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ABSTRACT. Although Regge finite element functions are not continuous, useful generalizations
of nonlinear derivatives like the curvature, can be defined using them. This paper is devoted
to studying the convergence of the finite element lifting of a generalized (distributional) Gauss
curvature defined using a metric tensor approximation in the Regge finite element space. Specif-
ically, we investigate the interplay between the polynomial degree of the curvature lifting by
Lagrange elements and the degree of the metric tensor in the Regge finite element space. Pre-
viously, a superconvergence result, where convergence rate of one order higher than expected,
was obtained when the approximate metric is the canonical Regge interpolant of the exact
metric. In this work, we show that an even higher order can be obtained if the degree of the
curvature lifting is reduced by one polynomial degree and if at least linear Regge elements are
used. These improved convergence rates are confirmed by numerical examples.
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1. INTRODUCTION

Substantial progress has recently been made on computing high-order approximations of
Gauss curvature on two-dimensional Riemannian manifolds using non-smooth metrics that are
piecewise smooth with respect to a mesh [10, 2, 12]. Perhaps the most well-known example is
that of a piecewise constant metric, where the angle defect at mesh vertices yields an approx-
imation of Gauss curvature. Being concentrated at vertices, this angle defect can naturally
be lifted into a linear Lagrange finite element space that has one basis function per vertex.
Taking this as a point of departure by viewing a piecewise constant metric as a polynomial of
degree k = 0 and the resulting Lagrange curvature lifting as a polynomial of degree k + 1 =1
within each element, we can generalize to higher degrees k. Namely, in [12], we showed that
if a smooth metric is approximated using the canonical interpolant of the Regge finite element
space of degree k, then the error in a degree (k + 1)-Lagrange finite element approximation of
the Gauss curvature converges to zero in the H '-norm at the rate O(h**1), where h is the
mesh-size. The present work is devoted to answering the following related question. What con-
vergence rates can be expected if we decide to approximate curvature in an even higher degree
Lagrange space—or for that matter, a lower degree Lagrange space—while keeping the metric
in the degree k Regge space? Since the analysis in [I2] used delicate orthogonality properties
(such as the orthogonality of the error in Christoffel symbol approximations), the answer is not
obvious. In fact, the answer we provide in this paper may even seem counterintuitive at first
sight: reducing the degree of curvature approximation to degree k increases the convergence
rate, while increasing it to degree k + 2 reduces the rate. Specifically, we observe that, under

suitable assumptions, the following rates apply:
1
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Curvature approximation | H ! convergence | Source
k+2 k=0 O(hF) Section {|in this paper
E+1 k=0 O(h*1) [12, Theorem 6.5]
k E>1 O(hF+2) Theorem , in this paper
kE—1 k=2 O(h*1) Section 4| in this paper

The remainder of this introduction places these and related prior results into perspective.

By Gauss’ Theorema Egregium, Gauss curvature K is an intrinsic quantity. It can be com-
puted considering solely the metric tensor of the manifold, without reference to any embedding.
Therefore, it is natural to ask for discrete versions of Gauss curvature that arise when only ap-
proximations of the exact metric are given, and how well such discrete versions approximate
the exact curvature when the approximated metrics are close to the exact one.

We consider Regge finite elements for discretizing the metric tensor. They originate from
Regge calculus, originally developed for solving Einstein field equations in general relativity [21].
Following Regge we consider a simplicial triangulation of the manifold and assign positive
numbers to each edge. These numbers are interpreted as squared lengths and determine a
piecewise constant metric tensor. Sorkin pointed out in [25, Section IT.A] that this piecewise
constant metric tensor possesses tangential-tangential continuity, or tt-continuity (which we
define precisely in Subsection below) over element interfaces. Christiansen [4] popularized
Regge calculus in the study of finite element methods (FEM) much the same way as finite
element exterior calculus (FEEC) popularized the use of Whitney forms [29] in FEM. He
defined in [5] the lowest-order Regge finite element space (the k = 0 case of the space Reg}
defined in below) and showed that the linearization of the discretized Einstein—Hilbert
action functional around the Euclidean metric equals the distributional incompatibility operator
applied to such functions. Further, he proved in [0 [7] that the densitized curvature of a
sequence of mollified piecewise constant Regge metrics converges to the angle defect in the sense
of measures. Li extended the Regge space to arbitrary polynomial degrees k£ and to higher-
dimensional simplices [I8], and Neunteufel defined high-order Regge elements for quadrilaterals,
hexahedra, and prisms [19].

Due to the non-smoothness of the approximated metric g, € Regy (which only has tangential-
tangential continuity) and the nonlinearity of curvature, a definition of consistent and conver-
gent notion of discrete Gauss curvature is not obvious. We refer to Sullivan [27, Section 4.1]
for a historical discussion and to Strichartz [26], Corollary 3.1] for a definition of curvature
as a measure on singular surfaces, where the curvature quantities, being multiplied by the
corresponding volume forms, are handled as densities. In [2], Berchenko-Kogan and Gawlik
defined a distributional version of the densitized Gauss curvature, namely Kw, a generalization
of the product of Gauss curvature K with the volume form w (and we analyzed their curvature
generalization further in [12]). In their work, in addition to the elementwise Gauss curvature
K|r = K(gn)|r, they consider the jump of the geodesic curvature x over edges and the angle
defect at vertices as sources of Gauss curvature, i.e., for any u in a space \7(9 ) based on a

mesh .7 defined below,

Kw(gn)(u) = >’ LK|TWT + > L[[K]]EWE + Y Ovu(V), (1.1)

TeT Ee& Vey

where wr and wg denote the volume forms of the respective (sub-)domains. This allows for
putting the well-established Gauss curvature approximation by angle deficit ©y (27 minus the
sum of the interior angles of triangles attached to the vertex) into a finite element context and to
extend it to higher polynomial order. In fact, considering piecewise constant metrics, g, € Reg),
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the angle deficit is recovered, since then Kw(g)(u) = D vey Ov u(V). The distributional Gauss
curvature ((1.1)) acts on piecewise smooth and globally continuous 0-forms defined by

