT |F̂ and φT |Ê , respectively. Their
gradients are denoted by FF

T = (φT |F̂)′ and FE
T = (φT |Ê)′. In the next result, n̂ and n denote the outward

unit normals vector on F̂ and F , respectively, while t̂ denotes a unit tangent vector along Ê (when d = 3)
or F̂ (when d = 2), and similarly, t denotes a unit tangent vector along E or F .

LEMMA 5.3 Using the above notation and letting τ = M (τ̂), we have

ctT
τn = t̂T

τ̂ n̂, where c =

{
det(FF

T )2 if d = 2,

det(FF
T )det(FE

T ) if d = 3.

Furthermore,

tr(τ̂) = 0 ⇔ tr(τ) = 0.

Proof. The unit normals and tangents on the reference and mapped configurations are related by

n =
det(FT )

det(FF
T )

F−T
T n̂ and t =

1
det(FE

T )
FT t̂,

with the understanding that in two dimensions we should replace FE
T by FF

T . Then

tT
τn =

1
det(FE

T )
t̂TFT

T
1

det(FT )
F−T

T τ̂FT
T

det(FT )

det(FF
T )

F−T
T n̂ =

1
det(FE

T )det(FF
T )

t̂T
τ̂ n̂.

Finally, the statement on traces follows from tr(F−T
T τ̂FT

T ) = tr(τ̂). �
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5.4 Definition of the finite element

We define the local finite element in the formal style of Ciarlet (2002) (also adopted in other texts, e.g.,
Ern & Guermond (2004); Braess (2013)) as a triple (T,Σk(T ),Φ(T )), where the geometrical element
T is either a triangle or a tetrahedron, the space Σk(T ) is defined by (5.1), and Φ(T ) is a set of linear
functionals representing the degrees of freedom defined as follows. The first group of degrees of freedom
is associated to the set of element facets FT , the set of d−1 subsimplices of T : for each F ∈FT , define

Φ
F(τ) :=

{∫
F

τnt · r ds : r ∈ Pk−1(F,Rd−1)

}
. (5.10)

The next group is the set of interior degrees of freedom given by

Φ
T (τ) :=

{∫
T

τ : FT (η̂ ◦φ
−1
T )F−1

T dx : η̂ ∈Bk(T̂ )
}
. (5.11)

Then set
Φ(T ) := Φ

T ∪{ΦF : F ∈FT}. (5.12)

We proceed to prove that this set of degrees of freedom is unisolvent and that the number of degrees of
freedom matches the dimension of Σk(T ).

THEOREM 5.1 The triple (T,Σk(T ),Φ(T )) defines a finite element and

dim(Σk(T )) =


3
2
(k+1)(k+2)−3, if d = 2,

8
6
(k+1)(k+2)(k+3)−8(k+1), if d = 3.

Proof. To prove the unisolvency of the degrees of freedom, consider a τh ∈ Σk(T ) satisfying φ(τh) = 0
for all φ ∈ Φ(T ). As (τh)nt ∈ Pk−1(F,Rd−1) the facet degrees of freedom φ(τh) = 0 imply that τh ∈
Bk(T ). The interior degrees of freedom then yield

0 =
∫

T
τh : FT η̂F−1

T =
∫

T
FT

T τhF−T
T : η̂ =

∫
T
(detFT )

−1M−1(τh) : η̂ =
∫

T̂
M−1(τh) : η̂

for all η̂ ∈Bk(T̂ ). By Lemma 5.3, M−1(τh) is in Bk(T̂ ), so this yields M−1(τh) = 0 and thus τh = 0.
It only remains to prove the dimension count. The dimension of Σk(T ) is given by dimPk(T,D) mi-

nus the number of linearly independent conditions represented by the constraints (τh)nt ∈ Pk−1(F,Rd−1)
for all F ∈FT that every τh ∈ Σk(T ) must satisfy. Therefore,

dim(Σk(T ))> dimPk(T,D)−dim
[
Pk(F,Rd−1)\Pk−1(F,Rd−1)

]
= (d2−1)dimPk(T )− (d +1)(d−1)dim

[
Pk(F)\Pk−1(F)

]
.

Let NΣk denote the number on the right hand side. Using Lemma 5.2 to count the number of degrees
of freedom in Φ(T ), we find that it coincides with NΣk . Since NΣk linear functionals on Σk(T ) are
unisolvent, we conclude that dim(Σk(T )) = NΣk , which after simplification agrees with the statement of
the theorem. �



MCS FORMULATION FOR THE STOKES EQUATIONS 15 of 34

5.5 Construction of shape functions

In view of the previous results, we can now write down shape functions in barycentric coordinates. Its
not difficult to see that on any triangle T , the set of functions

λ
α1
i+1λ

α2
i+2Si, λ

β0
i λ

β1
i+1λ

β2
i+2(λiSi), (5.13)

for all i∈ V , and all multi-indices (α1,α2) and (β0,β1,β2), with αi > 0, βi > 0 having length α1+α2 =
β0 +β1 +β2 = k−1, form a basis for Σk(T ). Similarly, when T is a tetrahedron, the following set is a
basis for Σk(T ):

λ
α1
i+1λ

α2
i+2λ

α3
i+3Si

q, λ
β0
i λ

β1
i+1λ

β2
i+2λ

β3
i+3(λiSi

q), (5.14)

for all i ∈ V , q = 0,1, and all multi-indices (α1,α2,α3) and (β0,β1,β2,β3), with αi > 0, βi > 0 having
length α1+α2+α3 = β0+β1+β2+β3 = k−1. Instead of proving the linear independence of functions
in (5.13) or (5.14), in the remainder of this section, we opt to do so for another set of reference element
shape functions that we have implemented. By using a Dubiner basis instead of barycentric monomials,
the ensuing construction produces better conditioned matrices.

We start by defining some basic notation needed for the construction. The reference element is given
by

T̂ := {(x1,x2) ∈ R2 : 06 x1,x2 and x1 + x2 6 1} for d = 2,

T̂ := {(x1,x2,x3) ∈ R3 : 06 x1,x2,x3 and x1 + x2 + x3 6 1} for d = 3.

For d = 2 we further define the reference faces and the corresponding normal and tangential vectors (see
left picture in Figure 1) by

F̂0 = {(x1,x2) ∈ R2 : 06 x1,x2 6 1,x1 + x2 = 1}, n̂0 :=
1√
2
(1,1)T, t̂0 :=

1√
2
(−1,1)T,

F̂1 = {(0,x2) ∈ R2 : 06 x2 6 1}, n̂1 := (−1,0)T, t̂1 := (0,−1)T,

F̂2 = {(x1,0) ∈ R2 : 06 x1 6 1}, n̂2 := (0,−1)T, t̂2 := (1,0)T.

