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Abstract. A spacetime domain can be progressively meshed by tent shaped objects. Numerical
methods for solving hyperbolic systems using such tent meshes to advance in time have been proposed
previously. Such schemes have the ability to advance in time by different amounts at different spatial
locations. This paper explores a technique by which standard discretizations, including explicit
time stepping, can be used within tent-shaped spacetime domains. The technique transforms the
equations within a spacetime tent to a domain where space and time are separable. After detailing
techniques based on this mapping, several examples including the acoustic wave equation and the
Euler system are considered.
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1. Introduction. We introduce a new class of methods called Mapped Tent
Pitching (MTP) schemes for numerically solving hyperbolic problems. These schemes
can be thought of as fully explicit or locally implicit schemes on unstructured space-
time meshes obtained by a process known in the literature as tent pitching. This
process creates an advancing front in spacetime made by canopies of tent-shaped re-
gions. Spacetime tents are erected (with time as the last or vertical dimension in
spacetime – see Figure 1) so that causality constraints of the hyperbolic problem are
never violated and the hyperbolic problem is solved progressively in layers of tents.
Such meshing processes were named tent pitching in [4, 22]. In this paper, we will
refer to tent pitching as a discretization scheme together with all the attendant mesh-
ing techniques. In fact, the main focus of this paper is not on meshing, but rather on
novel discretization techniques that exploit tent pitched meshes.

Today, the dominant discretization technique that use tent pitched meshes is
the spacetime discontinuous Galerkin (SDG) method. Its origins can be traced back
to [12, 19]. It has seen active development over the years in engineering applica-
tions [14, 18, 27] and has also motivated several works in numerical analysis [5, 7, 15].
The SDG schemes use piecewise polynomials in the spacetime elements (with no conti-
nuity constraints across mesh element interfaces) and a DG (discontinuous Galerkin)
style spacetime discretization. Different prescriptions of DG fluxes result in differ-
ent methods. Advanced techniques, including adaptive spacetime mesh refinement
maintaining causality [16], and exact conservation [1], have been realized for SDG
methods.

The above-mentioned research into SDG methods has abundantly clarified the
many advantages that tent pitched meshes offer. Perhaps the primary advantage
they offer is a rational way to build high order methods (in space and time) that
incorporates spatial adaptivity and locally varying time step size, even on complex
structures. Without tent meshes, many standard methods resort to ad hoc techniques
(interpolation, extrapolation, projection, etc.) for locally adaptive time stepping [6]
within inexpensive explicit strategies. If one is willing to pay the expense of solving
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(a) Initial tents forming Layer 1 (b) Layer 2 tents in gray (and layer 1
tents in blue)

(c) Layer 3 tents in gray (and tents
of previous layers in other colors)

(d) Layer 4 tents (in gray)

Fig. 1: Parallel tents within different layers

global systems on spacetime domains [17, 23, 24], then time and space adaptivity are
easy. In between these options, there are interesting alternative methods, without
using tents, able to perform explicit local time stepping while maintaining high order
accuracy [3, 8] by dividing the spatial mesh into fine and coarse regions. The concepts
we present using tents provide a different avenue for locally advancing in time. Recall
that when solving hyperbolic systems on a spacetime domain, we must ensure that the
domain of dependence of all points are contained within the domain. Tents provide
a natural way to ensure this by restricting the height of the tent pole. This height
restriction is referred to as the causality constraint and it restricts the maximal time
advance possible at a spatial point. Even if akin to the Courant-Friedrichs-Levy
(CFL) constraint, the causality constraint does not arise from a discretization and is
different from the CFL constraint.

The main novelty in MTP schemes is a mapping of tents to cylindrical domains
where space and time can be separated, so that standard spatial discretizations com-
bined with time stepping can be used for solving on each tent. MTP schemes proceed
as follows:

1. Construct a spacetime mesh using an advancing front tent meshing algorithm
(see section 2).

2. Map the hyperbolic system on each tent to a system on a spacetime cylinder
(see Theorem 2).

3. Apply a method of lines discretization within the spacetime cylinder, i.e., use
any appropriate (high order) spatial discretization and combine with (multi-
ple) explicit or implicit time steps within the cylinder.

4. Map the computed solution on the cylinder back to the tent.
Proceeding along these steps, tent by tent, we obtain the entire spacetime solution.
Note that high order methods are obtained by increasing the polynomial degree of
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the spatial approximation and correspondingly increasing the number of time steps
within each mapped tent.

All tent pitching schemes advance the solution tent by tent without global matrix
inversions. However, for the first time, as a result of the above-mentioned mapping
strategy, we are able to construct tent pitching schemes that are explicit not only
from tent to tent, but also within each tent. We call these explicit MTP schemes.
(Note that the possibility to perform explicit time stepping within a tent did not
exist with SDG methods.) Explicit MTP schemes map each tent to a cylinder, where
space and time can be separated, use a spatial discretization and thereafter apply an
explicit time stepping to compute the tent solution. Using explicit MTP schemes,
we are able to bring the well-known cache-friendliness and data locality properties of
explicit methods into the world of local time stepping through unstructured spacetime
tent meshes. In a later section, we will show the utility of explicit MTP schemes
by applying it to a complex Mach 3 wind tunnel problem using an existing DG
discretization in space and an explicit time stepping. Note that there is no need
to develop a new spacetime formulation on tents for the Euler system in order to
apply the MTP scheme.

The new mapping strategy also permits the creation of another class of novel
methods which we call locally implicit MTP schemes. Here, after the mapping each
tent to a cylinder, we use an implicit time stepping algorithm. This requires us to
solve a small spatial system (local to the tent) in order to advance the hyperbolic
solution on each tent. This approach also retains the advantage of being able to use
standard existing spatial discretizations and well-known high order implicit Runge-
Kutta time stepping. While the explicit MTP schemes are constrained by both the
causality constraint and a CFL constraint imposed by the choice of the spatial dis-
cretization, in locally implicit MTP schemes there is no CFL constraint. The causality
constraint applies, and depends on the local tent geometry and local wavespeed, but
is independent of degree (p) of the spatial discretization. This provides one point of
contrast against traditional methods, whose global timestep (hmin/p

2
max) depends on

the smallest element size (hmin) and the largest degree (pmax) over the entire mesh.
In the remainder of the paper, we will be concerned with hyperbolic problems that

fit into a generic definition described next. Let L and N be integers not less than 1.
All the problems considered can be written as a system of L equations on a spacetime
cylindrical domain Ω = Ω0 × (0, tmax), where the spatial domain Ω0 is contained in
RN . Given sufficiently regular functions f : Ω ×RL → RL×N , g : Ω ×RL → RL, and
b : Ω × RL → RL, the problem is to find a function u : Ω → RL satisfying

(1.1) ∂tg(x, t, u) + divxf(x, t, u) + b(x, t, u) = 0

where ∂t = ∂/∂t denotes the time derivative and divx(·) denotes the spatial divergence
operator applied row wise to matrix-valued functions. To be clear, the system (1.1)
can be rewritten, using subscripts to denote components (e.g., bl denotes the lth
component of b, fli denotes the (l, i)th component of f , etc.), as

(1.2) ∂tgl(x, t, u(x, t)) +

N∑
i=1

∂i(fli(x, t, u(x, t)) + bl(x, t, u(x, t)) = 0,

for l = 1, . . . , L. Here and throughout, ∂i = ∂/∂xi denotes differentiation along the
ith direction in RN . In examples, we will supplement (1.2) by initial conditions on
Ω0 and boundary conditions on ∂Ω0 × (0, tmax).
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We assume that the system (1.1) is hyperbolic in the t-direction, as defined in [2].
Note that in particular, this requires that for any fixed x, t, and u, the L×L derivative
matrix Dug (whose (l,m)th entry is ∂gm/∂ul) is invertible, i.e.,

(1.3) det[Dug] 6= 0.

