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SUMMARY

We consider the application of a variable V-cycle multigrid algorithm for the hybridized mixed method
for second order elliptic boundary value problems. Our algorithm differs from previous works on
multigrid for the mixed method in that it is targeted at efficiently solving the matrix system for
the Lagrange multiplier of the method. Since the mixed method is best implemented by first solving
for the Lagrange multiplier and recovering the remaining unknowns locally, our algorithm is more
useful in practice. The critical ingredient in the algorithm is a suitable intergrid transfer operator. We
design such an operator and prove mesh independent convergence of the variable V-cycle algorithm.
Numerical experiments indicating the asymptotically optimal performance of our algorithm, as well
as the failure of certain seemingly plausible intergrid transfer operators, are presented. Copyright c©
2009 John Wiley & Sons, Ltd.
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1. Introduction

The mixed method is an important finite element method for numerically solving partial
differential equations on complicated domains. This paper presents a multigrid method for
solving the linear systems arising from the so-called hybridized mixed method [1, 14]. Like other
finite element methods, the hybridized mixed method yields matrix systems with condition
number that grows as mesh size decreases. Hence it is necessary to use preconditioned iterative
solvers or fast linear solvers like multigrid algorithms to obtain the solution efficiently. Classical
iterative methods such as the Gauss-Seidel iteration, reduce high frequency components of the
iterative error quickly, but one needs techniques like the multigrid V-cycle iteration to reduce
all components of the error efficiently. It is well known that multigrid techniques can give solvers
of asymptotically optimal complexity for many applications. We shall show that this is the case
for the hybridized mixed method as well, provided one chooses the ingredients appropriately
in a V-cycle algorithm. Although the subject of efficient solvers for the mixed method has
been actively pursued by many authors, as we shall describe shortly, our algorithm addresses
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2 GOPALAKRISHNAN AND TAN

a practical need better than the existing algorithms. Furthermore, to put this work in the
perspective of recent developments in the design of new hybridized DG (HDG) methods [16],
our algorithm can be thought of as providing an efficient solver for the simplest HDG method,
namely the hybridized mixed method. Thus this contribution represents a first step towards
the design of efficient solvers for all HDG methods.

We consider the hybridized mixed method for the Dirichlet problem

−∆u = f on Ω,

u = 0 on ∂Ω,
(1)

where Ω is a polygonal domain and f ∈ L2(Ω). We mesh Ω by a finite element triangulation
and derive the method by reformulating the above system, after introducing the flux variable
q, as

q = −∇u in Ω,

divq = f in Ω,

u = 0 on ∂Ω,

multiplying by test functions and integrating by parts on each mesh element. The resulting
system (which we shall describe precisely in Section 2) has three unknown variables, an
approximation qh for the exact flux q, an approximation uh for the primal variable u, and a
Lagrange multiplier λh approximating the traces of the solution u on the element boundaries.
The non-hybridized form of the mixed method, in contrast, has only qh and uh as unknowns.

While it may appear that the hybridized formulation has too many unknowns (qh, uh, and
λh, instead of just qh and uh), it has long been known [1, 14] that the hybridized formulation
is better. Indeed, in the hybridized formulation, one can eliminate the unknowns qh and uh

and obtain a global system solely involving λh. The size of this reduced system is smaller
than the size of the original mixed method in the higher order case. Furthermore, this system
is symmetric and positive definite, so excellent iterative techniques such as the Conjugate
Gradients can be used. It is important to also note that once λh is computed, the other
components of the solution, namely qh and uh can be computed element by element through
local operations. Finally, it is also well known [1] that one can postprocess the hybrid solution
to obtain another approximation with enhanced accuracy. Clearly, these are compelling reasons
to prefer the hybridized formulation.

The above mentioned global system that involves solely the Lagrange multiplier λh is the
system we must solve efficiently. Since the recovery of the remaining unknowns only involves
local operations, the solution cost is typically dominated by the cost of solving the global
system for λh. It is for this system that we need efficient solvers, like multigrid techniques.
However, there are some difficulties in adapting a standard multigrid algorithm to this system,
arising due to two non-standard features of hybridized methods: (1) The space in which λh

lies consist of functions defined on the edges of the mesh. In contrast, typical finite element
methods uses functions defined on the elements of a mesh. (2) The approximate solution λh

satisfies a variational formulation involving a mesh dependent bilinear form. In contrast many of
the standard finite element approximations are characterized via a variational equation that is
defined in a Sobolev space containing the finite element spaces. Because of these features, when
adapting multigrid algorithms to hybridized mixed methods, we must design the components
of the algorithm to work with non-nested multilevel finite element spaces, and non-inherited
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bilinear forms. For analysis, we use the abstract theory of [7] which has often proved successful
in analyzing multigrid adaptations to other problems with similar difficulties.

The two main ingredients of any multigrid algorithms are smoothers and intergrid transfer
operators. For the problems we shall consider, smoothers do not pose new challenges. However,
the design of proper intergrid transfer operators tailored to the hybridized schemes are critical
for the success of the multigrid algorithm. These are operators used within the algorithm to
move data from a coarser grid to a finer grid. Since hybridized methods use functions defined
on mesh edges, we must design non-trivial intergrid transfer operators. As our numerical
experiments show, some of the “obvious” choices do not result in efficient, or even convergent,
multigrid algorithms. We have chosen our intergrid transfers and multilevel spaces such that at
the coarser levels we use the lowest order conforming finite element spaces, so that the number
of degrees of freedom of the coarse levels are minimized. Conforming coarser spaces have been
used previously in other contexts [7, 17].

There are a number of previous works on multigrid algorithms for mixed and hybridized
mixed methods for the Poisson equation [7, 9, 22, 25]. One of the first is in fact contained in
the same paper [7] that has the abstract multigrid theory we shall use here. They analyzed a
multigrid algorithm for a matrix system involving the primal variable u alone. However the
evaluation of the operator acting on u on general meshes requires solving a global system.
Although this system is well conditioned, we find this approach practically inconvenient. The
work [22] explores an interesting idea for preconditioning the system for u using a spectrally
equivalent discontinuous Galerkin like bilinear form, while [23] applies domain decomposition
ideas to precondition a system obtained by eliminating qh, but involving both uh and λh. Our
work differs from these in that we design a solver for the system involving λh alone. This is the
most practically interesting strategy, because the best implementation of the mixed method
proceeds by assembling the global system for λh alone, and recovering the remaining solutions
components qh and uh locally after solving for λh. Hence what is needed most in practice is an
efficient solver for the matrix system for λh. The paper [9] of Brenner does present a multigrid
algorithm for the system involving λh alone, but only for the lowest order case, exploiting its
connection with the P1-nonconforming method. Since such connections are not known for the
Lagrange multiplier system for the general order case, this approach cannot be generalized to
the arbitrary order case. The same is true for other strategies like those [12, 13] that uses the
equivalence with the P1-nonconforming method. In our approach there is no difference between
the lowest order and the remaining cases. A Schwarz preconditioner for the arbitrary order
system for λh can be found in [19]. In this paper, we consider the V-cycle multigrid algorithm
instead.