For the three dimensional case we have

F̂0 = {(x1,x2,x3) ∈ R3 : 06 x1,x2,x3 6 1,x1 + x2 + x3 = 1},
F̂1 = {(0,x2,x3) ∈ R3 : 06 x2,x3 6 1,06 x2 + x3 6 1},
F̂2 = {(x1,0,x3) ∈ R2 : 06 x1,x3 6 1,06 x1 + x3 6 1},
F̂3 = {(x1,x2,0) ∈ R2 : 06 x1,x2 6 1,06 x1 + x2 6 1},

with the associated normal and tangential vectors (see right picture in Figure 1)

n̂0 :=
1√
3
(1,1,1)T, t̂01 :=

1√
2
(−1,1,0)T, t̂02 :=

1√
2
(0,1,−1)T,

n̂1 := (−1,0,0)T, t̂11 := (0,−1,0)T, t̂12 := (0,0,−1)T,

n̂2 := (0,−1,0)T, t̂21 := (1,0,0)T, t̂22 := (0,0,−1)T,

n̂3 := (0,0,−1)T, t̂31 := (1,0,0)T, t̂32 := (0,−1,0)T.
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(0, 0) (1, 0)

(0, 1)

x1

x2

n̂0

t̂0

n̂1
t̂1

n̂2

t̂2
(0, 0, 0)

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

n̂2 x1

x3

x2

n̂0

t̂01

t̂02
n̂1

t̂ 22
=
t̂ 12

t̂32 = t̂11

n̂3

t̂31 = t̂21

FIG. 1. The reference element and the corresponding normal and tangential vectors in two and three space dimensions.

In Section 5.1 we presented the construction of element wise constant matrices. Applying these
techniques on the reference element (including a scaling with a proper constant) we derive for d = 2 the
matrices given by

Ŝ0 :=
√

2
(
−1 0
0 1

)
and Ŝ1 :=

(
0.5 0
1 −0.5

)
and Ŝ2 :=

(
0.5 −1
0 −0.5

)
, (5.15)

and for d = 3 the matrices

Ŝ0
0 =
√

6

−2
3 0 0
0 1

3 0
0 0 1

3

 , Ŝ1
0 =

 1
3 0 0
1 −2

3 0
0 0 1

3

 , Ŝ2
0 =

−2
3 1 0
0 1

3 0
0 0 1

3

 , Ŝ3
0 =

−2
3 0 1
0 1

3 0
0 0 1

3

 ,

Ŝ0
1 =
√

6

 1
3 0 0
0 1

3 0
0 0 −2

3

 , Ŝ1
1 =

 1
3 0 0
0 1

3 0
1 0 −2

3

 , Ŝ2
1 =

 1
3 0 0
0 1

3 0
0 1 −2

3

 , Ŝ3
1 =

 1
3 0 0
0 −2

3 1
0 0 1

3

 .

(5.16)

Note that in order to follow the ideas described in Section 5.1 we took a particular choice of the number-
ing of the vertices of T̂ and the corresponding tangential vectors. Similar as in Lemma 5.1, a elementary
calculations show that

t̂T
j Ŝin̂ j = δi j and t̂T

j λiŜin̂ j = 0 for i, j = 0,1,2,

t̂T
jl Ŝ

i
qn̂ j = δi jδql and t̂T

jlλiŜi
qn̂ j = 0 for i, j ∈ 0,1,2,3 and q, l = 0,1.

(5.17)

and that {Ŝi : i = 0,1,2} and {Ŝi
q : i = 0,1,2,3;q = 0,1} is a basis for D in two and three dimensions,

respectively. Based on these constant matrices we now construct shape function for the local stress
space Σk(T̂ ).

We start with the two dimensional case. Let li(x1) be the Legendre polynomial of order i and let
lS
i (x1,x2) := xi

2li(x1/x2) be the scaled Legendre polynomial of order i. Further let p j
i (x1) be the Jacobi
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polynomial of order i with coefficients α = j, β = 0. For a detailed definition we refer to the works
Abramowitz (1974); Andrews et al. (1999). We then define

r̂i j(λα ,λβ ,λγ) := lS
i (λβ −λα ,λα +λβ )p2i+1

j (λγ −λα −λβ ). (5.18)

The polynomials r̂i j(λα ,λβ ,λγ) with 0 6 i+ j 6 k and an arbitrary permutation (α,β ,γ) of (0,1,2)
form a basis of the polynomial space Pk(T̂ ,R). Next note that p2i+1

0 is constant, thus r̂i j(λα ,λβ ,λγ) =
r̂i0(λα ,λβ ). Then there holds that for 0 6 i 6 k the restriction of the polynomials r̂i0(λ j+1,λ j+2)|F̂j

,
where the indices j + 1 and j + 2 of the barycentric coordinate functions are taken modulo 3, form a
basis of the polynomial space Pk(F̂j,R) (see chapter 3.2 in Karniadakis & Sherwin (2013) or in Dubiner
(1991)). By this we define a local basis of the stress space by

Ψ̂
F

k := {Ŝ j r̂i0(λ j+1,λ j+2) : j = 0,1,2 and 06 i6 k−1},
Ψ̂

T
k := {λ jŜ j r̂il(λ0,λ1,λ2) : j = 0,1,2 and 06 i+ l 6 k−1}.

For d = 3 we define similar as before

r̂i jl(λα ,λβ ,λγ ,λδ ) (5.19)

:= lS
i (λβ −λα ,λα +λβ )p2i+1,S

j (λγ −λα −λβ ,λγ +λα +λβ )p2i+2 j+2,S
l (λδ −λα −λβ −λγ),

where p j,S
i (x1,x2) := xi

2 p j
i (x1/x2) is the scaled Jacobi polynomial. Again we have that r̂i jl(λα ,λβ ,λγ ,λδ )

with 06 i+ j+ l 6 k and an arbitrary permutation (α,β ,γ,δ ) of (0,1,2,3) defines a basis for Pk(T̂ ,R)
and that for 06 i+ l 6 k the restriction r̂il0(λ j+1,λ j+2,λ j+3)|F̂j

is a basis of Pk(F̂j,R) where the indices
of the barycentric coordinate functions are now taken modulo 4. By this we define the local basis on the
reference tetrahedron by

Ψ̂
F

k := {Ŝ j
qr̂il0(λ j+1,λ j+2,λ j+3) : j = 0,1,2,3 and q = 0,1 and 06 i+ l 6 k−1}

Ψ̂
T

k := {λ jŜ j
qr̂ilg(λ0,λ1,λ2,λ3) : j = 0,1,2,3 and q = 0,1 and 06 i+ l +g6 k−1}.

THEOREM 5.2 The set of functions {Ψ̂ F
k ∪Ψ̂ T

k } is a basis for Σk(T̂ ).

Proof. We start with the two dimensional case. An elementary calculation shows that the functions
λiŜi with i = 0,1,2 are linearly independent. Let α

j
i ∈R and β

j
il ∈R be arbitrary coefficients and define

Ŝ j
i := Ŝ j r̂i0(λ j+1,λ j+2) and B̂ j

il := λ jŜ j r̂il(λ0,λ1,λ2). We assume that

2

∑
j=0

k−1

∑
i=0

α
j

i Ŝ j
i +

2

∑
j=0

k−1

∑
i=0

k−1

∑
l=i

β
j

il B̂
j
il =

(
0 0
0 0

)
,

and show that this induces that all coefficients are equal to zero. This then proves the linear independency
of {Ψ̂ F

k ∪Ψ̂ T
k }. Let F̂g with g = 0,1,2 be an arbitrary reference face. Due to (5.17), there holds

t̂T
g

(
2

∑
j=0

k−1

∑
i=0

α
j

i Ŝ j
i +

2

∑
j=0

k−1

∑
i=0

k−1

∑
l=i

β
j

il B̂
j
il

)
n̂g = t̂T

g

(
k−1

∑
i=0

α
g
i Ŝg

i

)
n̂g = t̂T

g

(
k−1

∑
i=0

α
g
i Ŝgr̂i0(λg+1,λg+2)

)
n̂g = 0.