Hyperbolicity also provides, for each direction vector and each point x, t, u, a series
of real eigenvalues called characteristic speeds. Let c(x, t, u) denote the maximum of
these speeds for all directions. For simplicity, we assume that c(x, t, u) is given (even
though it can often be computationally estimated), so that the meshing process in
the next section can use it as input.

Geometrical definitions and meshing algorithms are given in Section 2 (Tents).
Transformation of tents and hyperbolic equations within them is the subject of Sec-
tion 3 (Maps). Two distinct approaches to designing novel MTP methods are pre-
sented in Section 4. In Section 5, we discuss a locally implicit MTP method for the
acoustic wave equation in detail. In Section 6, after giving general details pertaining
to treatment of nonlinear hyperbolic conservation laws, we focus on an explicit MTP
scheme for Euler equations.

2. Tents. The MTP schemes we present in later sections fall into the category
of methods that use tent pitching for unstructured spacetime meshing. Accordingly,
in this section, we first give a general description of tent meshing, clarifying the
mathematical meaning of words we have already used colloquially such as “tent,” “tent
pole,” “advancing front,” etc., and then give details of a specific meshing algorithm
that we have chosen to implement.

2.1. Overview of a tent pitching scheme. We now describe how a tent pitch-
ing scheme advances the numerical solution in time. We mesh Ω0 by a simplicial
conforming shape regular finite element mesh T . The mesh is unstructured to acco-
modate for any intricate features in the spatial geometry or in the evolving solution.
Let P1(T ) denote the set of continuous real-valued functions on Ω0 which are linear
on each element of T . Clearly any function in P1(T ) is completely determined by its
values at the vertices vl, l = 1, . . . , NT , of the mesh T .

At the ith step of a tent pitching scheme, the numerical solution is available for
all x ∈ Ω0 and all 0 < t < τi(x). The function τi is in P1(T ). The graph of τi,
denoted by Si, and is called the “advancing front” (see Figure 1.) We present a
serial version of the algorithm first. A parallel generalization is straightforward as
mentioned in Remark 1. A tent pitching scheme updates τi within the general outline
of Algorithm 1.

The height of the tent pole ki at each step should be determined using the causality
constraint so that (1.1) is solvable on Ki. The choice of the vertex v(i) should be made
considering the height of the neighboring vertices. Other authors have studied these
issues [4, 22] and given appropriate advancing front meshing strategies. Next, we
describe a simple strategy which we have chosen to implement. It applies verbatim
in both two and three space dimensions.

2.2. Algorithm to mesh by tents. To motivate our meshing strategy, first
let c̄(x) denote a given (or computed) approximation to the maximal characteristic
speed at a point (x, τi−1(x)) on the advancing front Si−1, e.g., c̄(x) = c(x, τi−1(x),
u(x, τi−1(x)), where u is the computed numerical solution. We want to ensure that,
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Algorithm 1 Advancing front of tents and approximate solution

1. Initially, set τ0 ≡ 0. Then S0 = Ω0. The solution on S0 is determined by the
initial data on Ω0.

2. For i = 1, 2, . . . , do:
(a) Find a mesh vertex v(i) where good relative progress in time can be made

and calculate the height (in time) ki by which we can move the advancing
front at vi. One strategy to do this is detailed below in Algorithm 2.

(b) Given the solution on the current advancing front Si−1, pitch a “space-
time tent” Ki by erecting a “tent pole” of height ki at the point
(v(i), τi−1(v(i))) on Si−1. Let ηi ∈ P1(T ) be the unique function that
equals one at v(i) and is zero at all other mesh vertices. Set

(2.1) τi = τi−1 + kiηi

Define the “vertex patch” Ωv of a mesh vertex v as the (spatial) open
set in RN that is the interior of the union of all simplices in T connected
to v. Then the tent Ki can be expressed as

(2.2) Ki = {(x, t) : x ∈ Ωv(i) , τi−1(x) < t < τi(x)}.

(c) Numerically solve (1.1) on Ki (e.g., by the methods proposed in the
later sections of this paper). Initial data is obtained from the given
solution on Si−1. If v(i) ∈ ∂Ω0, then the boundary conditions required
to solve (1.1) on Ki are obtained from the given boundary conditions on
the global boundary ∂Ω0 × (0, tmax).

(d) If τ(v) ≥ tmax for all mesh vertices v, then exit.

for all x ∈ Ω0, we have

(2.3) |gradxτi(x)| < 1

c̄(x)

at every step i. Here | · | denotes the Euclidean norm. This is our causality condition,
which is imposed even before we have discretized the hyperbolic problem. Note that
this has also been called the “cone constraint” in [4], where it is geometrically inter-
preted as mesh facets separating the domain of influence (light cone opening above)
from the domain of dependence (light cone opening below).

For simplicity, we now assume that c is independent of time and impose the
following condition which is more stringent than (2.3):

(2.4)
∣∣gradx(τi|T )

∣∣ < 1

cT
, for all T ∈ T ,

where cT = maxx∈T c̄(x). Since τi|T is linear, its gradient is a constant vector that
is determined by its tangential components along the edges of T . The tangential
component on a mesh edge e of length |e| is (τi(e1) − τi(e2))/|e|, where e1 and e2
denote the endpoints of e. Hence, by virtue of our assumption that the initial spatial
mesh is shape regular, we can guarantee that (2.4) holds by imposing

(2.5)
τi(e1)− τi(e2)

|e|
≤ CT

ce
, for all mesh edges e,
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where ce is the maximum of cT over all elements T which have e as an edge and CT is
a constant that depends only on the shape regularity of the mesh T . Condition (2.5)
is easier to work with in practice and is the same in two and three space dimensions.
A practical strategy is to start with a guess for CT like 1/3, check if the values of
gradxτi at the integration nodes (which need to be computed anyway as will be clear
later) satisfy (2.4), and revise if necessary.

To obtain an advancing front satisfying (2.5) at all stages i, we maintain a list of

potential time advance k̃
(i)
l that can be made at any vertex vl. Let El denote the set of

all mesh edges connected to the vertex vl and suppose edge endpoints are enumerated
so that e1 = vl for all e ∈ El. Given τi satisfying (2.5), while considering pitching a
tent at (vl, τi(vl)) so that (2.5) continues to hold, we want to ensure that(

τi(vl) + k̃
(i)
l

)
− τi(e2)

|e|
≤ CT

ce
and

−
(
τi(vl) + k̃

(i)
l

)
+ τi(e2)

|e|
≤ CT

ce

hold for all e ∈ El. The latter inequality is obvious from (2.5) since we are only

interested in k̃
(i)
l ≥ 0. The former inequality is ensured if we choose

k̃
(i)
l ≤ min

e∈El

(
τi(e2)− τi(vl) + |e|CT

ce

)
,

as done in the Algorithm 2 below. The algorithm also maintains a list of locations
ready for pitching a tent. For this, it needs the reference heights rl = mine∈El |e|CT /ce
(the maximal tent pole heights on a flat advancing front) which can be precomputed.