A few remarks on our method of analysis are in order. There are a number of frameworks [7,
10, 18] for analyzing multigrid algorithms similar to ours. We use the abstract theory of [7],
whereby the convergence proof is reduced to a few conditions which we are able to verify. Our
techniques also give results for W-cycle type algorithms, but in our opinion, a result on the
convergence of the variable V-cycle is perhaps the most interesting practically, hence we shall
only state such a result. In the proof of convergence, we bring to bear certain recent results
on the hybridized mixed method [14, 15]. In particular, an error estimate for the Lagrange
multiplier proved in [15] plays a critical role. Indeed, previously known error estimates [1]
for λh (in the arbitrary degree case) required at least H3-regularity of the exact solution,
which makes them useless in regularity based multigrid analyses. We instead present a full
regularity based multigrid proof using the new error estimate of [15]. We also develop a series
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4 GOPALAKRISHNAN AND TAN

of intermediate lemmas which we anticipate to be useful in the analysis of multigrid for other
similar applications like HDG methods.

In the next section we shall precisely describe the hybridized mixed method, more specifically
the hybridized Raviart-Thomas method. In Section 3, we present the multigrid algorithm. The
succeeding section is devoted to the convergence analysis of this algorithm. We conclude in
Section 5 by reporting the results of our numerical experiments.

2. The hybridized mixed method

We now present the well known [1, 14] hybridized mixed method for the numerical solution
of the Dirichlet problem (1) and list a few results regarding the method which we shall use in
later sections.

Reformulating (1) as a first order system of two equations, the first equation is the definition
of flux, namely q = −∇u, while the second equation is divq = f . Multiplying the first equation
by a test function r and integrating by parts we obtain

∫

K

q · r −

∫

K

u divr +

∫

∂K

u r · n = 0 (2)

for any triangle K contained in Ω. Above and elsewhere, we drop the measure in integrals, as
it will be clear from the context. Moreover, we use n to denote the unit outward normal on
any domain – the specific domain under consideration in each instance will be clear from the
context, e.g., above it is K. A discrete version of (2) forms the first equation of the hybridized
method. To describe it, we need to define appropriate finite element spaces. Let Th be a
finite element triangulation of Ω satisfying the usual geometrical conformity constraints. The
subscript h refers to the maximum of the diameters of all the triangles K in the collection Th.
We assume that Th is quasiuniform for simplicity. Let Pd(K) denote the set of polynomials of
degree at most d on K. Define the following spaces of piecewise polynomials:

Vh = {v : v|K ∈ Rd(K), for all K ∈ Th},

Th = {w : w|K ∈ Pd(K), for all K ∈ Th},

where Rd(K) = Pd(K)×Pd(K)+xPd(K), the well known Raviart-Thomas space [21]. Let Eh

denote the set of all edges in Th, and E i
h be the set of interior edges (not contained in ∂Ω).

We need one more discrete space, this time a space of functions defined on the union of edges

Mh = {µ : µ|e ∈ Pd(e), for all e ∈ E
i
h}.

We also identify the functions in Mh with their extension by zero to the union of all mesh
edges in Eh, i.e., if we refer to the value of a µ ∈ Mh on ∂Ω, it is understood to be zero.
Therefore, we can write identities like

∑

K∈Th

∫

∂K

µ r · n =
∑

e∈E i

h

∫

e

µ [[r · n]], for all µ ∈Mh, r ∈ Vh, (3)

where [[r·n]] is the jump of the normal component of r, defined as follows: On any edge e shared
by two mesh triangles K+ and K−, the jump on e is defined by [[r ·n]] = r|K+ ·n+ +r|K− ·n−

where n
± denotes the outward unit normal on ∂K± (see Figure 1).
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Figure 1. Illustration of notations

With these spaces and notations, we can now write down the hybridized Raviart-Thomas
mixed method. Its approximation triple qh ∈ Vh, uh ∈ Th, λh ∈ Mh, is defined by requiring
that, for all (v, w, µ) ∈ Vh × Th ×Mh,

∫

Ω

qh · v −
∑

K∈Th

∫

K

uhdivv +
∑

e∈E i

h

∫

e

λh [[v · n]] = 0, (4a)

∑

K∈Th

∫

K

wdivqh =

∫

Ω

f w, (4b)

∑

e∈E i

h

∫

e

µ [[qh · n]] = 0. (4c)

It is easy to show that this system has a unique solution [15]. Comparing the first equation
with (2), keeping (3) in view, we expect λh to be an approximation to the trace of the exact
solution u on E i

h. This is indeed the case as is quantified in the error estimates proved in [1, 15].
For our multigrid analysis later, the older error estimate of [1] is unsuitable, and the newer
estimate of [15] plays a critical role.

It is well known that the (nonhybridized) Raviart-Thomas mixed method as originally
presented in [21], involving just qh and uh as unknowns, is equivalent to the above hybridized
mixed method, in that the flux and primal variable approximations (qh and uh) of both
methods coincide. Hence (4) is often thought of as an alternate implementation technique for
the mixed method. Although the hybridized method is usually presented as in (4), it is not
advisable to implement it in that form. Indeed, the main advantage of hybridization is that
all the unknowns, except λh, can be eliminated to get one global system for λh. Then qh and
uh are locally recoverable from λh. We shall now describe this precisely in the next theorem,
after establishing some necessary notations.

We introduce two local operators. The first mapping lifts functions on edges of the
triangulation Th to functions on Ω. Let L2(Eh) denote the set of all square integrable functions
on the union of all edges of Eh. For any µ ∈ L2(Eh), the local liftings Qµ and Uµ are functions
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6 GOPALAKRISHNAN AND TAN

in Vh and Th respectively, defined by requiring that
∫

Ω

Qµ · v −
∑

K∈Th

∫

K

Uµ divv = −
∑

e∈Eh

∫

e

µ [[v · n]],

∑

K∈Th

∫

K

w divQµ = 0,

(5)

hold for all (v, w) ∈ Vh×Th. Note that since the functions above have no continuity constraints
across elements, the computation of (Qµ,Uµ) can be done element by element in a decoupled
way. Such computations, being local, are inexpensive. The second mapping, associates to the
function f ∈ L2(Ω) the element (Qf,Uf) ∈ Vh × Th defined by

∫

Ω

Qf · v −
∑

K∈Th

∫

K

Ufdivv = 0,

∑

K∈Th

∫

K

w divQf =

∫

Ω

f w,

(6)

for all (v, w) ∈ Vh × Th. These mappings are uniquely defined because of the surjectivity of
the map div : Vh 7→ Th. With these maps, we have the following theorem [14].