As r̂i0(λg+1,λg+2) is a polynomial basis on F̂g, and Ŝg, n̂g and t̂g are constant it follows that all coeffi-
cients α

g
i have to be zero. As g was arbitrary we conclude α

j
i = 0 for j = 0,1,2 and 06 i6 k−1.
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As the functions λiŜi are linearly independent we have for each g = 0,1,2 (due to the assumption at
the beginning)

k−1

∑
i=0

k−1

∑
l=i

β
g
il B̂

g
il =

k−1

∑
i=0

k−1

∑
l=i

β
g
il r̂ilλgŜg =

(
0 0
0 0

)
.

As r̂ilλg is a basis for λgPk−1(T̂ ), and the last equation holds true for all points in T̂ we conclude β
g
il = 0

for 0 6 i+ l 6 k− 1. As g was arbitrary we conclude that all coefficients are equal to zero. Note that
by tr(Si) = 0, all shape function in {Ψ̂ F

k ∪Ψ̂ T
k } are trace free and are further tensor valued polynomials

up to order k. Further the normal tangential trace is only a polynomial up to order k−1 thus all shape
functions belong to Σk(T̂ ). Counting the dimensions we have by Theorem 5.1∣∣Ψ̂ F

k

∣∣+ ∣∣Ψ̂ T
k

∣∣= 3k+
3k(k+1)

2
= NΣk ,

what concludes the proof. In three dimensions we proceed similar. The linearly independence can be
shown with the same steps. Further with the same arguments all shape functions belong to Σk(T̂ ). Again
by Theorem 5.1 and ∣∣Ψ̂ F

k

∣∣+ ∣∣Ψ̂ T
k

∣∣= 8
k(k+1)

2
+8

k(k+1)(k+2)
6

= NΣk ,

we conclude the proof. �

REMARK 5.1 Note how the basis was separated into shape functions associated to faces (Ψ̂ F
k ) and

shape functions associated to the element interior (Ψ̂ T
k ). The polynomial degrees in each group can be

separately chosen to construct a variable-degree global finite element space (e.g., for hp adaptivity).
E.g., the span of the union of Ψ F

k1
and Ψ T

k2
gives an element space that has normal-tangential trace of

degree k1−1 and inner (bubble) shape functions of degree k2.

5.6 Construction of a global basis

Using the local basis on the reference triangle T̂ we can now simply define a global basis for the stress
space Σh. This is done in the usual way. Using the mapping M and a basis function Ŝ ∈ {Ψ̂ T

k ∪Ψ̂ F
k }

we define the restriction of a global shape function S (with support on a patch) on an arbitrary physical
element T ∈Th by

S := M (Ŝ).

Next we identify all topological entities, vertices and faces, of the physical element T with the
corresponding entities of the global mesh. This identification is needed as faces and vertices coincide for
adjacent physical elements. Note that the global orientation of the faces (and edges) plays an important
role in order to assure (normal-tangential) continuity. This is a well known difficulty: see Zaglmayr
(2006) for a detailed discussion regarding this topic. By this we construct global basis functions which
are, restricted on a physical element T ∈Th, always a mapped basis function of the basis defined on the
reference element T̂ .

Further note that due to Lemma 5.3 the resulting basis functions are normal tangential continuous,
thus [[Snt ]] = 0. To see this let φ1 be the mapping of an arbitrary element T1 and let φ2 be the mapping of
an element T2 such that F = T1∩T2. There exists a reference face F̂ ⊂ ∂ T̂ such that F = φ1(F̂) = φ1(F̂)
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(in the sense of a set) and φ1|F̂ = φ2|F̂ (in the sense of equivalent functions). By this, and the same
ideas for an reference edge Ê in the three dimensional case, the constant c in Lemma 5.3 is the same for
both mappings. In two dimensions we have the identity Snt = (tTSn)t, thus Lemma 5.3 implies normal-
tangential continuity of S because S was a mapped basis functions of the reference element. In three
dimensions Snt is a tangent vector in F . Each tangent vector can be represented as a linear combination
of two arbitrary edge tangent vectors ti ⊂ ∂F . By Lemma 5.3 we deduce that the scalar values tiTSn
are preserved, thus again we have normal tangential continuity. Taking all functions in {Ψ̂ T

k ∪Ψ̂ F
k } and

mapping them to each element separately results in a basis for Σh.

5.7 An interpolation operator for the stress space.

We finish this section by introducing an interpolation operator for the stress space and showing an
approximation result. Using the global degrees of freedom of Σh a canonical interpolation operator IΣh
can be defined as usual. On each T ∈ Th, the interpolant (IΣhσ)|T coincides with the canonical local
interpolant IT (σ |T ) defined, as usual, using the local degrees of freedom in Φ(T ), by

φ(σ − IT σ) = 0 for all φ ∈Φ(T ). (5.20)

Recalling the map M from (5.9), note that M−1(σ) = det(FF
T )FT

F (σ ◦φT )F−T
T .

LEMMA 5.4 For any σ ∈ H1(T,Rd×d),

M−1(IT σ) = IT̂ (M
−1(σ)).

Proof. Since both the left and right hand sides are in Σk(T̂ ), it suffices to prove that

φ̂(M−1(IT σ)− IT̂ (M
−1

σ)) = 0 for all φ̂ ∈Φ(T̂ ). (5.21)

To see that (5.21) holds for the interior degrees of freedom on T̂ as defined in (5.11), noting that FT̂
is the identity, we have for all η̂ ∈Bk(T̂ ),∫

T̂

[
M−1(IT σ)− IT̂ (M

−1
σ)
]

: FT̂ η̂F−1
T̂

dx̂ =
∫

T̂

[
M−1(IT σ)−M−1

σ
]

: η̂ dx̂

=
∫

T
(IT σ −σ) : FT η̂F−1

T dx = 0

due to the equality of interior degrees of freedom on T in (5.20).
Next, consider the facet degrees of freedom. We only consider the d = 3 case (as the other case is

simpler). On an arbitrary facet F̂ ∈FT̂ , choose two arbitrary edges Ê1, Ê2 with unit tangential vectors
t̂1 and t̂2. Using a dual tangential basis ŝ1 and ŝ2 such ŝi · t̂i = δi j, we expand

[M−1(IT σ −σ)]nt = [t̂T
1 M−1(IT σ −σ)n̂]ŝ1 +[t̂T

2 M−1(IT σ −σ)n̂]ŝ2.

Next we choose arbitrary r̂1, r̂2 ∈ Pk−1(F̂ ,R) and define

r̂ :=
r̂1

det(FE1)
t̂1 +

r̂2

det(FE2)
t̂2.