Set k̃
(0)
l = rl. A vertex vl is considered a location where “good” progress in time can

be made if its index l is in the set

(2.6) Ji =
{
l : k̃

(i)
l ≥ γrl

}
.

Here 0 < γ < 1 is a parameter (usually set to 1/2). While a lower value of γ identifies
many vertices to progress in time moderately, a higher value of γ identifies fewer
vertices where time can be advanced more aggressively.

Algorithm 2 Updating potential pitch locations and time steps

Initially, τ0 ≡ 0, k̃
(0)
l = rl and J0 = {1, 2 · · · , NT }. For i ≥ 1, given τi−1, {k̃(i−1)l },

and Ji−1, we choose the next tent pitching location (v(i)) and the tent pole height
(ki), and update as follows:

1. Pick any l∗ in Ji−1.

2. Set v(i) = vl∗ and ki = k̃
(i−1)
l∗

.
3. Update τi by (2.1).

4. Update k̃
(i)
l for all vertices vl adjacent to v(i) by

k̃
(i)
l = min

(
tmax − τi(vl), min

e∈El

(
τi(e2)− τi(vl) + |e|CT

ce

))
.

5. Use {k̃(i)l } to set Ji using (2.6).

Remark 1 (Parallel tent pitching). To pitch multiple tents in parallel, at the ith
step, instead of picking l∗ arbitrarily as in Algorithm 2, we choose l∗ ∈ Ji−1 with
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Ki

t

vi
Ωv(i)

t̂

K̂i = Ωv(i) × (0, 1)

Φ

Fig. 2: Tent mapped from a tensor product domain.

the property that Ωvl∗ = Ωv(i) does not intersect Ωv(j) for all j < i. As we step
through i, we continue to pick such l∗ until we reach an index i = i1 where no such l∗
exists. All the tents made until this point, say K1,K2, . . . ,Ki1 form the layer L1. (An
example of tents within such layers are shown in Figure 1 – in this example one of the
corners of the domain has a singularity.) We then repeat this process to find greater
indices i2 < i3 < · · · and layers Lk = {Kik−1

,Kik−1+1, . . . ,Kik} with the property
that Ωv(j) does not intersect Ωv(i) for any distinct i and j in the range ik−1 ≤ i, j ≤ ik.
Computations on tents within each layer can proceed in parallel.

3. Maps. In this section we discuss a mapping technique that allows us to sepa-
rate space and time discretizations within tents. Domains like Ω0 × (0, T ) formed by
a tensor product of a spatial domain with a time interval are referred to as spacetime
cylinders. Such domains are amenable to tensor product discretizations where the
space and time discretizations neatly separate. However, the tent Ki in (2.2) is not
of this form. Therefore, we now introduce a mapping that transforms Ki one-to-one
onto the spacetime cylinder K̂i = Ωv(i) × (0, 1).

Define the mapping Φ : K̂i → Ki (see Figure 2) by Φ(x̂, t̂) = (x̂, ϕ(x̂, t̂)), where
ϕ(x̂, t̂) = (1− t̂)τi−1(x̂) + t̂τi(x̂), for all (x̂, t̂) in K̂i. Note that the (N + 1)× (N + 1)
Jacobian matrix of derivatives of Φ takes the form

(3.1) D̂Φ =

[
I 0

D̂ϕ δ

]
where D̂ϕ = [ ˆgradϕ]t = [∂̂1ϕ ∂̂2ϕ · · · ∂̂Nϕ], and δ = τi− τi−1. Here and throughout,

we use abbreviated notation for derivates ∂̂j = ∂/∂x̂j , ∂̂t = ∂/∂t̂ = ∂̂N+1 that also

serves to distinguish differentiation on K̂i from differentiation (∂i) on Ki. Define

f̂(x̂, t̂, w) = f(Φ(x̂, t̂), w), ĝ(x̂, t̂, w) = g(Φ(x̂, t̂), w),(3.2a)

b̂(x̂, t̂, w) = b(Φ(x̂, t̂), w), Ĝ(x̂, t̂, w) = ĝ(x̂, t̂, w)− f̂(x̂, t̂, w) ˆgradϕ(3.2b)

û = u ◦ Φ, Û(x̂, t̂) = Ĝ(x̂, t̂, û(x̂, t̂)).(3.2c)

The last equation, showing that the function û : K̂i → RL is mapped to Û : K̂i → RL
by Ĝ, will often be abbreviated as simply Û = Ĝ(û).

Theorem 2. The function u satisfies (1.1) in Ki if and only if û and Û satisfy

∂̂tÛ + d̂iv
(
δf̂
)

+ δ b̂ = 0 in K̂i,
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which in component form reads as

(3.3) ∂̂t[Ĝ(û)]l +

N∑
j=1

∂̂j

(
δ(x̂)f̂lj(x̂, t̂, û(x̂, t̂))

)
+ δ(x̂)b̂l(x̂, t̂, û(x̂, t̂)) = 0

for all (x̂, t̂) in K̂i and all l = 1, . . . , L.

Proof. The proof proceeds by calculating the pull back of the system (1.1) from Ki

to K̂i using the map Φ. Using the given u, define Fl : Ki → RN+1 and B : Ki → RL
by

Fl(x, t) =


fl1(x, t, u(x, t))

...
flN (x, t, u(x, t))
gl(x, t, u(x, t))

 , B(x, t) =

b1(x, t, u(x, t))
...

bL(x, t, u(x, t))


and define their pullbacks on K̂i by

F̂l = det[D̂Φ] [D̂Φ]−1(Fl ◦ Φ), B̂ = det[D̂Φ] (B ◦ Φ).

By the well-known properties of the Piola map,

(3.4) d̂ivF̂ = det[D̂Φ] (divF ) ◦ Φ,

where the divergence on either side is now taken in spacetime (RN+1). Note that
det[D̂Φ] = δ is never zero at any point of (the open set) K̂i. Writing equation (1.1)
in these new notations, we obtain (divFl)(x, t) + B(x, t) = 0 for all (x, t) ∈ Ki, or
equivalently,

(divFl)(Φ(x̂, t̂)) +B(Φ(x̂, t̂)) = 0

for all (x̂, t̂) ∈ K̂i. Multiplying through by det[D̂Φ] and using (3.4), this becomes

(3.5) d̂ivF̂l + B̂ = 0, on K̂i.

To finish the proof, we simplify this equation. Inverting the block triangular
matrix D̂Φ displayed in (3.1) and using it in the definition for F̂l, we obtain

F̂l = det[D̂Φ]

[
I 0

−δ−1D̂ϕ δ−1

]
Fl ◦ Φ =

[
δf̂l

ĝl − ˆgradϕ · f̂l

]
where f̂l is the vector whose ith component is f̂li(x̂, t̂, û) and ĝl denotes the lth com-
ponent of ĝ(x̂, t̂, û). Substituting these into (3.5) and expanding, we obtain (3.3).