V(T) ={ue A’T) : uis continuous},
Vo(Z) = {ueV(T) : ulp =0}, VT)="Vn(T).
The meaning of “piecewise smooth” with respect to a “mesh” .7 and definition of piecewise
smooth k-form fields A*(.7) appear in Subsection below. The standard degree k Lagrange
finite element subspaces of of the spaces in (1.2) are denoted by V¥, Vﬁjr, and V¥, respectively,
Berchenko-Kogan and Gawlik proved [2] error estimates in the H~'-norm by using an integral
representation of (1.1]). Indeed, let § denote the Euclidean metric, whose coordinate components

coincide with the classical Kronecker delta, [0];; = d;; (not to be confused with the Dirac delta,
which is never used in this work). Then there holds

(1.2)

Rolg)(w) = f b6+ (g — 6):g — b,u) dt. (1.3)

where the bilinear form b(g;o,u) is the covariant version of the Hellan-Herrmann—Johnson
(HHJ) method [14, 15| [16] extending the covariant differential operator div,div,(S,o) in the
sense of distributions, where S;0 = ¢ — tr,(0)g. Recently, Gawlik and Neunteufel extended
the analysis to the H2-norm for the Gauss curvature, see [10]. Further, they considered an
integral representation for the error (m(gh) - m(g)) (u).

It is often useful (or even necessary) to consider Gauss curvature as a function instead of as
a functional or a distribution. In [9], Gawlik computed a discrete Riesz representative K}, € \72
in the Lagrange finite element space \7; as a lifting of the distributional Gauss curvature
via

J Ky upwy, = f(\:u(gh)(uh) for all u, € \72,
Q

where w;, = +/det g, dz' A da? denotes the approximated volume form.

He proved error estimates of this lifting also for Sobolev norms under the assumption that
gn € Regfl is an optimal-order approximation of the exact metric g, with exact Gauss curvature
K = K(g),

|Kn = Kl < Ch7™ 00 (5] s + | K g ), —1<I<7, (1.4)

Here, | - |g: denotes the elementwise H Lnorm. In [12], we considered an alternative inte-
gral representation that relies on the distributional covariant incompatibility operator, inc, =
curly curl,, which is related to the HHJ method by inc,o = —div,div,y(S,0). We showed an
convergence rate increase (by one order) compared to if g, is the canonical Regge in-
terpolant (defined by Li in [I§], reproduced in below) of the exact metric g and K, is

assumed to be in \072“,
| K = K| < Ch (|glwrine + |K]gx), —-1<I<k.

However, this convergence rate, when compared against the best approximation capabilities
of the space, is not the theoretical optimum; for K € \7’;;*1 we obtain only L2-convergence of
order k instead of k + 2.

In this paper we show that an increased, optimal convergence rate for the lifting of the dis-
tributional Gauss curvature K, and its densitized version Kjwy, is obtained when considering
Lagrange elements V¥ of one polynomial degree less assuming at least linear elements, k > 1,
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are used. Our analysis relies heavily on the properties of the canonical Regge interpolant [18§]
preserving specific moments at edges and elements. Therefore, the results only hold for the
canonical Regge interpolant. For more general metric approximations in Regf, the estimate
cannot generally be improved. The technique of analysis in this work differs from our
earlier work [I2] in that we use an integral representation directly for the difference between
the curvatures of the exact and the approximated metrics, instead of employing an interpo-
lation from the Euclidean metric as in . This allows us to bypass a delicate “Christoffel
orthogonality property,” which was a key step in our prior work (see [12, Lemma 6.10]). As
in [12], our current analysis also relies on the distributional covariant incompatibility operator
inf\c/g, but now we rely specifically on its distributional L?-like adjoint rmg. The latter sim-
plifies the curvature error analysis compared to [12] (even if it does not provide estimates for

—~—

incg-approximation, which we did in [12]).

This paper is structured as follows. In the next section we quickly review differential geometry
notions we use, distributional covariant derivatives, and the distributional Gauss curvature.
Section [3]is devoted to the error analysis of the lifted (densitized) Gauss curvature in the H~!-
and stronger Sobolev norms. In Section[d] we present numerical examples confirming the proved
convergence rates.

2. NOTATION

Let 2 < R? be an open domain with a smooth metric tensor g providing a Riemannian
manifold structure ({2,g). Consider a triangulation 7 of (2 consisting of possibly curved
triangles. Denote the set of all edges and vertices by & and 7, respectively. We split & into
edges lying on the boundary 02, given by &, and inner ones & = &\&. Analogously we
define ¥, and ¥. We assume to be given an approximation of g, denoted g, defined on the
triangulation 7. The subscript h indicates that g, is defined with respect to the triangulation
7, where h can be related to the maximal element size. All quantities computed from the
exact metric g will be marked by an overline “~” throughout the paper.

2.1. Regge metric. Let X(T'), A*(T), and TF(T') denote the set of smooth vector fields, k-form
fields, and (k, [)-tensor fields on a submanifold 7" of {2, respectively. Here, smoothness signifies
infinite differentiability at interior points and continuous differentiability up to (including) the
boundary. In such symbols, replacement of the manifold T" by a collection of subdomains such
as the triangulation .7, yields the piecewise smooth analogue with respect to the collection.
For example, TF(7) is the Cartesian product of TF(T) over an enumeration of all T € 7.
Analogously, AY(F) = T3(7) and X(7) = TUT). Let 8(F) = {0 € T3(T) : 0(X,Y) =
o(Y,X) for X, Y € X(7)}. Functions in §(.7) are symmetric covariant 2-tensors on {2 with
no continuity over element interfaces in general. We define 8¥(.7) as the subset of positive
definite symmetric 2-tensors. For coordinate computations, we use coordinates z',z? and
Einstein’s summation convention of repeated indices. Let the accompanying coordinate frame
and coframe be denoted by ¢; and dx’. We assume that these coordinates preserve orientation,
i.e., the orientation of (2 is given by the ordering (0i,02). We use standard operations on
2-manifold spaces such as the exterior derivative d : A¥(2) — A*1(£2) (see e.g. [17, 20, 28]).
Every E € & is of the form E = 0T . N 0T_ for two elements Ty € 7. We say that a
o € 8(.7) has “tangential-tangential continuity” or ‘“tt-continuity” if |7, (X,Y) = olr (X,Y)
for all tangential vector fields X,Y € X(E) for every E in & (i.e., o(X,Y) is single-valued on
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all E € &). This leads to the definition of the (infinite-dimensional) Regge space
Reg(7) = {0 € 8(7) : o is tt-continuous} (2.1)
and its subset of Regge metrics
Reg™(7) ={o€Reg(7):0(X,X)>0forall 0 # X € X(T)}.