Theorem 2.1. Let (qh, uh, λh) be the solution of the hybridized Raviart-Thomas method (4).
Then

qh = Qλh + Qf and uh = Uλh + Uf. (7)

The Lagrange multiplier λh ∈Mh is the unique solution of

a(λh, µ) = b(µ) for all µ ∈Mh, (8)

where

a(λh, µ) =

∫

Ω

Qλh · Qµ

and

b(µ) =

∫

Ω

f Uµ.

By virtue of this theorem, instead of dealing with (4) directly, we can solve (8) to find the
Lagrange multiplier λh, and then use (7) to recover the qh and uh. This recovery is local, as
the application of Q and U are local operations, and consequently of negligible cost, compared
to the global inversion required to find λh.

Remark 2.1. The BDM method [11] can also be hybridized along similar lines and a result
similar to Theorem 2.1 holds for it. In fact, in [14] it is proved that the variational equation
for the λh from the BDM method and the RT method has the same bilinear form a(·, ·).
Consequently, the multigrid algorithm for a(·, ·) that we give next, applies verbatim to the
hybridized BDM method.
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3. The multigrid algorithm

In this section, we will give our multigrid algorithm for solving the linear system arising
from the hybridized mixed method. As we have already seen, all solution components can be
recovered once we find λh in Mh satisfying

a(λh, µ) = b(µ), for all µ ∈Mh.

The stiffness matrix of this mesh dependent variational system has condition number that
grows like O(h−2) as proved in [19]. Therefore, we need iterative solution strategies that do
not deteriorate in performance when condition number increases. In this section, we give such
an iterative scheme using multigrid techniques. The algorithm fits into the abstract framework
of [7, 8] as one of their abstract variable V-cycle algorithms. Their algorithm, with the abstract
components particularized to our application is given below, following which we state our main
result on the convergence of the algorithm.

Multigrid algorithms require a multilevel hierarchy of meshes and spaces, which we now
describe. We assume that the mesh Th in which the solution is sought, is obtained by successive
refinements of a coarse mesh T1. At a refinement level k = 2, 3, . . . , J , the mesh Tk is obtained
from Tk−1 by connecting the midpoints of all edges of Tk−1. Let Ek denote the set of all
interior edges of Tk. By an abuse of notation, the domain formed by the union of all mesh
edges in Ek, is also denoted by the same Ek. Let hk denote the mesh size of Tk, so in particular,
h ≡ hJ . Let us now define the multilevel spaces. Define Mk by

Mk = {v : Ω 7→ R
∣∣ v is continuous, v|∂Ω = 0, v|K ∈ P1(K), ∀ triangles K ∈ Tk+1},

for k = 0, 1, . . . , J − 1 and define

MJ = {µ : EJ → R
∣∣ µ|e ∈ Pd(e), ∀e ∈ EJ}

where d is a nonnegative integer. Note that we have J + 1 spaces here and the final space is
where the Lagrange multiplier solution λh lies, i.e.,

MJ = Mh.

Note also that althoughM0 ⊆M1 ⊆ · · · ⊆MJ−1, the last space is not nested, i.e.,MJ−1 6⊆MJ .
Hence, we must develop multigrid algorithms in a non-nested space setting.

Each Mk is endowed with two bilinear forms, (·, ·)k, and ak(·, ·). While (·, ·)k is just the
standard L2(Ω)-inner product for k = 0, . . . , J − 1, at level J , it is a mesh dependent L2-like
inner product defined by

(η, µ)J =
∑

K∈TJ

|K|

|∂K|

∫

∂K

η µ, (9)

where | · | denotes the measure. The other bilinear form on Mk ×Mk is defined by

ak(u, v) =






∫

Ω

∇u · ∇v, k = 0, 1, · · · , J − 1,

∫

Ω

Qu · Qv, k = J,

where Q is the previously defined flux-lifting of the hybridized method (on the finest level mesh
TJ ≡ Th). Hence, defining multilevel operators Ak : Mk 7→ Mk by

(Akω, ϕ)k = ak(ω, ϕ), for all ϕ, ω ∈Mk,
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8 GOPALAKRISHNAN AND TAN

our main goal can be stated as to find an efficient scheme for solving a finest level equation
AJλJ = bJ . Note that the forms are non-inherited at the last level. This means in our analysis,
we will have to use a multigrid theory general enough to admit non-inherited forms and non-
nested spaces.

The main complication in a non-nested setting is the necessity of designing appropriate
intergrid transfer operators for moving data back and forth between the multilevel grids. We
define the prolongation operator Ik : Mk−1 →Mk, (k = 2, . . . , J) by

Ikv =






v, for k < J,

v|EJ
, for k = J and d > 0,

ΠMJ
(v|EJ

), for k = J and d = 0.

(10)

where ΠMJ
: L2(EJ) → MJ is the L2(EJ)-orthogonal projection onto MJ . It is important to

note that there are many naive choices of intergrid transfer operators that does not work in our
application. In Section 5, we shall show numerical experiments with certain “obvious” transfer
operators that lead to slow convergence of multigrid. The reverse movement of data, from fine
to coarse levels, is achieved through the restriction operator Qk−1 : Mk →Mk−1, defined by

(Qk−1ω, ϕ)k−1 = (ω, Ikϕ)k, for all ϕ, ω ∈Mk−1.

The only remaining significant ingredient of the multigrid algorithm is a set of smoothing
operators Rk : Mk 7→ Mk. The smoother Rk, is chosen to be one of the classical relaxation
iterations of Jacobi or Gauss-Seidel. To symmetrize the algorithm, we will also need the the
adjoint smoother Rt

k defined by

(Rku, v)k = (u,Rt
kv)k ∀u, v ∈Mk

and the ancillary notation

R
(l)
k =

{
Rk if l is odd,
Rt

k if l is even.

The algorithm given below performs mk pre- and post-smoothings at level k. Our convergence
result is under an assumption that the number of smoothings increase in a specific way (detailed
in Theorem 3.1) as we proceed to the coarser levels.

Algorithm 3.1 (Variable V-cycle) Given an initial approximation u(i) ∈ MJ to the
solution of AJu = f , we define the next approximation u(i+1) ∈MJ by the iteration

u(i+1) = MGJ(u(i), f)

where the map MGk(·, ·) : Mk ×Mk 7→Mk is defined recursively as follows.

1. First, at the coarsest level, set MG1(u, f) = A−1
1 f .

2. Next, for k ≥ 2, define MGk(u(i), f) by the following steps:

(a) Set v(0) = u(i).
(b) (Pre-smoothing) For l = 1, 2, . . . ,mk,

v(l) = v(l−1) +R
(l+mk)
k (f −Akv

(l−1)).
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(c) Set residual

rk = f −Akv
(mk).

(d) (Correction) Set

qk−1 = MGk−1(0, Qk−1rk)

and

w(mk) = v(mk) + Ikqk−1

(e) (Post-smoothing) For l = mk + 1, . . . , 2mk,

w(l) = w(l−1) +R
(l+mk)
k (f −Akw

(l−1))

(f) Finally, define the next iterate by setting

MGk(u(i), f) = w(2mk).