Let ri = r̂i ◦φT . Using a biorthogonal basis s1,s2 with respect to unit tangents t1 and t2 of mapped edges
E1 and E2, we have r := r1t1 + r2t2. Using Lemma 5.3 we deduce

[M−1(IT σ −σ)]nt = det(FF
T )det(FE1)[t

T
1 (IT σ −σ)n]ŝ1 +det(FF

T )det(FE2)[t
T
2 (IT σ −σ)n]ŝ2,
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so ∫
F̂
[M−1(IT σ −σ)]nt · r̂ dx̂ =

∫
F
[tT

1 (IT σ −σ)n]r1s1 · t1 dx+
∫

F
[tT

2 (IT σ −σ)n]r2s2 · t2 dx

=
∫

F
[(tT

1 (IT σ −σ)n)s1 +(tT
2 (IT σ −σ)n)s2] · [r1t1 + r2t2] dx

=
∫

F
(IT σ −σ)nt · r dx = 0

where the last equality is due to the equality of the facet degrees of freedom in (5.20). �

THEOREM 5.3 (Interpolation operator for Σh) For any m> 1 and any σ ∈ {τ ∈Hm(Th,Rd×d) : [[τnt ]] =
0}, the interpolant IΣhσ is well defined and there is a mesh-independent constant C such that

||σ − IΣhσ ||L2(Ω)+
√

∑
F∈Fh

h||(σ − IΣh σ)nt ||2F 6 Chs||σ ||Hs(Th) (5.22)

for all s6min(k,m).

Proof. Let σ̂ = M−1(σ |T ). By Lemma 5.4, M−1(σ − IT σ) = σ̂ − IT̂ σ̂ . By the unisolvency of the
reference element degrees of freedom (Theorem 5.1),

σ̂ − IT̂ σ̂ = 0 for all σ̂ ∈ Pk−1(T̂ ,Rd×d).

Now a standard argument using the Bramble-Hilbert lemma, the continuity of IT̂ : Hs(T̂ ,Rd×d) →
L2(T̂ ,Rd×d), and scaling arguments, finish the proof. �

6. A priori error analysis

In this section we show discrete inf-sup stability of the MCS method, optimal error estimates (Theo-
rem 6.3) and pressure robustness (Theorem 6.4). The error analysis is in the following norms.

‖τh‖2
Σh

:= ||τh||2L2(Ω) = ||dev(τh)||2L2(Ω), τh ∈ Σh,

||vh||2Vh
:= ||vh||21,h := ∑

T∈Th

||∇vh||2T + ∑
F∈Fh

1
h
‖[[(vh)t ]]‖2

F , vh ∈Vh,

||qh||2Qh
:= ||qh||2L2(Ω), qh ∈ Qh.

Comparing with (appropriate) norms of the infinite dimensional spaces V and Σ , these norms might
seem unnatural. But we choose these norms in order to obtain velocity error estimates in an H1-like
norm comparable to the standard velocity-pressure formulation. Since our discrete spaces do not admit
H1-conformity, our || · ||Vh -norm contains a term that penalizes the tangential discontinuities (as in the
analysis of discontinuous Galerkin methods). The L2-like norm on the Σh is also related to an H1-like
norm of the velocity since we expect σh to be an approximation of ν∇u. From this section on, for
convenience, we shall assume that ν is constant.

6.1 Norm equivalences

We use A∼B to indicate that there are constants c,C > 0 independent of the mesh size h and the viscosity
ν such that cA 6 B 6CA. We also use A . B when there is a C > 0 independent of h and ν such that
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A6CB (and& is defined similarly). Due to quasiuniformity, the following estimates follow by standard
scaling arguments: for any τ̂ ∈ Σk(T̂ ), letting τ = M (τ̂),

hd‖τh‖2
T ∼ ‖τ̂h‖2

0,T̂ . (6.1)

On any F ∈FT , Lemma 5.3, together with a scaling argument yields

hd+1∥∥tT
τhn
∥∥2

F ∼
∥∥t̂T

τ̂hn̂
∥∥2

0,F̂ . (6.2)

LEMMA 6.1 For all τh ∈ Σh,

‖τh‖2
Σh
∼ ∑

T∈Th

||dev(τh)||2T + ∑
F∈Fh

h
∥∥(τh)nt

∥∥2
F .

Proof. By finite dimensionality, for any face F̂ ∈FT̂ ,

h‖t̂T
τ̂hn̂‖2

0,F̂ . ‖τ̂h‖2
0,T̂ , for all τ̂h ∈ Σk(T̂ ).

Due to (6.2) and (6.1), this yields

∑
F∈Fh

h
∥∥[[(τh)nt ]]

∥∥2
F . ∑

T∈Th

‖τh‖2
T , for all τh ∈ Σk(T ).

This proves one side of the stated equivalence. The other side is obvious. �
On each facet F ∈ Fh with normal vector nF , let Π 0

F denote the L2 projection onto the space of
constant tangential vectors in n⊥F , i.e., for any vector function v ∈ L2(F,n⊥F ), the projection Π 0

F v ∈ n⊥F
satisfies (Π 0

F v, t)F = (v, t)F for all t ∈ n⊥F .

LEMMA 6.2 For all vh ∈Vh,

||vh||2Vh
∼ ∑

T∈Th

||∇vh||2T + ∑
F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F

Proof. One side of the equivalence is obvious from the continuity of Π 0
F . For the other direction,

||vh||2Vh
6 ∑

T∈Th

||∇vh||2T + ∑
F∈Fh

2
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F +

2
h

∥∥[[(vh)t ]]−Π
0
F [[(vh)t ]]

∥∥2
F . (6.3)

Now, on each facet F ∈FT , we use the standard estimate
∥∥(vh)t−Π 0

F(vh)t
∥∥

F . h1/2‖∇vh‖T to complete
the proof. �

6.2 Stability analysis

LEMMA 6.3 (Continuity of a, b1 and b2) The bilinear forms a, b1 and b2 are continuous:

a(σh,τh).
1√
ν
‖σh‖Σh

1√
ν
‖τh‖Σh

for all σh,τh ∈ Σh

b1(vh, ph). ||vh||Vh ||ph||Qh for all vh ∈Vh, ph ∈ Qh

b2(σh,vh). ‖σh‖Σh
||vh||Vh for all σh ∈ Σh,vh ∈Vh.
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Proof. The continuity for the bilinear forms a and b1 follows from the Cauchy-Schwarz inequality, we
only consider b2, which by (4.7) can be written as

b2(σh,vh) =− ∑
T∈Th

∫
T

σh : ∇vh dx+ ∑
F∈Fh

∫
F
(σh)nt · [[(vh)t ]] ds .

Since (σh)nt = (dev(σh))nt , we conclude the proof by Cauchy-Schwarz inequality and Lemma 6.1. �

LEMMA 6.4 (Coercivity of a on the kernel) Let Kh := {(τh,qh) ∈ Σh×Qh : b1(vh,qh)+b2(σh,vh) = 0
for all vh ∈Vh}. For all (σh, ph) ∈ Kh,

1
ν

(
‖σh‖Σh

+ ||ph||Qh

)2
. a(σh,σh).