The approximate metric g, is assumed to be in Reg™ (.7).

2.2. Differential geometry. Let the unique Levi-Civita connection generated by g be de-
noted by V. Note that it is standard to extend the Levi-Civita connection V from vector fields
to tensor fields (see e.g., [I7, Lemma 4.6]) so that the Leibniz rule holds.

Following the sign convention of [I7], recall that the Riemann curvature tensor R € Ta(§2) of
the manifold is defined by

R(X,Y,Z,W) =g(VxVyZ —VyVxZ —Vixy1Z,W), X,Y,Z,W € X().

Recall that the Gauss curvature of {2 is given by

o R(X,Y,Y, X)
K :=K(g) = (X, X)g(Y,Y) —g(X,Y)?

where X and Y are some linearly independent vector fields and the value K is independent of
their choice.

We will also require the geodesic curvature along a curve I' in the manifold (£2,g). Let 7
denote the g-normalized tangent vector of I and  the g-orthonormal vector such that (7,7)
builds a right-handed coordinate system. Then

R = k(g) = §g(Vi7,0) = —g(V:0,7)

gives the signed geodesic curvature of I'. The element volume 2-form @ and edge volume 1-form
wg, F € &, read in coordinates

0 = +/det gdz* A da?, wp =/g(r,7)dr, (2.2)

where 7 € X(F) denotes the Euclidean normalized tangent vector at edge E and dr is the
associated 1-form. We use also the abbreviation of e.g. g,, := g(7,7).

2.3. Finite element spaces. Let T < R? denote the reference triangle and define P*(T') as

the set of polynomials of degree up to k on 7. For T € T let &7 : T — T € P* (T, R?) denote
the diffeomorphic mapping from the reference to the physical element.

We define the Regge finite element space as a subspace of Reg(.7) (2.1]) by
Regh = {0 € Reg(.7) : for all T € T, ol = 0y;da’ @ da’ with o5 0 By € PH(T)}. (2.3)
Further, the Lagrange finite element space as a subspace of V(.7) (1.2)) is given by

VW ={ueV(T): forall Te.T, ulpodre Tk@)]’?

ﬁﬁ’p —{ueV:ulp=0}, and V= \072’59.
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2.4. Lifted distributional Gauss curvature. For the reader’s convenience we derive the
(lifted) distributional Gauss curvature following [2, 12]. Since a g, € Reg®(.7) is smooth
within each element 7" € .7 we can compute elementwise its Gauss curvature K (gs)|r. It is
only one contributor of the total distributional Gauss curvature as the jumps of g, generate
additional sources of curvature. Let for an edge F € & the unique gp-normal vector that points
inward to elements Ty € 7, such that £ = 0T, n dT_, be denoted by ﬁ?. As gy, is only
tt-continuous, D? # —ﬁg’ in general. Thus, the jump of the geodesic curvature

[[H]]E = liﬁ?r + Kﬁ;‘

acts as a source of curvature at edges. If there is no chance of confusion we neglect the subscript
and only write [-] for the jump over edges.

Let V € ¥ be an interior vertex and T € 7 a triangle containing V. Then there are two
edges Fy € & ~ oT such that V = 0E, n 0F_. Denote %‘b;i the gp-normalized tangent vectors
starting at V' and pointing into E. We define the following angle function on V'

<& = arccos(gu|r (71, 71 ))

and the angle deficit at vertex V € V4
Oy =2r— > <, K ={TeT:VeT} (2.4)
TEyV

This function acts as a source of curvature on vertices. Note that for the smooth metric g there
holds ©y = 0.

Definition 2.1. Let g5, € Reg™(.7) be a Regge metric. The distributional densitized Gauss
curvature Kw(gy) : V(7) — R is defined for all u € V(.7)

Kw(gh J K|ruwr + Z J [£] uwg + Z Oy u(V (2.5)

TeT Eeé vey
where K|r, K, wr, wg, and Oy are evaluated with respect to g.

Remark 2.2. Note, that this generalizes the densitized Gauss curvature Kw (see e.g., [6]), not
solely K. One can interpret (2.5) as a measure with support on triangles, edges, and vertices,
cf. [26]. See Remark [3.3| for more on approximating just K.

We consider a discrete Riesz representative of the functional in (2.5), following Gawlik [9].
We also incorporate essential and natural Dirichlet I'p and Neumann I'y boundary conditions,
as discussed in [12]. To this end, extend the definition of the angle deficit and the jump
of the geodesic curvature to boundary vertices and edges in the obvious manner: we define
[c]e = K for boundary edges E € &, and Oy for V € ¥; as in (2.4). Note that [x]r and
Oy do not vanish for smooth metrics g at £ € &, and V € ¥ in general. Instead, they are
used to incorporate natural Neumann boundary conditions. We assume that on the Dirichlet

boundary, the Gauss curvature K P oK Ir,, is prescribed. The Neumann boundary data is
given by the functional KV : V(7)) - R
/:’/V(u) = J Ruwry + Z B u(V),
In VeV nly

where <y denotes the exterior angle, which is 27 minus the interior angle, measured with
respect to g by the edges of 'y at V.
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Definition 2.3. Let g, € Reg™(.7), k = 1 be an integer, and assume that the Dirichlet data

K" is the trace of a Lagrange finite element function in V¥. The finite element curvature
approximation Kj, := Kj,(gs) of degree k is the unique function in V¥ determined by requiring

that Kj|r, = K" on T and for all uy, € f?fwm

JQ Kot won = Ko (gn) (un) — = (), (2.6)

where we denote the volume form of g, by wy, := w(gn).