We can use this algorithm as both a linear iteration and as a preconditioner. When using
as a linear iteration, we start with an initial guess u(0) and compute successive iterative
approximations by u(i+1) = MGJ(u(i), f). The iterative error, namely u − u(i), is propagated
through an error reducing operator which we denote by EJ , i.e.,

u− u(i+1) = EJ (u− u(i)).

It is well known [8] that EJ is a linear operator admitting a recursive expression. Using the
abstract theory of [7, 8], we prove that this iterative error decreases geometrically at a mesh-
independent rate, as stated in the next theorem.

Theorem 3.1. Suppose the number of smoothings, mk increases as k decreases in such a way
that β0mk ≤ mk−1 ≤ β1mk for some fixed constants 1 < β0 ≤ β1. Assume that Ω is convex.
Then there exists a positive δ < 1, independent of the mesh size hJ , such that the error reducing
operator of Algorithm 3.1 satisfies

0 ≤ aJ(EJu, u) ≤ δ aJ (u, u), for all u ∈MJ .

This is the main result of this paper. Its proof is in the next section. The convexity
of the domain is assumed so that we can use well known regularity results. Numerical
experience indicates that the algorithm converges even when this assumption does not hold.
The assumption on the number of smoothings can be easily satisfied, for example, by setting
mk = 2J−k, maintaining optimal work count.

We can use Algorithm 3.1 in a preconditioned conjugate gradient iteration. Since the
algorithm defines a linear iteration, the operator BJ : MJ 7→MJ defined by

BJg = MGJ(0, g), for all g ∈MJ

is a linear operator. If this is used as a preconditioner for AJ in a conjugate gradient
iteration, then the rate of convergence is governed by the condition number κ(BJAJ ). Since
EJ = I − BJAJ , Theorem 3.1 shows that κ(BJAJ) is bounded above and below by mesh
independent constants. Hence BJ is an optimal preconditioner.

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; Volume N:1–24
Prepared using nlaauth.cls



10 GOPALAKRISHNAN AND TAN

4. Proof of the convergence result

This section is devoted to the proof of Theorem 3.1. We shall use the abstract multigrid theory
of [7, 8] which allows the use of non-inherited forms and non-nested spaces. According to this
theory, once we verify the following three conditions, the proof of Theorem 3.1 is complete.

Condition 4.1 (Prolongation norm) For all k = 1, . . . , J,

ak(Ikv, Ikv) ≤ ak−1(v, v), ∀v ∈Mk−1.

Condition 4.2 (Regularity & Approximation) There exist 0 < α ≤ 1 and C > 0 such
that

ak((I − IkPk−1)v, v) ≤ C

(
‖Akv‖

2
k

λk

)α

ak(v, v)1−α, ∀v ∈Mk, k = 1, . . . , J,

where Pk−1 : Mk →Mk−1 is defined by

ak−1(Pk−1ω, ϕ) = ak(ω, Ikϕ), for all ϕ ∈Mk−1

Condition 4.3 (Smoothing) There exists ω > 0 such that

ω
‖v‖k

λk
≤ (R̃kv, v), ∀v ∈Mk, k = 1, . . . , J,

where R̃k = Rk +Rt
k −RkAkR

t
k and λk is the eigenvalue of Ak with maximal norm.

The remainder of this section is divided into three subsections, each devoted to the
verification of one of the above conditions.

4.1. Verification of Condition 4.1

This condition limits growth in prolongation norms. In our application, for k = 1, . . . , J − 1,
the prolongation Ik is the identity and ak−1(·, ·) = ak(·, ·), so the condition obviously holds.
Hence, it only remains to consider the case k = J . This follows from the next lemma.

Lemma 4.1. For any vJ−1 ∈MJ−1,

Q(IJvJ−1) = −∇vJ−1. (11)

Proof. Let the divergence free subspace of the Raviart-Thomas space be denoted by

R0
d(K) = {q ∈ Rd(K) : div(q|K) = 0} (12)

for any K ∈ TJ . Then, by the definition of the flux-lifting Q(·),
∫

K

Q(IJvJ−1) · r = −

∫

∂K

(IJvJ−1)r · n, ∀r ∈ R0
d(K).

First consider the case d = 0. Then, by (10), the right hand side above can be rewritten as

−

∫

∂K

(IJvJ−1)r · n = −

∫

∂K

(ΠMJ
vJ−1)r · n

= −

∫

∂K

vJ−1r · n = −

∫

K

(∇vJ−1) · r,
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where the last two equalities follow because r · n is piecewise constant when d = 0, and by
integration by parts, respectively. Since both Q(λJ )|K and ∇vJ−1|K are in R0

d(K), the above
proves the lemma in the d = 0 case.

When d > 0, selecting the appropriate case in the definition of Ik in (10), we have

−

∫

∂K

(IJvJ−1)r · n = −

∫

∂K

vJ−1r · n = −

∫

K

(∇vJ−1) · r,

so the proof can be completed as before. 2

The verification of Condition 4.1 is now completed by observing that because of Lemma 4.1,

aJ(IJv, IJv) = (Q(IJv),Q(IJv)) = (∇vJ−1,∇vJ−1) = aJ−1(vJ−1, vJ−1).

Here (·, ·) denotes the L2(Ω) inner product and is not to be confused with (·, ·)J defined in (9).

4.2. Verification of Condition 4.2

Inequalities like that of Condition 4.2 typically follow as a consequence of some regularity
results for the underlying boundary value problem, combined with the approximation
properties of the finite element spaces. It is well-known that Condition 4.2 holds for k =
0, 1 . . . , J − 1 [4]. (This is part of the standard full regularity based proofs of multigrid
convergence for the continuous Galerkin method [2, 3, 8].) So we only need to verify
Condition 4.2 with k = J .

For this, we need a number of intermediate lemmas that establish properties of various local
operators. Let us begin with the local lifting operator U(·) defined earlier.

Lemma 4.2. For all w ∈ P1(K), we have

U(IJw) = ΠTh
w

where ΠTh
is the L2(Ω)-orthogonal projection onto Th.

Proof. Given w ∈ P1(K), by the definition of the lifting operators in (5), we have
∫

K

Q(IJw) · r −

∫

K

U(IJw) divr = −

∫

∂K

IJw (r · n)

for all r ∈ Rd(K). On the right hand side above, we can replace IJw by w if d > 0. We can
also do this if d = 0, because in this case r ·n takes a constant value on each edge. Therefore,
by an integration by parts formula, we obtain

∫

K

Q(IJw) · r −

∫

K

U(IJw)divr = −

∫

K

∇w · r −

∫

K

w divr

Since Q(IJw) = −∇w by Lemma 4.1, this implies
∫

K

(U(IJw) − w) divr = 0 ∀r ∈ Rd(K).