Proof. Let (σh, ph) ∈ Kh be arbitrary. As ν−1 ‖σh‖2
Σh

= a(σh,σh) it is sufficient to bound only the norm
of ph. It is well known – see e.g., Boffi et al. (2013) – that for any ph ∈ Qh

∃vh ∈Vh : div(vh) = ph, ||vh||Vh . ||ph||Qh . (6.4)

With this vh,

||ph||2Qh
= ∑

T∈Th

∫
T

div(vh)ph dx = b1(vh, ph)

=−b2(σh,vh) as (σh, ph) ∈ Kh,

= ∑
T∈Th

∫
T

σh : ∇vh dx− ∑
F∈Fh

∫
F
(σh)nt · [[(vh)t ]] ds by (4.7),

6 ||dev(σh)||L2(Ω)||vh||Vh using Lemma 6.1,

. ‖σh‖Σh
||ph||Qh by (6.4).

�
Next, we proceed to verify the discrete LBB condition (in Theorem 6.1 below). Define

V 0
h := {wh ∈Vh : div(wh) = 0},

‖vh‖1,dev,h :=

(
∑

K∈Th

‖dev(∇vh)‖2
T + ∑

F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F

)1/2

.

As ‖∇vh‖2
T ∼ ‖dev(∇vh)‖2

T +‖div(vh)‖2
T on any T ∈Th and for any vh ∈Vh, we have by Lemma 6.2

‖vh‖1,dev,h ∼ ‖vh‖Vh for all vh ∈V 0
h . (6.5)

A first step towards proving the LBB condition is the construction of a specific stress function τh which
only depends on dev(∇vh) for any vh ∈ V 0

h . Using this τh we prove an LBB condition for b2 on V 0
h ,

which is the content of the next lemma. As τh ∈ Σh has a zero trace, we cannot in general control the
divergence of a general vh ∈ Vh solely using such a τh. Therefore, to complete the proof of the full
inf-sup condition (in the proof of Theorem 6.1 below), we utilize an appropriate pressure test function
as well.
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LEMMA 6.5 For any nonzero vh ∈ Vh there exists a nonzero τh ∈ Σh satisfying b2(τh,vh) & ‖vh‖2
1,dev,h

and ‖τh‖Σh . ‖vh‖1,dev,h , so by (6.5),

‖vh‖Vh . sup
τh∈Σh

b2(τh,vh)

‖τh‖Σh

for all vh ∈V 0
h .

Proof. Since the ideas are the same for d = 2 and 3, for ease of exposition, we give the details
of the proof only in the d = 2 case. Because of the decomposition of the degrees of freedom into
face and interior degrees of freedom (see (5.10) and (5.11)), we may decompose Σh = Σ 0

h ⊕Σ 1
h where

Σ 0
h =⊕K∈ThBk(T ) and Σ 1

h is the span of facet shape functions (see also Remark 5.1). In particular, Σ 1
h

contains the lowest order shape function SF with the property that SF
nt ∈ n⊥F and ||SF

nt ||2 = 1 on the facet
F and equals (0,0) on all other facets in Fh. (SF can be explicity written down by mapping (5.15) or
by appropriately scaling (5.2).) Given any vh ∈V 0

h , define

τ
0
h := ∑

T∈Th

∑
F∈FT

−(SF : dev(∇vh))λ
F
T SF , τ

1
h := ∑

F∈Fh

1√
h
(Π 0

F [[(vh)t ]])SF , (6.6)

where λ F
T is the barycentric coordinate of T that vanishes on F (thus is λ F

T SF is a linear inner nt-bubble).
Below we shall construct a linear combination of these functions to obtain the τh stated in the lemma.

By (6.1) and (6.2), a scaling argument (like in Lemma 6.1) shows that there is a mesh-independent
C1 such that ∥∥τ

1
h

∥∥2
Σh
6C1 ∑

F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F . (6.7)

A similar scaling argument also shows that∥∥τ
0
h

∥∥2
Σh
. ∑

T∈Th

‖dev(∇vh)‖2
T . (6.8)

By construction, (τ0
h )nt vanishes and

b2(τ
0
h ,vh) = ∑

T∈Th

−
∫

T
τ

0
h : ∇vh dx = ∑

T∈Th

∫
T

∑
F∈FT

(SF : dev(∇vh))
2
λ

F
T .

Since the functions SF form a basis for D by Lemma 5.1, a scaling argument shows that

b2(τ
0
h ,vh)& ∑

T∈Th

‖dev(∇vh)‖2
T . (6.9)

Next, set τh = γ0τ0
h + γ1τ1

h where γ0 and γ1 are positive constants to be chosen. Then

b2(τh,vh)& γ0 ∑
T∈Th

‖dev(∇vh)‖2
T + γ1b2(τ

1
h ,vh) by (6.9)

= γ0 ∑
T∈Th

‖dev(∇vh)‖2
T + γ1

(
∑

T∈Th

−
∫

T
τ

1
h : ∇vh dx+ ∑

F∈Fh

∫
F
(τ1

h )nt · [[(vh)t ]] ds

)

= γ0 ∑
T∈Th

‖dev(∇vh)‖2
T − γ1 ∑

T∈Th

∫
T

τ
1
h : dev(∇vh) dx+γ1 ∑

F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F by (6.6).
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Applying the Cauchy Schwarz inequality and also Young’s inequality with δ > 0 we further have

b2(τh,vh)& γ0 ∑
T∈Th

‖dev(∇vh)‖2
T − γ1‖τ1

h‖Σh

√
∑

T∈Th

‖dev(∇vh)‖2
T + γ1 ∑

F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F

&

(
γ0−

γ1δ

2

)
∑

T∈Th

‖dev(∇vh)‖2
T +

(
1− C1

2δ

)
γ1

h ∑
F∈Fh

∥∥Π
0
F [[(vh)t ]]

∥∥2
F ,

where in the last step we also used (6.7). Choosing δ =C1, γ1 = 1/δ = 1/C1, and γ0 = 1,

b2(τh,vh)& ∑
T∈Th

‖dev(∇vh)‖2
T + ∑

F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F . (6.10a)

Let us also note that (6.7) and (6.8) yield

‖τh‖Σh . ∑
T∈Th

‖dev(∇vh)‖2
T + ∑

F∈Fh

1
h

∥∥Π
0
F [[(vh)t ]]

∥∥2
F . (6.10b)

The estimates (6.10) and the norm equivalences of (6.5) and Lemma 6.2 complete the proof. �

THEOREM 6.1 (Discrete LBB-condition) For all vh ∈Vh,

sup
(τh,qh)∈Σh×Qh

b1(vh,qh)+b2(τh,vh)

‖τh‖Σh
+ ||qh||Qh

& ||vh||Vh (6.11)

Proof. By Lemma 6.5, for any vh ∈ Vh, there is a τh ∈ Σh satisfying b2(τh,vh) & ‖vh‖2
1,dev,h and

‖τh‖Σh . ‖vh‖1,dev,h. Next we choose the pressure variable qh = div(vh), which is possible due to the
specific choice of Vh and Qh, so that b1(vh,qh) = ‖div(vh)‖2

Qh
. With these choices of τh and qh, we have

b1(vh,qh)+b2(τh,vh)

‖τh‖Σh
+ ||qh||Qh

>
‖vh‖2

1,dev,h +‖div(vh)‖2
Qh

‖τh‖Σh
+ ||qh||Qh

& ‖vh‖Vh .