4. Two approaches to MTP schemes. Theorem 2 maps the hyperbolic sys-
tem to the cylinder which is a tensor product of a spatial domain Ωv(i) with a time
interval (0, 1). This opens up the possibility to construct tensor product discretiza-
tions – rather than spacetime discretizations – within each tent.

We denote by Ti the spatial mesh of Ωv(i) consisting of elements of T having v(i)

as a vertex. For the spatial discretization, we use a finite element space Xi based on
the mesh Ti. In order to discretize (3.3), we multiply it with a spatial test function
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v in Xi, integrate over the vertex patch Ωv(i) , and manipulate the terms to get an
equation of the form

(4.1)

∫
Ω

v(i)

∂̂tÛ(x̂, t̂) · v(x̂) dx̂ = Si(t̂, û, v),

for all t̂ ∈ (0, 1) and v ∈ Xi. Details of the spatial discretization, yet unspecified,
are lumped into Si. Note that the temporal derivative occurs only in the first term
and can be discretized using Runge-Kutta or other schemes. Emphasizing the point
that spatial discretization is thus separated from temporal discretization, we continue,
leaving time undiscretized, to discuss two semidiscrete approaches. Note that both
approaches proceed under the assumption that the causality condition (2.3) holds.

4.1. First approach. Recalling that Û depends on û, the first approach dis-
cretizes û(·, t̂) in Xi. Let the functions ψn : Ωv(i) → RL, for n = 1, . . . , P, form a basis

of Xi. We seek an approximation to û of the form ûh(x̂, t̂) =
∑P
n=1 un(t̂)ψn(x̂) where

u(t̂), the vector whose nth entry is un(t̂), is to be found. Substituting this into (4.1)

and using (3.2), we obtain
∫
Ω

v(i)
∂̂tĜ(ûh) · v dx̂ = Si(t̂, ûh, v), for all v ∈ Xi and t̂ in

(0, 1). To view this as a finite-dimensional system of ordinary differential equations
(ODEs), define two maps G and S on RP by

[G(w)]m =

∫
Ω

v(i)

Ĝ

(
P∑
n=1

wnψn(x̂)

)
ψm(x̂) dx̂, [S(w)]m = Si

(
t̂,

P∑
n=1

wnψn, ψm

)
.

Then, putting v = ψn, we obtain the semidiscrete problem of finding a u : (0, 1)→ RP ,
given initial values u(0), satisfying the ODE system

(4.2)
d

dt̂
G(u(t̂)) = S(u(t̂)), 0 < t̂ < 1.

4.2. Second approach. The second approach discretizes Û rather than û, as-
suming that Ĝ−1 is at hand. We substitute û = Ĝ−1(Û) into the right hand side
of (4.1) and obtain the following semidiscrete problem. Find Ûh of the form

(4.3) Ûh(x̂, t̂) =

P∑
n=1

Un(t̂)ψn(x̂)

that satisfies
∫
Ω

v(i)
∂̂tÛh ·v dx̂ = Si(t̂, Ĝ

−1(Ûh), v), for all v ∈ Xi and t̂ in (0, 1). With

Mmn =

∫
Ω

v(i)

ψn(x̂)ψm(x̂) dx̂, [R(w)]m = Si

(
t̂, Ĝ−1

(
P∑
n=1

wnψn

)
, ψm

)
.

we obtain the following ODE system for U, the vector of coefficients Un(t).

(4.4)
d

dt̂
MU(t̂) = R(U(t̂)), 0 < t̂ < 1.

Comparing with (4.2), instead of a possibly nonlinear G, we now have a linear action
of the mass matrix M in RP×P .
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4.3. Examples. We first illustrate how to treat a very general linear hyperbolic
system using the first approach. In the second example we illustrate the second
approach using a simple nonlinear conservation law.

Example 3 (Linear hyperbolic systems). Suppose that A(j) : Ω0 → RL×L, for
j = 1, . . . , N , are symmetric matrix-valued functions and B : Ω → RL×L is bounded.
In addition, suppose A(t) ≡ A(N+1) is a symmetric positive definite matrix-valued
function from Ω0 to RL×L. A large class of linear examples can be obtained by
setting

[f(x, t, u)]lj =

L∑
m=1

A
(j)
lm(x)um, [g(x, t, u)]l =

L∑
m=1

A
(t)
lm(x)um.(4.5)

and b(x, t, u) = B(x, t)u. Then (1.1) can be written as

(4.6) ∂t(A
(t)u) +

N∑
j=1

∂j(A
(j)u) +Bu = 0.

A simple equation that fits into this example is the scalar transport equation. The
transport of a scalar density u along a given divergence-free vector field β : Ω0 → RN
is described by ∂tu+ div(βu) = 0. This fits in the setting of (4.6) with L = 1, B = 0,
A(t) = [1], and A(j)(x) = [βj(x)], for j = 1, 2, . . . , N . A more complex system that also
fits into this example is electromagnetic wave propagation. Given positive functions ε,
µ and σ on Ω0, the Maxwell system for electric field E and magnetic field H consists
of ε∂tE − curlH + σE = 0 and µ∂tH + curlE = 0. This system also fits into (4.6)
with N = 3, L = 6, and u = [ EH ] and

A(j) =

[
0 [εj ]

[εj ]t 0

]
, A(t) =

[
εI 0
0 µI

]
, B =

[
σ 0
0 0

]
where εj is the matrix whose (l,m)th entry is the alternator εjlm.

To solve (4.6) for u on a spacetime tent Ki, we first map (4.6) to the spacetime
cylinder K̂i using Theorem 2. We find that the map û → Û is now given by Û =
Ĝ(û) = H(x̂, t̂)û where H : K̂i → RL×L is the matrix function

(4.7) H = A(t) −
N∑
j=1

[
(1− t̂)∂̂jτi−1 + t̂∂̂jτi

]
A(j).

Following the first approach, we discretize the term ∂̂t(Hû) in that form. The semidis-
cretization (4.2) now takes the form

(4.8)
d

dt̂

(
H(t̂)u(t̂)

)
= S(u(t̂)), 0 < t̂ < 1,

where H is the matrix whose entries are Hmn(t̂) =

∫
Ω

v(i)

H(x̂, t̂)ψn(x̂) · ψm(x̂) dx̂.
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Example 4 (2D inviscid scalar Burgers equation). A simple two-dimensional
analogue of the well-known one-dimensional inviscid Burgers equation is the following
scalar conservation law considered in [11]. In the framework leading to (1.1), set
L = 1, N = 2, g(x, t, u) = u, f(x, t, u) = 1

2u
2
[
1 1

]
, and b ≡ 0 to get ∂tu +

1
2

(
∂1(u2) + ∂2(u2)

)
= 0. Applying Theorem 2 to map this equation from a tent Ki

to the spacetime cylinder K̂i, we find that Û = Ĝ(û) satisfies

(4.9) Û = û− 1

2
û2d

where d = ∂̂1ϕ + ∂̂2ϕ. To illustrate how to use the second approach, we compute
û = Ĝ−1(Û) by solving the quadratic equation dû2 − 2û+ 2Û = 0. The roots are

(4.10) û =
1±

√
1− 2dÛ

d
=

2Û

1∓
√

1− 2dÛ
.