The lemma now follows, since div : Rd(K) → Pd(K) is a surjection. 2

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; Volume N:1–24
Prepared using nlaauth.cls



12 GOPALAKRISHNAN AND TAN

Next, we need to define a new local operator that maps a pair of interior and boundary
functions into one function. Let Ld(K) = {p ∈ Pd+3(K) : p|e ∈ Pd+

(e), ∀ edge e of K}, where

d+ =

{
d+ 1, if d is even,
d+ 2, if d is odd.

Suppose we are given p ∈ L2(K) and λ ∈ L2(∂K). Consider a function ψ(p, λ) ∈ Ld(K) that
satisfies ∫

K

ψ(p, λ) s =

∫

K

p s, ∀s ∈ Pd(K), and

∫

e

ψ(p, λ)µ =

∫

e

λµ, ∀µ ∈ Pd+−1(e),

(13)

for all the three edges e ofK. That such a ψ is unique is proved next. As usual, when performing
standard scaling arguments, we obtain constants that depend on the shape regularity of the
mesh, namely on a fixed constant Υ which is the maximum of diam(K)/ρK over all elementsK,
where ρK denotes the diameter of the largest ball inscribed in K.

Lemma 4.3. There is a unique ψ(p, λ) in Ld(K) satisfying (13). Furthermore, there are
constants C1 and C2 depending only on the shape regularity constant Υ such that

C1‖ψ(p, λ)‖L2(K) ≤ ‖p‖L2(K) + |∂K|1/2‖λ‖L2(∂K) ≤ C2‖ψ(p, λ)‖L2(K)

for all p in Pd(K) and all λ such that λ|e is in Pd(e) for all three edges e of K.

Proof. First, we check if (13) forms a square system for ψ(p, λ). Indeed, the number of
equations in the system (13) equals

dim(Pd(K)) + 3 dim(Pd+−1(e)) =
1

2
(d+ 1)(d+ 2) + 3d+. (14)

On the other hand, the number of degrees of freedom of Ld(K) can be counted by adding
together the dimension of P1(K) (equaling 3), the dimension of the space of all edge bubbles
of Ld(K) (equaling 3(d+ − 1)), and the dimension of interior bubbles of Ld(K) (equaling
(d+ 1)(d+ 2)/2). Thus,

dim(Ld(K)) = 3 + 3(d+ − 1) +
1

2
(d+ 1)(d+ 2),

which simplifies to the same number as in (14). Thus (13) is a square system.
To prove that there is a unique ψ(p, λ) satisfying (13), it now suffices to show that if p and

λ vanish, the only solution of (13) is trivial. To this end, consider a ψ in Ld(K) satisfying
∫

K

ψs = 0, ∀s ∈ Pd(K) (15)

∫

e

ψµ = 0, ∀e, ∀µ ∈ Pd+−1(e). (16)

The last equation (16) implies that on each edge e, ψ|e is a polynomial on Pd+
(e) that is

orthogonal to all Pd+−1(e). Hence ψ|e must be the Legendre polynomial of degree d+. No
matter what d is, d+ is always odd, hence ψ|e is an odd function on the edge e. Since this
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holds for all three edges, and since ψ must be continuous on ∂K, we conclude that ψ vanishes
on ∂K.

Since ψ ∈ Ld vanishes on all the three edges, it must have the form

ψ = λ1λ2λ3pd, for some pd ∈ Pd(K)

where λi are the barycentric coordinates of K. Hence (15) implies
∫

K

(λ1λ2λ3)pd s = 0, ∀s ∈ Pd(K).

Therefore, pd ≡ 0, and consequently, ψ ≡ 0. This proves the unique solvability of (13).
The norm estimate of the lemma follows because if p and λ are as in the statement of the

lemma, then ψ(p, λ) = 0 if and only if p = 0 and λ = 0. Thus, on a fixed reference element K̂,
the norms

(
‖p‖2

L2(K̂)
+ ‖λ‖2

L2(∂K̂)
)1/2 and ‖ψ(p, λ)‖L2(K̂) are equivalent. The stated norm

estimate then follows by a scaling argument mapping K̂ to K. 2

Using the above defined element space Ld(K) on each mesh element, we can define a new
lifting of λ from the element boundaries into the element interiors by

Sλ = ψ(Uλ, λ). (17)

The next lemma establishes a few properties of S that we need. In its statement, and in the
remainder, ‖λ‖a denotes the “energy”-like norm on the finest level, i.e.,

‖λ‖2
a = aJ (λ, λ) for all λ ∈MJ ,

and ‖λ‖J is the norm defined in (9).

Lemma 4.4. For any λ in MJ , the following statements hold:

C1‖λ‖
2
a ≥

∑

K∈TJ

∣∣Sλ
∣∣2
H1(K)

(18)

C2‖λ‖J ≤ ‖Sλ‖L2(Ω) ≤ C3‖λ‖J (19)

Uλ = ΠTh
(Sλ). (20)

Here Ci’s are mesh independent constants.

Proof. To prove (18), first observe that if λ takes a constant value κ on the boundary of
some mesh element ∂K, then Sλ takes the same constant value κ on K. (This follows from
Lemma 4.2.) Hence, for any λ, we have

∇(Sλ̄
∣∣
K

) = 0, where λ̄ =
1

|∂K|

(∫

∂K

λ

)
.

Therefore,

‖∇(Sλ)‖L2(K) = ‖∇Sλ−∇Sλ̄‖L2(K),

≤ Ch−1‖S(λ− λ̄)‖L2(K) by inverse inequality

≤ Ch−1(‖U(λ− λ̄)‖L2(K) + |∂K|1/2‖λ− λ̄‖L2(∂K)) by Lemma 4.3

≤ Ch−1(|∂K|1/2‖λ− λ̄‖L2(∂K)) by [15, Lemma 3.3]

≤ C|∂K|−1/2‖λ− λ̄‖L2(∂K).
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14 GOPALAKRISHNAN AND TAN

Summing over all elements and using a norm equivalence proved in [19, Theorem 2.2], we get

∑

K∈TJ

‖∇(Sλ)‖2
L2(K) ≤ C

∑

K∈TJ

|∂K|−1‖λ− λ̄‖2
L2(∂K) ≤ Cah(λ, λ)

which proves (18).

The proof of (19) is a straightforward consequence of Lemma 4.3.

The identity (20) is obvious from (13) and (17). 2

We need one more intermediate map before we can give our proof of Condition 4.2. To
describe this map, first we define a φλ in MJ for every λ in MJ by

(Sφλ, Sµ) = (Qλ,Qµ), ∀µ ∈MJ . (21)

This equation is uniquely solvable for φλ in MJ , because if the right-hand side is zero, then
Sφλ = 0, so φλ = 0 by the estimate (19) of Lemma 4.4. Next, let fλ = Uφλ. The map we use
in the later proof is a map from MJ into MJ , which for notational simplicity, we denote by

λ 7−→ λ̃

where λ̃ ∈MJ is the unique solution of the equation

a(λ̃, µ) = (fλ,Uµ), ∀µ ∈MJ . (22)

The following lemma reveals the relationship between λ, λ̃ and φλ.