Note that the difference between Definition and [12, Definition 3.1] is the decrease of
degree of approximation space of K}, from VZH to V¥ and the additional requirement of k > 1.

2.5. Distributional covariant differential operators. In this section we review the defi-
nition of distributional covariant differential operators based on Regge metrics g € Reg™ (7).
We focus on the incompatibility operator and its adjoint with their coordinate expressions. For
an introduction and discussion we refer to e.g. to [12, Section 4]. First, we focus on pointwise
covariant differential operators for a given smooth metric g € 8*(£2).

For a 1-form a € A'(£2) and a (2,0)-tensor o € T3(£2) the covariant curl operators curl, :
AY(2) — A°(2) and curl, : T3(2) — A'(2) read in coordinates [12]

curl,(a) = £90;q;,
curly(o) = éjk(é’jaik — F;';amk)d:ti,

where £V = \/dlengij and €” denotes the permuting symbol being 1, -1, or 0 if (i,7) is an

even, odd, or no permutation of (1,2), respectively. The covariant incompatibility operator
inc, = curl, curl, : T3(2) — A°(£2) reads in coordinates

incy(0) = gaigik (5j5q01‘k — 0g(Tiomr) — Fﬁq(ﬁjaik — F?;‘Jmk)) )

Next, we consider for f € A%(£2) and X € X(£2) the adjoint operators rot, : A%(£2) — X(2),
rot, : X(2) — T9(£2) and rotrot, = rot, rot, : A°(2) — T(£2). They read in coordinates [12]

roty f = £"0,f 0; = Mﬁi, (2.7a)

vdet g

B P [rot[ X]]¥ + efoT, X*

I"Otg X = €]q(aqX + Fquk)(% ® ﬁj = \/m g

[rot[rot, f]]Y + 5jq1—‘zk[rotg f]ka %0,
vdet g te

[rot rot f]¥ — [rot f]'e?T], + €99, [rot f]*

- det g 0 ® ;.

0 ®0;, (2.7b)

rotrot, f = rot,(rot, f)V0; ® 0; =

(2.7¢)

In we used so-called vector and matrix proxies [o] € R**? and [X] € R? for o € T(2)
and X € X(f2) [I]. These proxies consist of coefficients in the coordinate basis expansions.
For example, [o] is the matrix, which (i, j)th entry is 0% = o(dz’,dz?). Then the standard
two-dimensional Euclidean rotation operator applied to the vector [X] is rot[ X ]9 = e/*0, X",
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There holds the integration by parts formulas for f € A°(£2), a € AY(2), o0 € T2(2), and
X e X(02)

J (curl, o, X)w = J {o,r0t, X)w +f o(X,T)wagn,
0 0 o0

J curly o fw = J {a, 10ty fHw + J la, Ty f wag,
7 7 on
J inc,0 fw = J {curl, o,rot, f)w + J (curly o, 7) fwan
7 0 o0
= J {o,rotrot, fHw + J (o(roty f,7) + {curly 0, 7) f) wag,
17

o1

i.e., inc, and rotrot, are L*-adjoint with respect to the g-weighted L? inner product.
Above, we used the g inner product {-,-) := g(+,-) extended from vector fields to arbitrary
order tensors Tt (02), e.g.

(curl, 0, X) = (curl, o)(X) for all o € T5(02), X € X(02).

The following definition of the distributional covariant incompatibility operator has been
derived in [I2 Proposition 4.6]. A similar expression for the vertex contributions can be found
in [7].

Definition 2.4. Let g € Reg”(.7) and u € V(7). The distributional incompatibility operator
inc, : Reg(.7) — V(.7 is defined by

(ncyo)w) = 3 [ JTincg(a)uwT— J uleurlyo + d(oss), ywor + Y [[a%]]au(x/)], (2.8)

TeT or Veyr

where ¥r ={V e ¥ : VeT} and, cf. eg. [13],
[oo:] = (olr(¥h, . 73") + olr(h_ 7v7)) (V).

The distributional covariant rot rot operator rotrot, : V(.7) — Reg(.7)" is defined by

(rotrotyu)(o) = Z l {rotroty u, o) wr + J 0+ {Vgu, ) wpr |. (2.9)
TeT T or

Note that one of the boundary terms in (2.8)) admits a representation using the geodesic cur-
vature k;, namely

d(047)(7) = Vi (o(0,7)) = (V+0)(0,7) + (0(0,0) — 0(7,7)) K.
Next we show that the (distributional) adjoint of inc, is rot rot, in the following sense.

Lemma 2.5. Let 0 € Reg(.7) and ue V(T). There holds

—~—

(incyo)(u) = (rotrotyu)(o).
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Proof. This follows by integration by parts on each T € 7:

(neyo)w) = S [ [ incy(0)uwr - J uenrlyo + doss), Hwor + Y oo Tbu(V)]

Te7 YT or Vetp

= Z 7 W incy (o) uwy — f (ulcurlyo,7) — 04+ Viu) waT]
TeT JT or

= Z | [‘ {curl, o, rot, uywr + f 052 Vil WaT]
TeT JT oT

= Z | (o, rotrot, uy wr + f (o(7, 10ty u) + 047 Vsu) WﬁT]
Teg YT or

= Z | [‘ {o,rot rOty W) W + J 0+ ViU WaT] = (rotrotgu)(o).
Teg YT or

g

In [12] we proved an integral representation of the densitized Gauss curvature using a
parametrization starting from the Euclidean metric ¢

—~~—

m(g) (u) = —% Jo b(6+t(g—9);9—6,u)dt, with b(g;0,u) = (incyo)(u)

and used its integrand to derive convergence results. In this work, we follow the approach
of [10 11, 13] and consider directly the integral representation of the error as follows. Let
g(t) =g+1t(gn—g) and 0 = ¢'(t) = gr — g. Then there holds the integral representation of the
error

(/K\c?)(gh) — Kw)(u) = —%L (incyyo)(u) dt. (2.10)

To derive error estimates, one important part will be analyzing the integrand of (2.10)), or,
more precisely, its adjoint (incywo)(u) = (rom(t)u)(a).