We will now show that the causality condition (2.3) implies that these roots are
real and only one of the two roots is valid. Recall that the maximal characteristic
speed c̄ is given by the largest eigenvalue of Duf · ν for all unit vectors ν ∈ R2. For
this example the maximum is achieved at ν = ± 1√

2

[
1 1

]
and thus c̄ is given by

c̄ = |Duf · ν| =
√

2|û|. Thus, the causality condition (2.3) yields

|gradxϕ| = |(1− t̂)gradxτi−1 + t̂gradxτi| <
1

c̄
=

1√
2|û|

.

Since |d| ≤ |∂̂1ϕ|+ |∂̂2ϕ| ≤
√

2(∂̂1ϕ)2 + 2(∂̂2ϕ)2, this implies

(4.11) |ûd| < 1.

Rewriting (4.9) as 2Ûd = ûd(2− ûd), we see that (4.11) implies 1− 2dÛ ≥ 0, so the
roots in (4.10) exist.

Finally, observing that the first equality of (4.10) can be written as

(4.12) ûd− 1 = ±
√

1− 2dÛ ,

we conclude from (4.11) that ûd− 1 < |ûd| − 1 < 0, i.e., we must choose the negative
sign in the ± on the right hand side of (4.12). Thus we obtain the correct root

Ĝ−1(Û) =
2Û

1 +
√

1− 2dÛ
.

One can now proceed with the second approach by applying a standard spatial discon-
tinuous Galerkin discretization and time stepping by a Runge-Kutta scheme. Some
regularization or slope limiting technique is needed to avoid spurious oscillations near
sharp solution transitions. This issue is considered further in Section 6.
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5. A locally implicit MTP scheme for the wave equation.

5.1. The acoustic wave problem. Suppose we are given a material coefficient
α : Ω0 → RN×N , symmetric and positive definite everywhere in Ω0 and a damping
coefficient β : Ω0 → R. The wave equation for the linearized pressure φ : Ω → R is

(5.1a) ∂ttφ+ β∂tφ− divx(αgradxφ) = 0 in Ω.

While a variety of initial and boundary conditions are admissible in MTP schemes,
for definiteness, we focus on these model conditions:

nx · αgradxφ = 0 on ∂Ω0 × (0, tmax),(5.1b)

∂tφ = φ1 and φ = φ0 on Ω0 × {0}.(5.1c)

for some given sufficiently smooth compatible data φ0 and φ1. In (5.1b), nx denotes
the spatial component of the outward unit normal.

Let us put (5.1) into the framework of (1.1) using Example 3. Set L = N + 1 and

u =

[
q
µ

]
=

[
αgradxφ
∂tφ

]
∈ RL.

Then (5.1a) yields α−1∂tq − gradxµ = 0 and ∂tµ − div q − βµ = 0. This is readily
identified to be in the form (4.6) with

A(t) =

[
α−1 0

0 1

]
, A(j) = −

[
0 ej
etj 0

]
, B =

[
0 0
0 β

]
,

where ej denotes the jth unit (column) vector. The boundary condition in the new
variable is nx · q = 0 on ∂Ω0 × (0, tmax), and the initial conditions take the form
q = αgradxφ0 and µ = φ1 on Ω0.

To describe the MTP scheme, set u0 = (q0, µ0) = (αgradxφ0, φ1). Suppose we
are at the ith tent pitching step. Then the solution ui−1 = (qi−1, µi−1) has been
computed on the advancing front Si−1, and a new tent Ki has been erected at mesh
vertex v(i). We now need the wave equation mapped over to K̂i = Ωv(i)×(0, 1). From
Example 3,

(5.2)
∂

∂t̂
(Hû) +

N∑
j=1

∂

∂x̂j
(δA(j)û) + δB̂û = 0,

where H is as in (4.7) and B̂ = B ◦ Φ has the sole nonzero entry β̂ = β ◦ Φ. In this
example, it is convenient to split û into two blocks consisting of q̂ = q ◦ Φ ∈ RN and
µ̂ = µ ◦ Φ ∈ R. Then for all (x̂, t̂) ∈ K̂i,

(5.3) H(x̂, t̂)

[
q̂
µ̂

]
=

[
α̂−1 gradxϕ

(gradxϕ)t 1

] [
q̂
µ̂

]
where α̂ = α ◦ Φ and (5.2) can be rewritten as

(5.4)
∂

∂t̂

[
α̂−1q̂ + µ̂gradxϕ
µ̂+ q̂ · gradxϕ

]
−
[
gradx(δµ̂)

div(δq̂)

]
+

[
0

δβ̂µ̂

]
= 0 in Ωv(i) × (0, 1).

On the cylinder, this equation must be supplemented by the initial conditions q̂ = q̂i−1
and µ̂ = µ̂i−1 on Ωv(i) × {0}.
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5.2. Semidiscretization after mapping. For the spatial discretization, we use
the Brezzi-Douglas-Marini (BDM) mixed method. Namely, letting Pp(T ) denote the
space of polynomials of degree at most p in x̂, restricted to a spatial N -simplex T ,
set Xi = {(r, η) ∈ H(div, Ωv(i)) × L2(Ωv(i)) : r|T ∈ Pp(T )N and η|T ∈ Pp(T ) for all
simplices T ∈ Ti and r · nx = 0 on ∂Ωv(i) ∩ ∂Ω0}. Multiplying (5.4) by (r, η) and
integrating the first equation by parts, we obtain

d

dt̂

∫
Ω

v(i)

[
α̂−1q̂ + µ̂gradxϕ
µ̂+ q̂ · gradxϕ

]
·
[
r
η

]
dx̂ =

∫
Ω

v(i)

[
−δµ̂

div(δq̂)− δβ̂µ̂

]
·
[
div r
η

]
dx̂,(5.5)

for all (r, η) ∈ Xi. Using a basis ψm ≡ (rm, ηm) of Xi, the coefficients um(t̂) of
the expansion of û in this basis satisfy an ODE system, which can be written using
matrices H and S defined by

Hlm(t̂) =

∫
Ω

v(i)

[
α̂−1rm + ηmgradxϕ
ηm + rm · gradxϕ

]
·
[
rl
ηl

]
dx̂(5.6a)

Slm =

∫
Ω

v(i)

[
−δηm

div(δrm)− δβ̂ηm

]
·
[
div rl
ηl

]
dx̂.(5.6b)

Using prime (′) to abbreviate d/dt̂, observe that (5.5) is the same as

(5.6c)
(
H(t̂)u(t̂)

)′
= Su(t̂), 0 < t̂ < 1,

a realization of (4.8) for the wave equation.