Lemma 4.5. Let λ, λ̃ and φλ be defined as above. Then

‖Sφλ‖L2(Ω) ≤ C‖AJλ‖J (23)

‖λ− λ̃‖a ≤ ChJ‖AJλ‖J . (24)

Proof. To prove (23),

‖Sφλ‖L2(Ω) = sup
µ∈MJ

(Sφλ, Sµ)

‖Sµ‖L2(Ω)
= sup

µ∈MJ

aJ(λ, µ)

‖Sµ‖L2(Ω)
by (21)

= sup
µ∈MJ

(AJλ, µ)J

‖Sµ‖L2(Ω)
≤ C sup

µ∈MJ

(AJλ, µ)J

‖µ‖J
by Lemma 4.4, (19)

≤ C‖AJλ‖J .

To prove (24), note that

a(λ, µ) = (Sφλ, Sµ)

a(λ̃, µ) = (ΠTh
Sφλ, Sµ),

where the last identity follows because in (22), the right hand side function is fλ = Uφλ =
ΠTh

(Sφλ) by Lemma 4.4, (20). Subtracting, and setting µ = λ− λ̃, we get

‖λ− λ̃‖2
a = ((I − ΠTh

)Sφλ, S(λ− λ̃)) = ((I − ΠTh
)Sφλ, (I − ΠTh

)S(λ− λ̃)).
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Using the Friedrichs estimate ‖u− ΠTh
u‖L2(K) ≤ ChJ |u|H1(K), we get

‖λ− λ̃‖2
a ≤

( ∑

K∈TJ

Ch2
J |Sφλ|

2
H1(K)

)1/2( ∑

K∈TJ

Ch2
J |S(λ− λ̃)|2H1(K)

)1/2

≤

( ∑

K∈TJ

C‖Sφλ‖
2
L2(K)

)1/2( ∑

K∈TJ

Ch2
J |S(λ− λ̃)|2H1(K)

)1/2

≤ C‖AJλ‖J

( ∑

K∈TJ

Ch2
J |S(λ− λ̃)|2H1(K)

)1/2

by an inverse inequality and (23). Finally, applying the estimate (18) of Lemma 4.4 on the last
term above, and canceling the common factor, we obtain (24). 2

With these preparations, we can now finish the verification of Condition 4.2.
Proof of Condition 4.2 with α = 1. Let λ be in MJ . We need to estimate the quantity

aJ((I − IJPJ−1)λ, λ) =

∫

Ω

Q(λ− IJPJ−1λ) · Qλ

To estimate this, it will be useful to make the following preliminary observations: First, by
Lemma 4.1,

Q(λ− IJPJ−1λ) = Q(λ) + ∇(PJ−1λ). (25)

Second, the expression on the right hand side above satisfies

(Qλ+ ∇(PJ−1λ),∇vJ−1)Ω = 0, ∀vJ−1 ∈MJ−1, (26)

because

(∇(PJ−1λ),∇vJ−1) = aJ−1(PJ−1λ, vJ−1)

= aJ(λ, IJvJ−1)

= (Qλ,Q(IJvJ−1))

= −(Qλ,∇vJ−1).

Thus,
aJ((I − IJPJ−1)λ, λ) = ‖Qλ+ ∇(PJ−1λ)‖

2, (27)

and it suffices to estimate Qλ + ∇(PJ−1λ). Here, and in the remainder, we use ‖ · ‖ (without
any subscripts) as well as ‖ · ‖L2(Ω) to denote the L2(Ω)-norm.

To begin the estimation, we split Qλ + ∇(PJ−1λ) into many terms, labeling each term as
follows:

Qλ+ ∇(PJ−1λ) = Q(λ − λ̃) · · · · · · · · · (term A) (28)

+ Qλ̃− Q(ΠMJ
ũ) · · · · · · · · · (term B)

+ Q(ΠMJ
ũ) − (−∇ũ) · · · · · · · · · (term C)

+ ∇PJ−1λ̃−∇ũ · · · · · · · · · (term D)

+ ∇PJ−1(λ− λ̃), · · · · · · · · · (term E)
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16 GOPALAKRISHNAN AND TAN

where λ̃ is as defined in (22) and ũ is the unique function in H1
0 (Ω) that solves

(∇ũ,∇v) = (fλ, v), ∀v ∈ H1
0 (Ω).

Note that since we have assumed a convex domain,

‖ũ‖H2(Ω) ≤ C‖fλ‖L2(Ω). (29)

by a well known regularity theorem [20].
The first term can be estimated by

‖(term A)‖ = ‖Q(λ− λ̃)‖ = ‖λ− λ̃‖a ≤ ChJ‖AJλ‖J

by the inequality (24) of Lemma 4.5. For the next term, first observe that due to the
characterization of Lagrange multipliers given by Theorem 2.1, λ̃ is the hybridized mixed
method approximation to ũ. Hence by a previously established Lagrange multiplier error
estimate [15, Theorem 3.1],

‖Qλ̃− Q(ΠMJ
ũ)‖ ≤ ‖q − ΠR q‖ (30)

where q = −∇ũ and ΠR q is the Raviart-Thomas interpolant of q. By the standard error
estimates for this interpolant, we immediately find that

‖(term B)‖ = ‖Qλ̃− Q(ΠMJ
ũ)‖ ≤ ChJ |ũ|H2(Ω)

≤ ChJ‖fλ‖L2(Ω) by (29)

= ChJ‖ΠTh
(Sφλ)‖L2(Ω) ≤ ChJ‖Sφλ‖L2(Ω)

≤ ChJ‖AJλ‖J ,

using the estimate (23) of Lemma 4.5.
We proceed to analyze the next term. For this, recall the divergence free subspace R0

d(K)
defined in (12). By the definition of Q(·),

∫

K

Q(ΠMJ
ũ) · r = −

∫

∂K

(ΠMJ
ũ)r · n = −

∫

∂K

ũ r · n

= −

∫

K

∇ũ · r (31)

Now, suppose ũJ−1 ∈MJ−1 is the exact solution of

(∇ũJ−1,∇v) = (fλ, v), ∀v ∈MJ−1.

Then, on any mesh element K, its flux −∇ũJ−1|K is constant, and therefore in R0
d(K). Putting

r = Q(ΠMJ
ũ) + ∇ũJ−1|K in (31), we have

(
Q(ΠMJ

ũ) + ∇ũ, Q(ΠMJ
ũ) + ∇uJ−1

)
K

= 0,

or in other words,

‖Q(ΠMJ
ũ) + ∇ũ‖2

L2(K) =
(
Q(ΠMJ

ũ) + ∇ũ,∇ũ −∇ũJ−1

)
K
.

By Cauchy-Schwarz inequality,

‖(term C)‖ = ‖Q(ΠMJ
ũ) + ∇ũ‖L2(Ω)

≤ ‖∇(ũ− ũJ−1)‖L2(Ω) ≤ ChJ |ũ|H2(Ω) ≤ ChJ‖fλ‖L2(Ω) (32)

≤ ChJ‖AJλ‖J ,
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where we have used the standard error estimate for conforming linear finite elements (since
ũJ−1 is the conforming linear finite element approximation of ũ), the regularity estimate (29),
and (23) of Lemma 4.5.