�

REMARK 6.1 (Residual stabilization alternative) A crucial ingredient in the proof of the LBB condition
was the choice made in (6.6). The choice of τ0

h in terms of (SF : dev(∇vh))λ
F
T SF was admissible as

dev(∇uh) is a polynomial of degree k− 1 and Σh contains the element-wise bubbles of degree k in
Bk(T ). This choice would not be admissible if we had used bubbles in Bk−1(T ) instead of Bk(T ).
Therefore, if we replace the stress space by the lower degree space

Σ̃h := {τh ∈ Pk−1(Th,Rd×d) : tr(τh) = 0, [[(τh)nt ]] = 0},

the above proof can no longer be used to conclude stability of the resulting method. Yet, it is possible
to get a good method (with optimal error convergence results) using Σ̃h by a residual-based stabilization
term. Define c :

[
L2(Ω ,Rd×d)×V

]
×
[
L2(Ω ,Rd×d)×V

]
→ R by

c((σ ,u),(τ,v)) :=− ∑
T∈Th

ν

2

∫
T
(

1
ν

σ −∇u) : (
1
ν

τ−∇v) dx .

When this form is added to the system (MCS) and Σh is replaced by Σ̃h, it is possible to prove stability.
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THEOREM 6.2 (Consistency) The mass conserving mixed stress formulation (MCS) is consistent in the
following sense. If the exact solution of the mixed Stokes problem (3.2) is such that u ∈ H1(Ω ,Rd),
σ ∈ H1(Ω ,Rd×d) and p ∈ L2

0(Ω ,R), then

a(σ ,τh)+b2(τh,u)+b2(σ ,vh)+b1(vh, p)+b1(u,qh) = (− f ,vh)Ω

for all vh ∈Vh,qh ∈ Qh, and τh ∈ Σh.

Proof. As the exact solutions σ and u are continuous we have [[σnn]] = 0 and [[ut ]] = 0 on all faces
F ∈Fh and thus using representations (4.6) and (4.7) we have

b2(σ ,vh) = ∑
T∈Th

∫
T

div(σ) · vh dx− ∑
F∈Fh

∫
F
[[σnn]](vh)n ds = ∑

T∈Th

∫
T

div(σ) · vh dx

and

b2(τh,u) =− ∑
T∈Th

∫
T

τh : ∇u dx+ ∑
F∈Fh

∫
F
(τh)nt · [[ut ]] ds =− ∑

T∈Th

∫
T

τh : ∇u dx .

Using div(u) = 0 we further get that b1(u,qh) = 0, so all together we have

a(σ ,τh)+b2(τh,u)+b2(σ ,vh)+b1(vh, p)+b1(u,qh)

=
∫

Ω

1
ν

dev(σ) : dev(τh) dx− ∑
T∈Th

∫
T

τh : ∇u dx+ ∑
T∈Th

∫
T

div(σ) · vh dx+
∫

Ω

div(vh)p dx

For the exact solution we have dev(σ) = ν∇u. Further, as div(u) = 0, a simple calculation shows that
τh : ∇u = τh : dev(∇u) = dev(τh) : ∇u. Using integrating by parts for the last integral we conclude

a(σ ,τh)+b2(τh,u)+b2(σ ,vh)+b1(vh, p)+b1(u,qh)

=
∫

Ω

∇u : dev(τh) dx− ∑
T∈Th

∫
T

dev(τh) : ∇u dx+ ∑
T∈Th

∫
T

div(σ) · vh dx+
∫

Ω

div(vh)p dx

=
∫

Ω

div(σ) · vh dx+
∫

Ω

div(vh)p dx =
∫

Ω

[
div(σ)−∇p

]
· vh dx =

∫
Ω

− f vh dx .

�

6.3 Error estimates

THEOREM 6.3 (Optimal convergence rates) Let u ∈ H1(Ω ,Rd)∩Hm(Th,Rd), σ ∈ H1(Ω ,Rd×d)∩
Hm−1(Th,Rd×d) and p ∈ L2

0(Ω ,R)∩Hm−1(Th,R) be the exact solution of the mixed Stokes problem
(3.2). Further let σh, uh and ph be the solution of the mass conserving mixed stress formulation (MCS).
For s = min(m−1,k) there holds

||u−uh||Vh +
1
ν
‖σ −σh‖Σh

+
1
ν
||p− ph||Qh . hs

(
||u||Hs+1(Th)

+
1
ν
||σ ||Hs(Th)+

1
ν
||p||Hs(Th)

)
.
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Proof. The proof is based on the discrete stability established above, which we shall use after bounding
the error by triangle inequality into interpolation error and a discrete measure of error, as follows:

||u−uh||Vh +
1
ν
‖σ −σh‖Σh

+
1
ν
||p− ph||Qh

. ||u− IVhu||Vh +
1
ν

∥∥σ − IΣhσ
∥∥

Σh
+

1
ν
||p− IQh p||Qh

+ ||IVhu−uh||Vh +
1
ν

∥∥IΣhσ −σh
∥∥

Σh
+

1
ν
||IQh p− ph||Qh .

(6.12)

Here IΣh is the interpolation operator studied in Theorem 5.3, IVh is the standard H(div)-conforming
interpolant – see Brezzi et al. (1985); Raviart & Thomas (1977) – and IQh is the L2 projection into Qh.
Note that for s = min(m−1,k) we have the approximation results

||u− IVhu||Vh . hs||u||Hs+1(Th)
and ||p− IQh p||Qh . hs||p||Hs(Th). (6.13)

When this is combined with (5.22) of Theorem 5.3, the first three terms on the right hand side (6.12)
can be bounded as needed.

To bound the remaining terms of (6.12), we first define the following norm on the product space
Vh×Σh×Qh given by

||(uh,σh, ph)||∗ :=
√

ν ||uh||Vh +
1√
ν
(‖σh‖Σh

+ ||ph||Qh).

Using the Brezzi theorem – see for example in Boffi et al. (2013) – the LBB condition of the bilinear
forms b1 and b2 (Theorem 6.1), the coercivity of a (Lemma 6.4) and the continuity (Lemma 6.3) imply
inf-sup stability of the bilinear form

B(uh,σh, ph;vh,τh,qh) := a(σh,τh)+b1(uh,qh)+b1(vh, ph)+b2(σh,vh)+b2(τh,uh),

with respect to the product space norm ||(·, ·, ·)||∗, i.e.,

||(IVh u−uh, IΣhσ −σh, IQh p− ph)||∗ 6 sup
(vh,τh,qh)∈Vh×Σh×Qh

B(IVhu−uh, IΣhσ −σh, IQh p− ph;vh,τh,qh)

||(vh,τh,qh)||∗

6 sup
(vh,τh,qh)∈Vh×Σh×Qh

B(IVhu−u, IΣhσ −σ , IQh p− p;vh,τh,qh)

||(vh,τh,qh)||∗
,

where we used the consistency result of Theorem 6.2 in the last step.
Next, we estimate the terms that form B(IVhu− u, IΣhσ −σ , IQh p− p;vh,τh,qh). Using the Cauchy

Schwarz inequality,

a(IΣhσ −σ ,τh)+b1(IVhu−u,qh)+b1(vh, IQh p− p)

. (
1√
ν

∥∥IΣhσ −σ
∥∥

Σh

1√
ν
‖τh‖Σh

)+(
√

ν ||IVh u−u||Vh

1√
ν
||qh||Qh)+(

√
ν ||v||Vh

1√
ν
||IQh p− p||Qh)

6 ||(IVhu−u, IΣhσ −σ , IQh p− p)||∗||(vh,τh,qh)||∗
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For the terms including the bilinear form b2 we also have by the Cauchy Schwarz inequality applied on
each element and each facet

b2(IΣhσ −σ ,vh)+b2(τh, IVhu−u)

. ∑
F∈Fh

√
h||(IΣh σ −σ)nt ||F

1√
h
||[[(vh)t ]]||F + ∑

T∈Th

||IΣhσ −σ ||T ||∇vh||T

+ ∑
F∈Fh

√
h||(τh)nt ||F

1√
h
||[[(IVhu−u)t ]]||F + ∑

T∈Th

||τh||T ||∇(IVhu−u)||T .