5.3. Time discretization after mapping. We utilize the first approach of
§4.1. by applying an implicit high order multi-stage Runge-Kutta (RK) method of
Radau IIA type [10, Chapter IV.5] for time stepping (5.6c). Note that due to the
implicit nature of the scheme, there is no CFL constraint on the number of stages
(within the mapped tent), irrespective of the spatial polynomial degree p of Xi. These
RK methods, with s stages, are characterized by numbers alm and cl for l,m =
1, . . . , s (forming entries of a Butcher tableau) with the property that cs = 1 (and the
remaining cl are determined by the roots of appropriate Jacobi polynomials). When
applied to a standard ODE y′ = f(t̂, y) in the interval t̂ ∈ (0, 1), with initial condition
y(0) = y0, it produces approximations yl to y at tl = cl that satisfy

(5.7) yl = y0 +

s∑
m=1

almf(tm, ym), l = 1, . . . , s.

However, since (5.6c) is not in this standard form, we substitute yl = Hlul into (5.7),
where Hl = H(t̂l) and ul is the approximation to u(tl) to be found. Also setting
f(tm, ym) = Sum, we obtain the linear system

Hlul = H0u0 +

s∑
m=1

almSum, l = 1, . . . , s,

which can be easily solved for the final stage solution us, given u0.

5.4. Numerical studies in two and three space dimensions. The locally
implicit MTP method was implemented within the framework of the NGSolve [20]
package. We report the results obtained for (5.1) with β = 0, α = 1, Ω0 set to the
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Fig. 3: Convergence rates for a standing wave

unit square, φ0 = 0 and φ1 = cos(πx1) cos(πx2) for (x1, x2) ∈ Ω0. It is easy to see
that the exact solution is the classical standing wave

φ(x, t) = cos(πx1) cos(πx2) sin(πt
√

2)/(
√

2π),

and

u(x, t) =

[
q(x, t)
µ(x, t)

]
=

[
gradxφ
∂tφ

]
=

− sin(πx1) cos(πx2) sin(πt
√

2)/
√

2

− cos(πx1) sin(πx2) sin(πt
√

2)/
√

2

cos(πx1) cos(πx2) cos(πt
√

2)

 .
The spatial domain Ω0 is meshed by a uniform grid obtained by dividing the unit
square into 2l × 2l congruent squares and dividing each square into two triangles
by connecting its positively sloped diagonal. The parameters to be varied in each
experiment are the spatial mesh size h = 2−l and the the polynomial degree p of the
space discretization. The number of Runge-Kutta time stages is fixed to s = p. The
tent meshing algorithm is driven by an input wavespeed of 2 (leading to conservative
tent pole heights) to mesh a time slab of size 2−l/8. This time slab is stacked in time
to mesh the entire spacetime region of simulation Ω0×(0, 1). Letting qh(x) and µh(x)
denote the computed solutions at time t = 1, we measure the error norm e defined
by e2 = ‖q(·, 1) − qh‖2L2(Ω0)

+ ‖µ(·, 1) − µh‖2L2(Ω0)
. The observations are compiled in

Figure 3a, where the values of e as a function of degree p and h are plotted. The
rate r of the O(hr)-convergence observed is computed from the slope of the regression
lines and marked near each convergence curve. We observe that e appears to go to 0
at a rate of O(hp).

Next, consider the case of three spatial dimensions, where Ω0 is set to the unit
cube and subdivided in a fashion analogous to the two-dimensional case (into 2l×2l×2l
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congruent cubes, which are further subdivided into six tetrahedra). The remaining
parameters are the same as in the two-dimensional case, except that now the ex-
act solution is φ(x, t) = cos(πx1) cos(πx2) cos(πx3) sin(πt

√
3)/(
√

3π). Note that the
spacetime mesh of tents, now formed by four-dimensional simplices, continues to be
made by Algorithm 2. The convergence history plotted in Figure 3b shows that e,
just as in the previous case, goes to zero at a rate of O(hp).

6. An explicit MTP scheme for a nonlinear conservation law. In this
section, we describe some techniques for handling nonlinear conservation laws, and
considering the specific example of Euler equations, construct a explicit MTP scheme.

6.1. Mapping an entropy pair. Recall that a real function E(u) is called
an entropy [21, Definition 3.4.1] of the system (1.1) if there exists an entropy flux
F(u) ∈ RN such that every classical solution u of (1.1) satisfies ∂tE(u)+divxF(u) = 0.
Note that for nonsmooth u, this equality need not hold. The pair (E ,F) is called the
entropy pair. We say that this pair satisfies the “entropy admissibility condition” on
Ω if

(6.1) ∂tE(u(x, t)) + divxF(u(x, t)) ≤ 0

holds in the sense of distributions on Ω. The inequality is useful to study the violation
of entropy conservation for nonsmooth solutions (like shocks). Nonlinear conservation
laws often have multiple weak solutions and uniqueness is obtained by selecting a solu-
tion u satisfying the entropy admissibility condition. These theoretical considerations
motivate the use of numerical analogues of (6.1) in designing schemes for conservation
laws.

Suppose that on a tent Ki, we are given a solution u(x, t) of (1.1) and an entropy
pair (E ,F). The mapped solution, as before, is û = u ◦ Φ. Define

Ê(w) = E(w)−F(w)gradxϕ, F̂(w) = δF(w).(6.2)

Theorem 5. Suppose u solves (1.1) on Ki and û = u ◦ Φ solves the mapped
equation (3.3). Then, whenever (E ,F) is an entropy pair for (1.1), (Ê , F̂) is an
entropy pair for (3.3). Moreover, if E(u) and F(u) satisfies the entropy admissibility
condition (6.1) on Ki, then Ê(û) and F̂(û) satisfies the entropy admissibility condition
on K̂i.

Proof. Repeating the calculations in the proof of Theorem 2, with g = E and
f = F , we obtain

(∂tE(u) + divxF(u)) ◦ Φ =
1

δ

(
∂̂tÊ(û) + d̂ivxF̂(û)

)
,

from which the statements of the theorem follow.

6.2. Entropy viscosity regularization. The addition of “artificial viscosity”
(a diffusion term) to the right hand side of nonlinear conservation laws makes their
solutions dissipative. When the limit of such solutions, as the diffusion term goes
to zero, exist in some sense, it is referred to as a vanishing viscosity solution. It is
known [2, Theorem 4.6.1] that the vanishing viscosity solution satisfies the entropy
admissibility condition for entropy pairs satisfying certain conditions. Motivated by
such connections, the entropy viscosity regularization method of [9], suggests mod-
ifying numerical schemes by selectively adding small amounts of artificial viscosity,
to avoid spurious oscillations near discontinuous solutions. We borrow this technique
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and incorporate it into the MTP schemes obtained using the second approach (of
§4.2) as follows.

Consider the problem on the tent Ki mapped to K̂i. We set the spatial discretiza-
tion space to Xi = {u ∈ L2(Ωv(i))

L : u|T ∈ Pp(T ) for all T ∈ Ti} and consider a DG
discretization of the mapped equation (3.3) following the second approach. Accord-
ingly the approximation Ûh(x̂, t̂) takes the form in (4.3). Let (·, ·)h and 〈·, ·〉h denote
the sum of integrals over T and ∂T of the appropriate inner product of its arguments,
over all T ∈ Ti, respectively. The semidiscretization of (3.3) by the DG method takes
the form

(6.3) (∂̂tÛh, V )h − (δ f(Ĝ−1(Ûh)), gradxV )h + 〈δQf (Ûh), V 〉h + (δ b, V )h = 0

for all V ∈ Xi. Here Qf is the so-called “numerical flux,” whose form varies depending
on the DG method, and as usual, all derivatives are taken element by element.