For (term D), we will first show that PJ−1λ̃ coincides with the ũJ−1 defined above. Indeed,
for all wJ−1 ∈MJ−1, we have

(∇PJ−1λ̃,∇wJ−1) = −(Qλ̃,∇wJ−1) by (26)

= (Qλ̃,Q(IJwJ−1)) by Lemma 4.1

= (fλ,U(IJwJ−1)) by (22) and Theorem 2.1

= (fλ, wJ−1) by Lemma 4.2.

Thus PJ−1λ̃ and ũJ−1 satisfy the same equations in MJ−1 and must coincide. Therefore

‖(term D)‖ = ‖∇(PJ−1λ̃− ũ)‖ = ‖∇(ũ− ũJ−1)‖ ≤ ChJ‖AJλ‖J ,

by the same arguments as in (32).
For the final term, we first note that if we choose λ = µ and vJ−1 = PJ−1µ in (26), then we

have
‖∇PJ−1µ‖

2 = −(Qµ,∇PJ−1µ),

and hence, by Cauchy-Schwarz inequality,

‖∇PJ−1µ‖ ≤ ‖Qµ‖, ∀µ ∈MJ−1

Therefore
‖(term E)‖ = ‖∇PJ−1(λ− λ̃)‖ ≤ ‖Q(λ− λ̃)‖ ≤ ChJ‖AJλ‖J

by the estimate (24) of Lemma 4.5.
Returning to (27) and combining the estimates for each of the terms above, we obtain

aJ ((I − IJPJ−1)λ, λ) = ‖Q((I − IJPJ−1)λ)‖
2

≤ Ch2
J ‖AJλ‖

2
J

By [19, Theorem 2.3], we know that λJ ≤ Ch−2
J . Hence the above inequality proves

Condition 4.2 with α = 1. 2

4.3. Verification of Condition 4.3

We need to verify this smoothing condition for the Jacobi and the Gauss-Seidel smoothers.
Again, for all the levels k = 1, . . . , J −1, the result is standard [8]. For the highest level k = J ,
the arguments are also fairly standard. Nonetheless, we will sketch the proof for this case now.

Both the Jacobi and Gauss-Seidel iterations, which are well known classical iterations,
can be rewritten using the modern “subspace decomposition” framework. To display this
decomposition for the finest level space MJ , let φi

J , i = 1, 2, . . . , NJ denote a local basis
for MJ with the property that each φi

J is supported only on one mesh edge. Further, let
MJ,i = span{φi

J}. Then the subspace decomposition of MJ is

MJ =

NJ∑

i=1

MJ,i
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18 GOPALAKRISHNAN AND TAN

The Jacobi and Gauss-Seidel operators can be written in terms of local operators on these
subspaces. Define AJ,i : MJ,i →MJ,i by

(AJ,iu, v)J = aJ(u, v) for all u, v ∈MJ,i.

Let QJ,i : MJ →MJ,i and PJ,i : MJ →MJ,i be defined by

(QJ,iu, v)J = (u, v)J for all u ∈MJ , v ∈MJ,i,

(PJ,iu, v)J = aJ(u, v) for all u ∈MJ , v ∈MJ,i.

Then the operator RJ defining the Jacobi iteration on each MJ is defined as RJ = γJJ , where
γ is a scaling parameter and

JJ =

NJ∑

i=1

A−1
J,iQJ,i. (33)

The Gauss-Seidel operator on each MJ is defined as

GJ =
(
I − (I − PJ,NJ

)(I − PJ,NJ−1
) · · · (I − PJ,1)

)
A−1

J . (34)

On the remaining levels, smoothers γJk and Gk can be written out using the standard subspace
decompositions of the conforming finite element spaces.

We begin with a simple lemma on the stability of the decomposition in the mesh dependent
L2-like norms on EJ .

Lemma 4.6. For any set of scalar values ci,

NJ∑

i=1

c2i ‖φ
i
J‖

2
J ≤ C

∥∥∥∥∥

NJ∑

i=1

ciφ
i
J

∥∥∥∥∥

2

J

.

Proof. If v =
∑NJ

i=1 ciφ
i
J ∈ MJ , the quantity ‖v‖2

J , appearing on the right hand side of the
estimate of the lemma, can be evaluated by summing over contributions from each mesh edge.
There are d+ 1 basis functions supported on an edge e, which we denote by φi1

J , φ
i2
J , . . . φ

id+1

J .
By a scaling argument, it is clear that there is a constant κd depending only on d, but not on
the edge length, such that

d+1∑

ℓ=1

c2iℓ
‖φiℓ

J ‖2
L2(e) ≤ κd

∥∥∥∥∥

d+1∑

ℓ=1

ciℓ
φiℓ

J

∥∥∥∥∥

2

L2(e)

.

Summing over all edges, we get the result. 2

Lemma 4.7. For all v in MJ ,

(J−1
J v, v) ≤ CλJ‖v‖

2
J .

Proof. Since Jk is an additive operator of the form in (33), by a well known lemma on additive
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operators [8], splitting v =
∑Nk

i=1 ciφ
i
J ,

(J−1
J v, v) =

NJ∑

i=1

aJ(ciφ
i
J , ciφ

i
J) =

NJ∑

i=1

c2i (AJφ
i
J , φ

i
J )J

≤

NJ∑

i=1

c2iλJ (φi
J , φ

i
J )J = λJ

(
NJ∑

i=1

c2i ‖φ
i
J‖

2
J

)

≤ CλJ‖

NJ∑

i=1

ciφ
i
J‖

2
J = CλJ‖v‖

2
J ,

where we have used Lemma 4.6. 2

From the above lemma, the smoothing conditions can be verified by standard arguments.
Indeed, the only other ingredient needed is an inequality of the form

NJ∑

j=1

NJ∑

l=1

|aJ(vj , wl)| ≤ β




NJ∑

j=1

aJ (vj , vj)




1/2(
NJ∑

l=1

aJ(wl, wl)

)1/2

for all vj ∈MJ,j, wl ∈MJ,l, with some mesh independent constant β. This is often known as a
consequence of “limited interaction” of basis functions and is easily verified in our application.
Using this result, standard arguments prove [5, 6, 8] the following lemma:

Lemma 4.8. Choose the scaling parameter such that 0 < γ < 2
β . Then

1. if RJ = γJJ , then
(R̃−1

J v, v)J ≤ γ−1(J−1
J v, v)J , ∀v ∈MJ .

2. if RJ = GJ , then
(R̃−1

J v, v) ≤ β(J−1
J v, v), ∀v ∈MJ .

To complete the verification of Condition 4.3 note that

ω
‖v‖k

λk
≤ (R̃kv, v) ∀v ∈Mk,

holds if and only if

(R̃−1
k v, v) ≤

λk

ω
‖v‖2

k, ∀v ∈Mk.