Scaling with
√

ν and applying the norm equivalence Lemma 6.1 finally yields

b2(IΣhσ −σ ,vh)+b2(τh, IVhu−u).(
1√
ν
(
∥∥IΣhσ −σ

∥∥
Σh
+

1√
ν

√
∑

F∈Fh

h||(IΣhσ −σ)nt ||2F +
√

ν ||IVhu−u||Vh

)
||(vh,τh,0)||∗.

All together this leads to the estimate

||(IVhu−uh,IΣhσ −σh, IQh p− ph)||∗

. ||(IVhu−u, IΣhσ −σ , IQh p− p)||∗+
1√
ν

√
∑

F∈Fh

h||(IΣhσ −σ)nt ||2F .

Again, with (6.13) and (5.22) we conclude the proof. �

6.4 Pressure robustness

We define the continuous Helmholtz projector P as the rotational part of a Helmholtz decomposition
(see Girault & Raviart (2012)) of a given load f

f = ∇θ +ξ =: ∇θ +P( f ),

with θ ∈H1(Ω)/R and ξ =: P( f )∈ {v∈H0(div,Ω) : div(v) = 0}. Testing the second line of (3.8) with
an arbitrary divergence free testfunction v ∈ {v ∈ H0(div,Ω) : div(v) = 0}, we see that

〈divσ ,v〉H0(div,Ω) =−〈P( f ),v〉H0(div,Ω),

hence σ = ν∇u is steered only by a part of f , namely P( f ). If the right hand side is perturbed by a
gradient field ∇α , then σ and u should not change as P( f +∇α) = P( f ). In the work by Linke (2014)
this relation was discussed in a discrete setting. If a discrete method fulfills this property, it is called
pressure robust because one can then deduce an H1-velocity error that is independent of the pressure.
The convergence estimate of Theorem 6.3 includes the scaled term 1/ν ||p||Hs(Th) which blows up as
ν → 0. However, the mass conserving mixed stress formulation (MCS) is pressure robust, allowing us
to conclude that velocity errors do not blow up as ν → 0 by virtue of the next theorem.

THEOREM 6.4 (Pressure robustness) Let u ∈ H1(Ω ,Rd)∩Hm(Th,Rd) and let σ ∈ H1(Ω ,Rd×d)∩
Hm−1(Th,Rd×d) be the exact solution of the mixed Stokes problem (3.2). Further let σh, uh be the
solution of the mass conserving mixed stress formulation (MCS). For s = min(m−1,k) there holds

||u−uh||Vh +
1
ν
‖σ −σh‖Σh

. hs||u||Hs+1(Th)
.
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Proof. The proof follows along the lines of the proof of Theorem 6.3. Using the triangle inequality,

||u−uh||Vh +
1
ν
‖σ −σh‖Σh

. ||u− IVhu||Vh +
1
ν

∥∥σ − IΣhσ
∥∥

Σh
+ ||IVhu−uh||Vh +

1
ν

∥∥IΣhσ −σh
∥∥

Σh
.

The first two terms can be estimated using the approximation results (6.13) and (5.22). Next note
that from the LBB condition of Lemma 6.5 on V 0

h and the trivial coercivity inequality a(σh,σh) >

(1/ν)‖σh‖2
Σh

for all σh ∈ Σh, we conclude inf-sup stability of the bilinear form B(uh,σh,0;vh,τh,0)
with respect to the product space norm ||(·, ·,0)||∗ on the subspace V 0

h ×Σh×{0}, i.e.,

||IVhu−uh||Vh +
1
ν

∥∥IΣhσ −σh
∥∥

Σh
=

1√
ν
||(IVhu−uh, IΣhσ −σh,0)||∗

6 sup
(vh,τh)∈V 0

h ×Σh

B(IVhu−uh, IΣhσ −σh,0;vh,τh,0)√
ν ||(vh,τh,0)||∗

.

Note that the form is continuous by Lemma 6.3. By steps similar to those in the proof of the consistency
result of Theorem 6.2 we have

B(u,σ ,0;vh,τh,0) =
∫

Ω

div(σ) · vh =
∫

Ω

− f · vh +
∫

Ω

∇p · vh =
∫

Ω

− f · vh

for all vh,τh ∈V 0
h ×Σh, where we used div(σ) =− f +∇p and integration by parts for ∇p. This shows

that the method is also consistent on the subspace of divergence-free velocity test functions, a key
ingredient to obtain pressure robustness. We now have

sup
(vh,τh)∈V 0

h ×Σh

B(IVhu−uh, IΣhσ −σh,0;vh,τh,0)√
ν ||(vh,τh,qh)||∗

= sup
(vh,τh)∈V 0

h ×Σh

B(IVhu−u, IΣhσ −σ ,0;vh,τh,0)√
ν ||(vh,τh,qh)||∗

.

The rest of the proof follows along the previous lines using the identity σ = ν∇u and we obtain

||u−uh||Vh +
1
ν
‖σ −σh‖Σh

. hs(||u||Hs+1(Th)
+

1
ν
||σ ||Hs(Th))6 hs||u||Hs+1(Th)

.

�

7. Numerical examples

In the following we present a numerical example to validate the results of Section 6. All numerical
examples were implemented within the finite element library NGSolve/Netgen, see Schöberl (1997,
2014). Let Ω = [0,1]d and choose the right hand side f =−div(σ)+∇p with the exact solution given
by

σ = ν∇curl(ψ2), and p := x5 + y5− 1
3

for d = 2

σ = ν∇curl(ψ3,ψ3,ψ3), and p := x5 + y5 + z5− 1
2

for d = 3,

where ψ2 := x2(x− 1)2y2(y− 1)2 and ψ3 := x2(x− 1)2y2(y− 1)2z2(z− 1)2 defines velocity through a
vector and scalar potential in two and three dimensions respectively. In Figure 2 different errors are
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FIG. 2. Convergence plots for the two dimensional case with a fixed viscosity ν = 10−3.

plotted for varying polynomial orders k = 2,3,4,5 in the two dimensional case with a fixed viscosity
ν = 10−3. As predicted by Theorem 6.3, the H1-seminorm error of the velocity, the L2-norm error of
the stress and the L2-norm error of the pressure have the same optimal convergence rate.

The L2-norm of the velocity error converges at one higher order as shown in the bottom right plot
of Figure 2. This can be explained by the standard Aubin-Nitsche duality argument, by which we can
prove

||u−uh||L2(Ω) 6 hk+1||u||Hk+1(Th)

whenever the problem admits full elliptic regularity and the exact solution u is smoother. This argument
works in both two and three dimensions. The higher observed rate of convergence in three dimensions
(for ν = 10−3), given by the estimated order of convergence (eoc), can be seen in Table 1.