3. ERROR ANALYSIS

In this section we prove a priori error estimates for the lifted densitized Gauss curvature
Kpwy, and the Gauss curvature Kj,. First, we consider the H~'-norm as basis and then show
estimates also for the stronger Sobolev norms L? and H", r > 1. Let 2 < R? be a domain
with a given exact metric tensor § and corresponding exact Gauss curvature K = K(g). For
simplicity, we assume in this section that homogeneous Dirichlet data K P — 0 is described on
the whole boundary, I'p = 0f2.

3.1. Statement of main theorem. We consider a sequence of quasiuniform (hence shape-
regular) affine-equivalent triangulations {.7,},~¢ with maximal mesh-size h = maxgeg, hr,
where hr = diam(7"). On the triangulations a sequence of Regge metrics {gpn}n=0 with g, €
Regﬁ, k > 0 (defined in (2.3))) is given. To be precise, we assume that g, is the canonical
interpolant of g. This interpolant [I8], denoted by J3* : W*?(2,8) — Regk, p € [1, 0],
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€ (1/p, o], satisfies the following equations

J (T3 ), qdl = f o qdl for all ¢ € P*(E) and edges E of 0T, (3.1a)
E E

J g8k s pda = f o: pda for all pe P*"Y(T,R**?), T e T. (3.1b)
T T

Equations can be interpreted as orthogonality requirements, preserving specific moments
at edges and elements. Note that when p is a skew-symmetric matrix, both sides of
vanish, so is nontrivial only for symmetric p.

Throughout, we use standard Sobolev spaces W*?((2) and their norms and seminorms for
any s = 0 and p € [1,00]. When the domain is {2, we omit it from the norm notation if there
is no chance of confusion. We also use the elementvvlse norms Hu”p o = Y ireq, lullys, »(7y> With

= H . Let D < {2 and define

the usual adaption for p = co. When p = 2, we put | - |

lollzp = lolz2o) + hlolm o) (3.2)

If D is the whole domain (2, we neglect the subscript in .

We write a < b if there exists a mesh-size independent constant C' > 0 which may depend
on—unless otherwise stated—the domain (2, the polynomial degree k, the shape regularity
constant o(7,) of 7, the W*®-norm of g, L®-norm of g~!, and the H'-norm of K i.e.

C = C(2,k,0(T), |glwee, g7 2=, [ K me)- (3.3)

We abbreviate the L2-inner product of two scalar functions and the g-weighted inner product
by

(u,v)2 1= f uv da, (u,0) 24 = uv v/ det g da, u,v e L*(92).
0
Our main theorem reads as follows:

Theorem 3.1. Let k = 1 be an integer, {T}}n=0 a sequence of quasiuniform triangulations,
{gn}tn=0 a sequence of metric approzimations g, = Iy ®*G with § € W>*(£2,8), so that K €
L3(02), wp = w(gn), and Ky, € V’fL the lifted distributional Gauss curvature from . Suppose
also that K = 0 on the boundary 0f2. Then there exists an hg > 0 such that for all h < hyg

| Kpwn — Kol g—1 < Ch(|lgn — gll2 + inf lon = K |2 + |lgn — Gl 1=),

th h

where the constant C depends on §2, the shape reqularity, polynomial degree k, |g|w2, and
|G e If additionally for 0 <1< k+1, ge W-(2,8) and K € H'(£2), then

| Kieon — Kl < CH (1weoo + 1K n)-
Further convergence results in stronger Sobolev norms follow.
Corollary 3.2. Under the assumptions of Theorem|[3.1}, there holds for 0 <1 < k+1,0<r <l
| Knwn — K|y < Ch7"(lgn = gllz= + lgn — gll2 + inf o — K22

VhE h

+RY K|+ inf v, — Koz + B K| m)

vhevh
CR " (|glwree + | K@+ [ K m),

where the constant C > 0 depends additionally on | K|/ .
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Remark 3.3 (Convergence of pure Gauss curvature). In contrast to the densitized Gauss cur-
vature, we refer to the K (without multiplication by the volume form) as the “pure Gauss
curvature.” For the error in the pure Gauss curvature, |Kj — KHHﬁa —1 < r <k, the same
convergence rates as proved in Theorem [3.1 and Corollary are obtained: see Theorem [3.8
and Corollary [3.9) in Section [3.5

Remark 3.4 (Optimal convergence). If we insert [ = k + 1 in Theorem [3.1] we obtain the
convergence rate O(h¥*2), which is of one order higher than O(h*1) proved in [12, Theorem
6.5] and two orders higher compared to [9, Theorem 4.1]. Furthermore, using [ = k + 1 and
r = 0 in Corollary yields an L? convergence rate of O(h**1), which is the “optimal” in the
sense that it is the rate of convergence of the L? best approximation from Vﬁ The requirement
of at least linear elements, k& > 1, cannot be relaxed to k = 0 as for g, € Reg) there is no
(non-trivial) Lagrange finite element function in \72 In [T2] we observed that the pairing of the
lowest, order elements g;, € Reg) and K, € V; does not lead to an improved L?-convergence rate
of O(h). In fact, our numerical examples in [I2] showed that we may expect no convergence in
the L2-norm in general in this case.

3.2. Basic estimates. We need a number of preliminary estimates to proceed with our analy-
sis. The approximation properties of the Regge elements are well understood. By the Bramble-
Hilbert lemma, on any 7' € 7, see [18, Theorem 2.5],

i = 35 ) o lwra(ry < CH o lwiar), (3-4)

for pe [1,00],le (1/p,k+1],r € [0,1], 0 € W'P(T,8), and C depends on k, r, I, and the shape
regularity o(T) of T. A similar estimate holds for the elementwise L?(T)-projection into the
space of polynomials of order k, which we denote by II%,, see e.g. [3, Theorem 4.4.4],

|Gd = TI72) £l zocry < W'Clflwary

for I € (1/p,k + 1], f € Wh(T), and C depends on k, [, and the shape regularity o(T) of T.
The same holds if we replace T by an edge E € & and the edge-wise L2-projection denoted by

Ek
HL2 .