Suppose that an entropy pair (E ,F) is given for (1.1). On the mapped tent
K̂i, let (Ê , F̂) be defined by (6.2). Suppose a numerical approximation Ûh(x̂, t̂1)
has been computed at some time 0 ≤ t̂1 < 1 and we want to compute a numerical
approximation at the next time stage, say at t̂ = t̂1 + ∆t ≤ 1. The entropy residual
of the approximation uh = Ĝ−1(Ûh) to u is a weak form of the quantity ∂̂tÊ(ûh) +

d̂ivxF̂(ûh), which by Theorem 5, is non-positive. The discrete entropy residual at
time t̂1 is Rh = min(rh, 0) where rh ∈ Xi is defined by

(δrh, V )h = (∂̂tÊ(Ĝ−1(Ûh)), V )h − (F̂(Ûh), gradxV )h + 〈δQF (Ûh), V 〉h

= (
∂(Ê ◦ Ĝ−1)

∂U
∂̂tÛh, V )h − (F̂(Ûh), gradxV )h + 〈δQF (Ûh), V 〉h

for all V ∈ Xi. Here QF is a numerical flux prescribed by a DG approximation to the
entropy conservation equation. The term ∂̂tÛh can be replaced by its approximation
available from (6.3) while computing rh.

Next, following [9], we quantify the amount of viscosity to be added to (6.3).
Define the entropy viscosity coefficient on one spatial element T ∈ Ti by νTe =
c2X‖Rh‖L∞(T )/|Ē | where Ē is the mean value of Ê(Ĝ−1(Ûh)) on T and cX is an
effective local grid size of Xi, typically chosen as cX = κ1 diam(T )/p for some
fixed number κ1. To limit the viscosity added based on local wavespeed, define
νT∗ = κ2 diam(T )‖Duf̂(x̂, t̂1, ûh(x̂, t̂1))‖L∞(T ) where κ2 is another fixed number and
set νi = maxT∈Ti min(νT∗ , ν

T
e ). This artificial viscosity coefficient proposed in [9] leads

to generous viscosity at discontinuities (where the entropy residual is high) and little
viscosity in smooth regions. Finally, we modify the mapped equation (3.3) by adding

to its right hand side the corresponding artificial viscosity term νid̂ivx(δgradxû).
Namely, instead of solving (6.3) for t̂1 ≤ t̂ ≤ t̂1 + ∆t, we solve its viscous pertur-
bation:

(6.4)
(∂̂tÛh, V )h − (δ f(Ĝ−1(Ûh)), gradxV )h + 〈δQf (Ûh), V 〉h + (δ b, V )h

+ νiai(Ĝ
−1(Ûh), V ) = 0,

for all v ∈ Xi, where ai(·, ·) is the standard interior penalty DG approximation of

the viscous term −d̂ivx(δgradxû) defined below. On an interface F shared by two
elements T+ and T−, with outward unit normals n+ and n−, respectively, set [wn] =
w|T+

n+ + w|T−n−, with the understanding that w(x, t) is considered zero if x is
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outside Ωv(i) . Then

ai(w, v) = (δgradxw, gradxv)h −
1

2
〈δgradxw, [vn]〉h −

1

2
〈[wn], δgradxv〉h

+
α

2h
〈δ[wn], [vn]〉h.

Here, as usual, the penalization parameter α must be chosen large enough to obtain
coercivity. Applying a time stepping algorithm to (6.4), we compute the numerical
solution at the next time stage t1 + ∆t.

6.3. Application to Euler equations. Let ρ : Ω → R, m : Ω → RN and
E : Ω → R denote the density, momentum, and total energy of a perfect gas occupying
Ω ⊂ RN . Set L = N + 2 and let

u =

 ρm
E

 , g(u) = u , f(u) =

 m
PI +m⊗m/ρ
(E + P)m/ρ

 , b ≡ 0 ,

Here, the pressure P is related to the state variables by P = 1
2ρT , and T = 4

d (Eρ−
1
2
|m|2
ρ2 ),

where d, the degrees of freedom of the gas particles, is set to 5 for ideal gas. With
these settings, the system of Euler equations is given by (1.1).

After mapping from a tent Ki to K̂i, to proceed with the second approach we
need to invert the nonlinear equation Û = Ĝ(û). Namely, writing û = (ρ̂, m̂, Ê) and
Û = (R̂, M̂ , F̂ ), we want to explicitly compute (ρ̂, m̂, Ê) = Ĝ−1(R̂, M̂ , F̂ ). Lengthy
calculations (see [25]) show that the expression for Ĝ−1 is given by

ρ̂ =
R̂2

a1 − 2
d |gradxϕ|2a3

, m̂ =
ρ̂

R̂
(M̂ +

2

d
a3gradxϕ), Ê =

ρ̂

R̂
(F̂ +

2a3
dρ̂

gradxϕ · m̂)

where
a1 = R̂− M̂ · gradxϕ, a2 = 2F̂ R̂− |M̂ |2,

a3 = a2/(a1 +

√
a21 −

4(d+ 1)

d2
|gradxϕ|2a2).

The well-known expressions for the entropy and entropy flux for the Euler system
are E(ρ,m,E) = ρ

(
ln ρ− d

2 ln T
)

and F(ρ,m,E) = mE/ρ. With these expressions we
discretize the mapped equation using the second approach, applying the previously
described entropy viscosity regularization of (6.4).

6.4. A computational illustration. We consider the well-known example [26]
of a wind tunnel with a forward facing step on which a Mach 3 flow impinges. The
geometry is shown in Figure 4a and the initial conditions are set to ρ = 1.4, m =

ρ
[
3 0

]t
, and P = 1. The boundary conditions are set such that (0, x2) is an inflow

boundary and (3, x2) is a free boundary, which has no effect on the flow. All other
boundaries are solid walls. Anticipating the singularity at the nonconvex corner, we
construct a spatial mesh with small elements near it. Figure 4b shows this mesh and
the unstructured locally adaptive time advance that is possible.

Using the notation of (4.4) and a basis ψl of Xi, we obtain the ODE system
(MU(t̂))′ = R1(U(t̂))− R2(U(t̂)), for 0 < t̂ < 1, where [R1]l = (δf(Ĝ−1(Ûh)), gradxψl)h−
〈δQf (Ûh), ψl〉h and [R2]l = νiai(Ĝ

−1(Ûh), ψl). This system within each tent is solved
by a time stepping scheme and a time step ∆t = 1

m , where m denotes the number of
local time steps. For stability we needm ≥ O(p2), but more time steps may be used for
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accuracy. Due to the addition of artificial viscosity, an additional fractional time step
∆tv is chosen depending on the viscosity coefficient (and therefore on the smoothness
of the solution). Details based on the explicit Euler method are in Algorithm 3, where
we use the notations Uj := U(j∆t) and δ∗ = ‖δ‖L∞(Ω

v(i) ).