Next, we study pressure robustness. The above-mentioned right hand side f consists of an irrota-
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tional part (the gradient of the pressure) and a part with curl. We study how the velocity error (in H1

seminorm) varies as ν → 0 for the presented MCS method and the standard Taylor-Hood method – see
e.g., F. Brezzi (1991) and Girault & Raviart (2012) – using the same polynomial approximation order
for the velocity in the two dimensional case. We observe in Figure 3 that the error of the Taylor-Hood
method increases as ν → 0 and behaves as if it were scaled by a factor 1/ν for small values of ν . This
is the locking phenomenon we discussed earlier: clearly the Taylor-Hood method is not pressure ro-
bust (and does not provide exactly divergence-free numerical velocity). In contrast, the velocity errors
in the MCS method (also in Figure 3) appear to be not influenced by varying values of ν . This be-
haviour is observed for several polynomial orders k = 2,3,4. These observations match the predictions
of Theorem 6.4.

|T | ||∇u−∇uh||0 (eoc) ||σ −σh||0 (eoc) ||p− ph||0 (eoc) ||u−uh||0 (eoc)

k = 1
28 4.6·10−3 ( – ) 3.5·10−3 ( – ) 2.4·10−1 ( – ) 4.3·10−4 ( – )

224 3.9·10−3 (0.2) 2.7·10−3 (0.4) 1.7·10−1 (0.6) 2.6·10−4 (0.7)
1792 2.3·10−3 (0.8) 1.3·10−3 (1.1) 8.9·10−2 (0.9) 7.6·10−5 (1.8)

14336 1.1·10−3 (1.0) 6.3·10−4 (1.0) 4.6·10−2 (1.0) 1.9·10−5 (2.0)
114688 5.6·10−4 (1.0) 3.1·10−4 (1.0) 2.3·10−2 (1.0) 4.9·10−6 (2.0)

k = 2
28 2.8·10−3 ( – ) 1.9·10−3 ( – ) 7.5·10−2 ( – ) 1.4·10−4 ( – )

224 1.5·10−3 (0.9) 4.6·10−4 (2.0) 3.1·10−2 (1.3) 3.4·10−5 (2.0)
1792 5.8·10−4 (1.4) 1.8·10−4 (1.4) 9.5·10−3 (1.7) 8.2·10−6 (2.1)

14336 1.7·10−4 (1.8) 4.9·10−5 (1.9) 2.5·10−3 (1.9) 1.3·10−6 (2.7)
114688 4.4·10−5 (2.0) 1.3·10−5 (2.0) 6.4·10−4 (2.0) 1.6·10−7 (2.9)

k = 3
28 1.0·10−3 ( – ) 2.9·10−4 ( – ) 6.7·10−3 ( – ) 2.5·10−5 ( – )

224 4.8·10−4 (1.1) 9.2·10−5 (1.6) 1.6·10−3 (2.1) 6.3·10−6 (2.0)
1792 1.5·10−4 (1.7) 1.7·10−5 (2.4) 2.6·10−4 (2.6) 1.0·10−6 (2.6)

14336 2.0·10−5 (2.9) 2.4·10−6 (2.8) 3.5·10−5 (2.9) 7.2·10−8 (3.9)
114688 2.6·10−6 (2.9) 3.1·10−7 (2.9) 4.5·10−6 (3.0) 4.7·10−9 (3.9)

Table 1. The H1-seminorm error of the velocity, the L2-norm error of the pressure and the stress and the L2-norm error of the
velocity for different polynomial orders k = 1,2,3 for the three dimensional case and a fixed viscosity ν = 10−3

We conclude with a few remarks on the cost of solving the discrete system (MCS). After an element
wise static condensation step there are two different types of degrees of freedom (dofs) that couple at
element interfaces. These coupling dofs determine the costs for the factorization step of the assembled
matrix. In the d = 2 case, the normal continuity of the H(div)-conforming velocity space demands k+1
dofs per interface, while the normal-tangential continuity of the stress space Σh requires k dofs, i.e., we
have 2k+ 1 dofs per interface. This is comparable to the number of interface degrees of freedom for
standard methods. In fact, it is identical to the number of dofs per interface of an advanced method (with
a reduced stabilization called “projected jumps”) presented in the recent work of Lehrenfeld & Schöberl
(2016). Similar cost comparison observations apply for the d = 3 case.
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FIG. 3. The H1-seminorm error for the MCS method and a Taylor-Hood approximation for k = 2,3,4 and varying viscosity ν .
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COCKBURN, B., KANSCHAT, G. & SCHÖTZAU, D. (2005) A locally conservative LDG method for
the incompressible Navier-Stokes equations. Mathematics of Computation, 74, 1067–1095.
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for de Rham complexes on Lipschitz domains. Mathematische Zeitschrift, 265, 297–320.

DEMLOW, A. & HIRANI, A. N. (2014) A posteriori error estimates for finite element exterior calculus:
the de Rham complex. Found. Comput. Math., 14, 1337–1371.

DUBINER, M. (1991) Spectral methods on triangles and other domains. Journal of Scientific Comput-
ing, 6, 345–390.

ERN, A. & GUERMOND, J.-L. (2004) Theory and Practice of Finite Elements. Applied Mathematical
Sciences 159, 1 edn. Springer-Verlag New York.

F. BREZZI, R. S. F. (1991) Stability of higher-order Hood-Taylor method. SIAM J. Numer. Anal., 28.

FARHLOUL, M. (Fall 1995) Mixed and nonconforming finite element methods for the stokes problem.
Canadian Applied Mathematics Quarterly, 3.

FARHLOUL, M. & FORTIN, M. (1993) A new mixed finite element for the Stokes and elasticity prob-
lems. SIAM J. Numer. Anal., 30, 971–990.

FARHLOUL, M. & FORTIN, M. (1997) Dual hybrid methods for the elasticity and the Stokes problems:
a unified approach. Numer. Math., 76, 419–440.

FARHLOUL, M. & FORTIN, M. (2002) Review and complements on mixed-hybrid finite element
methods for fluid flows. Proceedings of the 9th International Congress on Computational and Applied
Mathematics (Leuven, 2000), vol. 140. , pp. 301–313.

FU, G., JIN, Y. & QIU, W. (2018) Parameter-free superconvergent H(div)-conforming HDG methods
for the brinkman equations. IMA Journal of Numerical Analysis, dry001.

GIRAULT, V. & RAVIART, P.-A. (2012) Finite element methods for Navier-Stokes equations: theory
and algorithms, vol. 5. Springer Science & Business Media.



REFERENCES 33 of 34

JOHN, V., LINKE, A., MERDON, C., NEILAN, M. & REBHOLZ, L. (2017) On the divergence con-
straint in mixed finite element methods for incompressible flows. SIAM Review, 59, 492–544.

KARNIADAKIS, G. & SHERWIN, S. (2013) Spectral/hp element methods for computational fluid dy-
namics. Oxford University Press.
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LEDERER, P. L. & SCHÖBERL, J. (2017) Polynomial robust stability analysis for H(div)-conforming
finite elements for the Stokes equations. IMA Journal of Numerical Analysis, drx051.
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