Let E < 0T be an edge of T. We also need the following well-known estimates that follow
from scaling arguments: for all u e H'(T)

lulZ2my S b7 Hulemy + MIVUli2 0 (3.5)
and for all u e P*(T),
lull 2y S B2l r2ery, ulmry S ey, 1<I<k (3.6)

The L?-orthogonal projection with respect to g into Lagrange elements sz : LA(02) — Vf; is
defined via its orthogonality property

J (Phu—u)v,@ =0, for all v, € V£, (3.7)
n

It has the following well-known stability and approximation properties on quasiuniform meshes,
see e.g. [8§] or [9, Lemma 4.7],

| Praul e S flul 2, for all u e L3(R2), (3.8a)
| PEau] i S i for all u e HE (1), (3.8h)
HPfgu —ufrz < infk lup — ulz < hlul g, for all u e Hy(02). (3.8¢)

uhe\?h
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Since g, = Jl,j”eg’kg approaches g as h — 0, we tacitly assume throughout that h has become
sufficiently small (h < hg) to guarantee that the approximated metric gy, is positive definite
throughout. Further, thanks to (3.4) (with p = r =1 =2 and k£ > 1) and we have
that supr g, || thW}f,w(T) < C. The following estimates are a consequence of [9, [10, 11]: for

pEe [1700]7 te [07 1]7 g<t) =g+ t(gh - g)? le {07 172}7
1960) = glhyts + 197 8) = 5 yyso + 13T IO — VARGhgtr S lon — Gyt (3:99)

lg(®) w2 + 19(t) e + |2/det g(t) |z + [v/det g(t) "= S 1. (3.9b)

Further, for all z in the interior of any element T' € .7 and for all u € R?, as well as for the L?
inner product there holds the following equivalences

u'u 5 u’g(t)(a:)u 5 U/U,, ('a ')L2 5 ('7 ')Lz,g(t) 5 ('7 ')LQ'

3.3. Analysis of distributional rotrot operator. In this section, we derive improved con-
vergence rates of the distributional covariant rot rot, operator (2.9)). The proof strategy follows
[12], Theorem 6.1, (6.3)], however, adapted from the distributional covariant curl to the rot rot
operator.

Proposition 3.5. Let k > 1 be an integer, g € Reg*(T), p € W*P(£2,8), p € [1,0], s €
(1/p, 0], pn = 3% p, and wy, € VE. Then there holds

(vt rtun)(p — pi)| < Chllp — pullzlunli,

where the constant C' > 0 depends on (2, the mesh regularity, k, HgHW}%,oo, and ||g7 |z

Proof. First, consider the element terms of (2.9). Comparing with coordinate expressions ([2.7¢))
and ([2.2) we can find smooth functions

Fo) = g G0 = < (Talo) ~Th(0)9).

such that

L<1"ot Yoty Un, p — Phywr = L[p = el (F(g)lrotrot un]” + [G(g)] [rot un]*) da
- L[p — pnlij[rot rot uy]" ((Hle + 15 F (9)>
+ 1o pulfrotun]* (M + 0 [G()TY) da
_ L[p — pulij[rot ot un 91 (F(g))
+[p = pulislrot w,JFTI% ([G(g)]¥) da

< Chillp = pall2erylunl ey + hrllp — pul 2y |unl ey
< Chrlp = prlr2r) | unl m (-
Above, we split the nonlinear terms using L2-projections H’ZQ and co-projections H’Z2L onto

elementwise polynomials, and used their approximation property. Further, we exploited that
the first £ — 1 moments of p — p, are zero (3.1b)) and used inverse inequality (3.6]).
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Next, we focus on the element-boundary terms of (2.9). With the coordinate expressions for
the g-normalized tangent and normal vector, see e.g. [12] with the Euclidean vectors (7,v) and
the notation ¢g" = g“v,v;

7A—Z' = 1 Ti ﬁl = gZJ Vj

9rr Vg

we collect all terms depending on ¢ in the nonlinear function

[H(g)]" =

—ngjy J

VYrr g

We split H with the edgewise L*-interpolant Hfﬁk. Then, we use Holder inequality, as well as
the trace inequalities (3.5) and (3.6)) to obtain

f (= )7, F )V un, Dy wor = f (b= o). 7)o (I + I [H()) a
oT oT

Chi llp = pulc2en) | Vun| 2omy g w2 or)
Chrllp — pullar|unlm -

Summing over all elements 7" € .7 finishes the proof. O

NN

Due to Lemma we obtain as a byproduct the convergence of the distributional covariant
incompatibility operator.

Corollary 3.6. Under the assumptions of Proposition[3.3, there holds
(50550 — 0n)) (wn)| < Chllo = ool
where the constant C > 0 depends on {2, the mesh regularity, k, HgHW}%,oo, and ||g7| ze.

3.4. Proof of Theorem [3.1 We are now in position to prove our main theorem. The proof
strategy is inspired by the proofs of [I12, Theorem 6.5] and [9, Theorem 4.1].

Proof of Theorem [3.1. We start with the definition of the H ~'-norm noting that Kjwy, and K@
are square integrable

_ K _ K’*
ueHg (92) ] g

Next, we add and subtract the L?-orthogonal interpolant (3.7) uy := Pryu, PF, : L*(2) — VZ,
to split the error into three parts

(Khwh — K@,U)L2 = (Khwh — f(@,uh)p + (Khwh — K(D,U — Uh)Lz
= (Khwh — K(D,uh)L2 + (Kh — K,U — U,h)ng + (Kh(wh — (I)),U, — uh)L2
=:!:81 + S2 + S3.

We use (2.6), the integral representation of the error (2.10) with g(t) = g + t(gn — g) and
o =¢'(t) = gn — g, and the adjoint of the distributional incompatibility operator Lemma

81 = (m(gh) - KJJ) (up) = —% Jl <incg(t)o> (up)dt = —% Jl (rot rotg(t)uh> (o) dt.