Algorithm 3 Addition of artificial viscosity

For j = 0, . . . ,m− 1 do:
• Evaluate R1(Uj).
• Update solution Uj+1 = Uj + ∆t R1(Uj).
• Calculate the entropy residual and the viscosity coefficient νi(j∆t).

• Estimate time step ∆tv = ∆t/ δ∗νip
4

h2 for the artificial viscosity.
• Apply the artificial viscosity with an explicit Euler method up to the time

(j + 1)∆t.

This algorithm can be generalized for any Runge-Kutta scheme and for the fol-
lowing results a two-staged RK scheme was used. A kinetic flux (see [13]) was used
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Fig. 5: Solution of Mach 3 wind tunnel at t = 4, with p = 4 DG finite elements on
3951 triangles

for the numerical flux Qf while QF was set by

QF =

{
F(ρ̂+, m̂+, Ê+) · n , m̂+ · n ≥ 0 ,

F(ρ̂−, m̂−, Ê−) · n , otherwise ,

where ρ̂+ denotes the trace of ρ̂ from within the element which has n as outward unit
normal vector. For computational convenience, we use a slight variation of the entropy
viscosity regularization described in §6.2. Namely, the entropy viscosity coefficient on
one element T ∈ Ti is set by νTe = c2X‖Rh‖L∞(T ) and the limiting artificial viscosity

is set by νT∗ = κ2 diam(T )‖ρ(|mρ | +
√
γT)‖L∞(T ) with γ = d+2

d = 1.4 for an ideal
gas and the temperature T . The constants in the calculation of the entropy viscosity
coefficient were chosen as κ1 = 1

2 , κ2 = 1
4p and the penalization parameter α in the

artificial viscosity term is set to 2.
With these settings, the results obtained with p = 4, are shown in Figure 5. They

correspond to the results [26] that can be found in the literature using other methods.
Note from the second plot that the artificial viscosity is applied only in the shocks.

7. Conclusion. We have introduced new schemes, called MTP schemes, for
advancing hyperbolic solutions through unstructured tent meshes. The advantages of
tent pitching over traditional time stepping, amply clarified by others in the literature
on SDG methods, include the ability to advance in time by different amounts at
different spatial locations, easy parallelization, and linear scaling of computational
complexity in the number of tents.
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Further new advantages brought about by MTP schemes include the possibility
to use existing spatial discretizations and time stepping schemes after mapping tents
to cylinders. The mapping technique has opened a new avenue to perform fully
explicit matrix-free local time stepping on unstructured tent meshes using explicit
MTP schemes. Their utility as a powerful computational tool was demonstrated
on the Mach 3 wind tunnel where local refinement near a rarefaction singularity
permitted us to capture the shock structure using relatively few elements and standard
discretizations (in separated space and time).

We also studied locally implicit MTP schemes and their application to the acoustic
wave equation. We observed O(hp) accuracy in the L2 norm on the final time slice
for smooth solutions. To compare with SDG schemes, to our knowledge, the only
known provable error estimate is O(hp+1/2) [15], although O(hp+1) is often observed
in practice [1, 15]. Further theoretical studies are needed to understand definitively
the cause of this loss of convergence order and whether no scheme can expect faster
convergence than O(hp+1/2) on all meshes. Nonetheless, for the moment, proceeding
by handicapping MTP schemes by one full order (and requiring MTP schemes to
use one higher p), let us see what might be gained by the separation of space and
time in the MTP scheme: As p increases, SDG schemes use O(pN+1) spacetime basis
functions per tent, while MTP schemes use O((p + 1)N ) spatial basis functions to
obtain the same convergence rate. Hence to propagate the solution inside a tent,
an SDG scheme performs O(p2(N+1)) flops, while the implicit MTP scheme performs
O((p+ 1)2N ) flops. Since (p+ 1)2N < p2(N+1) for p ≥ 3 in both two and three space
dimensions (N = 2, 3), the flop count favors the implicit MTP scheme as p increases.

Further work is needed to provide rigorous proofs of the convergence rates for
MTP schemes and to provide computational benchmarks for specific applications.
Explicit MTP schemes are particularly interesting in the context of emerging many-
core architectures, where data locality is important. More work is needed to realize
these promises of improved performance of explicit MTP schemes, due to its better
ratio of flops per memory (data locality) and matrix-free implementation techniques
(such as sum factorization algorithms). Years of research on SDG schemes have
resulted in advanced techniques like spacetime adaptive tent mesh refinement and
element-wise conservation. Further studies are needed to bring such techniques to
MTP schemes.
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[7] J. Gopalakrishnan, P. Monk, and P. Sepúlveda, A tent pitching scheme motivated by
Friedrichs theory, Computers and Mathematics with Applications, 70 (2015), pp. 1114–

20



1135.
[8] M. J. Grote, M. Mehlin, and T. Mitkova, Runge-Kutta based explicit local time-stepping

methods for wave propagation, SIAM J. Sci. Comput., 37 (2015), pp. A747–A775.
[9] J.-L. Guermond, R. Pasquetti, and B. Popov, Entropy viscosity method for nonlinear

conservation laws, J. Comput. Phys., 230 (2011), pp. 4248–4267.
[10] E. Hairer and G. Wanner, Solving ordinary differential equations. II, vol. 14 of Springer

Series in Computational Mathematics, Springer-Verlag, Berlin, 1991. Stiff and differential-
algebraic problems.

[11] G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic
conservation laws, SIAM J. Sci. Comput., 19 (1998), pp. 1892–1917 (electronic).

[12] R. B. Lowrie, P. L. Roe, and B. van Leer, A space-time discontinuous Galerkin method
for the time-accurate numerical solution of hyperbolic conservation laws, in Proceedings
of the 12th AIAA Computational Fluid Dynamics Conference, no. 95-1658, 1995.

[13] J. C. Mandal and S. M. Deshpande, Kinetic flux vector splitting for Euler equations, Com-
put. & Fluids, 23(2) (1994), pp. 447–478.

[14] S. T. Miller and R. B. Haber, A spacetime discontinuous Galerkin method for hyperbolic
heat conduction, Computer Methods in Applied Mechanics and Engineering, 198 (2008),
pp. 194–209.

[15] P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyper-
bolic systems in inhomogeneous media, J. Sci. Comput., 22/23 (2005), pp. 443–477.

[16] A. D. Mont, Adaptive unstructured spacetime meshing for four-dimensional spacetime dis-
continuous Galerkin finite element methods, Master’s thesis, University of Illinois at
Urbana-Champaign, 2011.

[17] M. Neumüller, Space-Time Methods: Fast Solvers and Applications, PhD thesis, Graz Uni-
versity of Technology, 2013.

[18] J. Palaniappan, R. B. Haber, and R. L. Jerrard, A spacetime discontinuous Galerkin
method for scalar conservation laws, Computer Methods in Applied Mechanics and En-
gineering, 193 (2004), pp. 3607–3631.

[19] G. R. Richter, An explicit finite element method for the wave equation, Appl. Numer. Math.,
16 (1994), pp. 65–80. A Festschrift to honor Professor Robert Vichnevetsky on his 65th
birthday.
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