0 0
From Proposition (setting g = g(t) and p = —g) we obtain together with the H!-stability
(13.8Db))

51 S hlloll2llunlar S Pllgn — gll2]w] & (3.10)
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For s, we use the definition of the L2-orthogonal interpolant (3.7) wj, = Pf,u, Cauchy-Schwarz
inequality, and the approximation property (3.8c]) of u;. For arbitrary v, € V5 there holds

(Kn— K, u—un)rzg = (v — K,u—un)r2g S Jon — Klz2|lu — w2 < hllon — K| p2]ull g
and thus,

2| S h inf v, — K| 2] ul g
VHE IfL

Before we turn to the third term s3 we show that the lifted Gauss curvature K} is bounded
in the L%norm by using K} € V¥ instead of uy, in estimate (3.10)

HKhH%Q S (Khwh,Kh)L2 = (Khwh — K(D,Kh)LQ + (I_(, Kh)LQ,g

S hllgn = gl Knllm + | K| 2] K 12
S (lgn = gllez + 1K 22) [ K] e

For the last inequality we used the inverse estimate (3.6). Dividing by |Kjlz2 yields the
boundedness of Kj,.

Using Hoélder inequality, the approximation property (3.8¢c|) of uy, inequality (3.9a}), and that
|Kp|z2 S 1 yields the following estimate for sg

s3] < [ Knlle2llwn = @fpe fu —unll2 < Plgn = gl [ula-

Combining all results yields

_ Koo o
| Kpwn — K& g = sup (Kpwn — K@, u) 2
ueHg(92) |l

S hllgn = glla + inf fon = K2 + [gn — gllo).

UhEVh
Using standard interpolation techniques we obtain the desired convergence rate for 0 <[ < k+1
| Kpwon = Kol g S (lglwee + K] )

g

3.5. Analysis of the lifting of pure Gauss curvature. To relate the error of the Gauss
curvature with the densitized Gauss curvature we need the following result.

Lemma 3.7. Under the assumptions of Theorem[3.1], there holds for 0 <1<k +1

| Kn(wn — @) |- < hlign — gl e[ K| a2
S P gl | Koy -

Proof. By noting that wy, — @ = [gn — §i;j[F(gn, g)]¥ with the smooth function

o 1 (gn)22 %(§+9h)12
[F'(gn,9)] = Vdet g + /det g [%(g-kgh)m 911 } 7
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and using that for k£ > 1 the constant moment of the difference g, — g is zero due to (3.1b|), we
obtain

[ g
(Kn(wn —@),u)rz = | [gn — Glij[F(gn, 9)]” Knuda
J2

r

[ fon = gl (152 15) (1P (01,91 ) )
[

[gn — f]]ijl_[OL’Ql ([F(gh,§>]inhU> da
J2

< llgn = glloe T35 (F(gn, §) Knu) |12
S hlgn = gl | Ky ] e,
finishing the proof. U

By Lemma , inverse estimate (3.6]), and boundedness of K}, in L2 1Kl S VA TERS
h~1, we can deduce a suboptimal convergence rate of the error of the pure lifted Gauss curvature

1K — K| g1 < [ Ky — Kol g
< | Knwn — K| -1 + [ K (@ — wh) | g

S hllgn =l + inf Jon — K2 + gn — glle) + 2 lgn = gllzeo | Kl (

vhevh

3.11)

S B (1ghwesnon + 1K ). 0= 1<k (not ke +1),

To correct the convergence of the lifted Gauss curvature and to prove optimal rates for the
(densitized) lifted Gauss curvature in stronger Sobolev norms we consider a bootstrapping-like
technique. First, we can easily adapt the proof of [0, p. 1818] and [12, Corollary 6.6] to deduce
forO0<I<kand 0<r <l

|50 = Ky < 07" (lgn — gllz + 2 gn — glle + inf Jon — Kz2 + 2| K1)

opeVk
S P (Iglweere + 1K )
and therefore the boundedness in the elementwise H'-norm for [ = r =1 and k > 1,
| Kl < K = Klmp + [Km < 1glwee + 13m0 + 1K S 1.

Thus, instead of using the inverse inequality in (3.11]) we directly obtain the improved conver-
gence rate:

Theorem 3.8. Under the assumptions of Theorem there holds for 0 <1 <k +1
15— K= S h(lgn = gll: + inf, on — Kllzz + llgn — llz)
VHE h

SH(glwees + [ K m)-
This yields also improved rates in stronger norms for the lifted Gauss curvature:

Corollary 3.9. Under the assumptions of Theorem [3.1], there holds for all0 <1 <k + 1 and
0<r<l

|Kn = Ky S 07" (lgn = gle= + lgn — glla + inf Jlon — Kz2 + B[ K] g2)

’Uhevh

SHT (|ghwee + 1K ).
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Proof. Follows analogously to the proof of [12, Corrolary 6.6] and [9, p. 1818] as the error in
stronger Sobolev norms is traced back to the H'-norm. See also the proof of Corollary
below. O

3.6. Proof of Corollary To prove the desired rates for the densitized Gauss curvature
we first note that for the L?-norm there directly holds with Lemma , | Kp|m < 1, and
Corollary B9 for 0 <l <k +1

| Knwn, — Kool 2 S [ Kn(wn — @) |12 + [ Kn — K12

S Plgn = Gle= + lgn = gle= + llgn = gll2 + inf o, = K|z + B'|K |
VHE h

S 0 (|glwee + 1K a).

With the improved L? error estimate at hand we can prove optimal convergence rates in
stronger Sobolev spaces.

Proof of Corollary[3.3 Let wy, € Vﬁ be the Scott-Zhang interpolant [24] of K@. Then there
holds, analogously to the proof of [0, p. 1818],

|Knwn — Kooy < |Kpwn — un|ay + [un — Kol gy

ST Knwn = unlre + BT K&

< W7 (|EKpwn — K&l g2 + | K& — unllze + 2| K& )
Sh7(lgn = gl + llgn — glla + inf [o, — K2

UhEVh
+thR”HL + 1nfk H’Uh — K{IJHLQ + hl”K(DHHl)

vhe\?h

SHT (|ghwie + 1K + 1K ).

4. NUMERICAL EXAMPLES

In this section we confirm, by numerical examples, that the theoretical convergence rates
from Theorem [3.1] Corollary [3.2] Theorem [3.8] and Corollary are sharp. All experiments
were performed in the open source finite element software NGSOIVGH [22, 23], where the Regge
elements are available.

We consider the numerical example proposed in [9], where on the square 2 = (—1,1)x (—1,1)
the smooth Riemannian metric tensor

L@l e
g(z,y) = ( Ouf Oy f 1_|_(ayf)2)

with f(z,y) = 3(2® + y?) — 15(a* + y*) is defined. This metric corresponds to the surface

induced by the embedding (x, y) — (x, y, f(z, y)) and its exact Gauss curvature is given by
— 81(1 — 22)(1 — o2
K(z,y) = 2 (2 2)( 2 2) 2\2°
(9+2%(2? = 3)* + y?(y* — 3)?)
To test also the case of non-homogeneous Dirichlet and Neumann boundary conditions we

follow [12] and consider only one quarter {2 = (0,1) x (0,1) and define the right and bottom
boundaries as Dirichlet and the remaining parts as Neumann boundary. We start with a

lwww.ngsolve.org


www.ngsolve.org
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structured mesh consisting of 2%*! triangles with maximal mesh-size h = maxy hy = /227

(and minimal edge length 27%) for [ = 0,1, .... To avoid possible super-convergence properties
due to a structured grid, we perturb all internal points of the triangular mesh by a uniform
h_ _h

distribution in the range [—555, 525]. The geodesic curvature on the left boundary is exactly
zero, whereas on the top boundary we have

—27(2* — D)y(y* — 3) _
(22(22 — 3)2 + 9)3/2y/a2(22 — 3)2 + y2(y*> — 3)2 + 9

The vertex expressions <3 at the vertices of the Neumann boundary can directly be computed
by measuring the angle arccos(g(y,, 71 )).

To illustrate our theorems, we must use g, g. In implementing the Regge interpolant,
the moments on the edges have to coincide exactly: see . To this end, we use a high enough
integration rule for interpolating g for minimizing the numerical integration errors.

We compute and report the curvature error in the L2norm, namely |K — K} |z> and |K@ —
Kywp| 2. We also report the H'-norm of the errors. They can be computed by solving e.g.
for w e H}(£2) such that —Aw = K — K}, and observing that

|K = Knllg-r = |wl

Of course the right-hand side can generally be computed only approximately. To avoid ex-
traneous errors, we approximate w using Lagrange finite elements of two degrees more, i.e.,
wy, € \72” when K3, € V’,fb.

K

1—‘left = 07 K/‘Ftop =

_ qRegk
= jh

101 r T .
1071§

i \\\\\\ 2 % S 1072} .Q\\\ )

10—4 -

error
error

10—6 L

-7 |
10 10-8 |

o | K& — Kpwn 12
1071 | = | Ko — Kpwnlla1 |

1076 : e
o | Ko — Kypwy| 2

1l - \\\\E +HI_(L:)_]§'}LW}LHH7I It Lol 1 L NI
10 10? 10° 10 10? 10° 10* 10 102 103 10
ndof ndof ndof

—— | K& — Kjwh| 2

Z co 9
1077 | o | K& — Ky g 4 10

FiGure 1. Convergence of lifted densitized Gauss curvature with respect to
number of degrees of freedom (ndof) in different norms for Regge elements g, €
Reg? of order k = 1,2, 3.

We start by approximating g with linear Regge elements g, € Reg;. As shown in Figure
(left), we obtain the stated quadratic convergence in the L?>-norm and cubic rate in the weaker
H~1-norm, in agreement with Theorem . When increasing the approximation order of Regge
elements to quadratic and cubic polynomials we observe the appropriate increase of the conver-
gence rates: see Figure 1| (middle and right), confirming that the results stated in Theorem
and Corollary are sharp. For the error of the pure Gauss curvature we practically obtain
the same behavior as stated by Theorem and Corollary B.9 cf. Figure 2] Only in the
pre-asymptotic regime the error is smaller compared to the densitized Gauss curvature.

We conclude with a few additional remarks on the lifting degree. Attempting to increase the
degree for the curvature approximation, say by placing K} in VZ“ or VZ”, while the metric g,
remains in Regf, need not generally produce additional orders of convergence. This is because
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FrrTT ey Jg-1 [T e
107 E e E \\ 102F - .
5 o O(h? ] LN T
10°2F as \ ( ) 1073 TN el 1 N
Sl N e 1 1074 | |
. 10 . ~ - 1. ol . : | .
o
£ 1074 ¢ £ 5 10°°F }
1075 £ i |
107(‘ r 10 1078 I b
—o | K — Kz 1o-9 | 7% IE = Kallee o |K - K2
07| = |K-Kplg | ™ - |K-Kulp| " 107 e | K = K| 7= o
10! 10? 10° 10! 10? 10° 10* 10" 10? 10° 10*
ndof ndof ndof

Ficure 2. Convergence of pure lifted Gauss curvature with respect to number
of degrees of freedom (ndof) in different norms for Regge elements g;, € Regy of
order k = 1,2, 3.

the orthogonality properties of the canonical Regge interpolant, namely 7, may not
be fulfilled in such cases. Indeed, we numerically observed loss of two orders of convergence
when K, is placed in V¥*? instead of V§. In [12], where we used Kj, € Vi*! one order less is
obtained, again due to the orthogonality properties of the canonical Regge interpolant.

Finally, when reducing the polynomial degree of the curvature approximation from V¥ to
V’fl_l, k = 2, while keeping the metric in Regf;, we observed that the convergence rates reduce
by one order. Note that the orthogonality properties of the canonical Regge interpolant are
still fulfilled. Nevertheless, the overall approximation ability of the space is reduced so that the
convergence rate in the H~!'-norm decreases from O(h**2) to O(hkF+1).
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