For k = J , the latter inequality follows by combining the estimates of Lemma 4.8 with
Lemma 4.7. For the remaining k, the estimate is standard for point Jacobi and Gauss-Seidel
operators. Thus Condition 4.3 is verified for all k.

5. Numerical experiments

In this section we report our numerical experiments. We show numerical examples to illustrate
the efficacy of our multigrid algorithm. We also show numerical experiments showing the failure
of certain naive intergrid transfer operators.
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Figure 2. Refining mesh: initial mesh on the left, and refined mesh on the right. Corner coordinators
in the initial mesh are (0, 0), (1, 0), (0.8, 0.7) and (0, 0.5).

For the first experiment that we shall now describe, we started with a coarse mesh T1

generated by the public domain meshing software Triangle [24], and then produced a
sequence of refinements T2,T3, . . . ,TJ by connecting the midpoints of edges, as explained
before. The domain and the first two meshes are shown in Figure 2. Suppose we need to
solve the Dirichlet problem (1) on the finest mesh level TJ for various choices of J . The exact
solution is u(x, y) = sin(x) ey/2. This problem requires a nonzero Dirichlet boundary condition
u = g on ∂Ω, which entails the addition of the term −

∫
∂Ω
g v ·n on the right hand side of (4a).

But the multigrid algorithm is unaffected.
We use two different algorithms to solve the system Ax = b, namely the Conjugate Gradient

(CG) iteration, and the variable V-cycle (MG) of Algorithm 3.1 with mk = 2J−k. All
experiments are done with the lowest order method, i.e., d = 0. We start with the zero function
as the initial iterate and stop the iterations when the initial error is reduced by a factor of
10−8. We list the results in Table I. All experiments are run on Intel Core Duo processor
(CPU @1.73GHz, 512 Mb RAM). After solving the system for λ, we recover both u and q as
described in Section 2. Three different kinds of discretization errors are reported in Table II.
They show the convergence of finite element error in accordance with the known theoretical
results [1, 15].

As can be seen from the last column of the table, when the size of the matrix increases by a
factor of about 4 (which happens when h is halved), the number of multigrid iterations as well
as the cpu time in seconds also increases by a factor of 4. This indicates that our multigrid
algorithm indeed gives an iterative process with the asymptotically optimal O(N) cost, where
N is the number of unknowns. At the same time, the cost increases by a factor of around 8 for
CG , each time the mesh size is halved. This clearly demonstrates the benefits of the multigrid
algorithm. Also notice that the number of MG iterations seems bounded even as the matrix
size gets very large. This is in accordance with the conclusion of Theorem 3.1. In other words,
the error reduction factor seems to be independent of mesh size, which is in accordance with
the conclusion of Theorem 3.1.

Next, we present an example designed to check if the sufficient condition that Ω is convex
(in Theorem 3.1) is necessary. We repeated the experiments with the domain as shown in
Figure 3. Table III gives the experimental data. The numbers of multigrid iteration still seems
to remain bounded. We conclude that our multigrid algorithm can be effective even when Ω
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Size CG MG
Iterations cpu secs Iterations cpu secs

74 48 0.00 20 0.01
316 101 0.02 26 0.02

1304 207 0.19 31 0.10
5296 418 1.64 33 0.39

21344 833 17.66 34 2.18
85696 1658 148.03 34 9.6

343424 3283 1209.65 34 40.68
1374976 6503 10190.00 34 163.08
5502464 * * 34 668.63

22014976 * * 34 2607.65

Table I. Performance comparison between unpreconditioned conjugate gradient method and the
multigrid method. (Entries marked * indicates unavailable data due to excessive computational time.)

h ‖Pu− λh‖A ‖u− uh‖L2 ‖q − qh‖L2

1 0.04194242 0.05766834 0.06060012
1/2 0.02699368 0.02876214 0.03081513
1/4 0.01099286 0.01437199 0.01552051
1/8 0.00552480 0.00718485 0.00778076

1/16 0.00276706 0.00359228 0.00389374
1/32 0.00138425 0.00179612 0.00194739
1/64 0.00069224 0.00089806 0.00097377

1/128 0.00034613 0.00044903 0.00048690
1/256 0.00017307 0.00022451 0.00024345

Table II. Discretization errors for the hybridized mixed Raviart-Thomas method.

Size 116 496 2048 8320 33536 134656 539648 2160640 8646656
Iterations 23 27 30 32 32 33 33 33 33
cpu secs 0.01 0.03 0.18 0.68 3.25 15.03 60.31 308.37 1325.99

Table III. Application of the multigrid algorithm to a problem on the non-convex domain of Figure 3.

is not convex.

Next, we investigate flexibility in regard to the number of smoothings mk. Theorem 3.1
assumes that the number of smoothings increases geometrically as we decrease the refinement
level k. We now repeat the first experiment, but instead of setting mk = 2J−k, we now fix mk

to be one for all k. Table IV indicates that the V-cycle algorithm continues to exhibit mesh
independent convergence.

Finally, we give numerical results when we replace our intergrid transfer operator with
two seemingly plausible intergrid transfer operators in the variable V-cycle. These operators
fail, as we shall see, but they provide insight into what one should avoid when constructing
a good prolongation. Consider Algorithm 3.1 with the nonnested multilevel spaces Mk =
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Figure 3. The non-convex domain used in experiments.

Size 74 316 1304 5296 21344 85696 343424 1374976 5502464
Iterations 21 26 31 34 34 34 35 35 35
cpu secs 0.01 0.02 0.12 0.37 1.82 8.58 34.36 134.61 533.06

Table IV. V-cycle with constant number of smoothings.

{µ ∈ L2(E i
k) : µ|e ∈ P0(e), for all e ∈ E i

k} and non-inherited forms at every level given by
ak(u, v) =

∫
Ω Qu · Qv, where now the liftings Q(·) are defined with respect to Tk. The forms

ak(·, ·) and a base inner product as in (9) generalized to all levels k, define the multilevel
operators Ak and Qk in the algorithm. In other words the lowest order hybridized mixed
method is used to define the spaces and forms at every refinement level in the algorithm. Then
we consider two different intergrid transfer operators Ik : Mk−1 →Mk, given as follows.

Consider a triangle of mesh Tk−1, for instance, the triangle T = ∆ABC shown in Figure 4.
Let e = AB be an interior edge of T , and χAB ∈ Mk−1 be the indicator function on e. After
refinement, T is divided into 4 smaller triangles which belong to mesh Tk. Define the first

prolongation I
(1)
k χAB ∈Mk on all the finer edges as follows:

I
(1)
k χAB =






U(χAB) on the 3 new edges (DE,DF,EF )
1 on the 2 new edges (AD,BD)
0 on the other 4 new edges (AF ,CF ,BE,CE)

where U(·) is the lifting operator defined in (5), but now with respect to the mesh Tk−1. The

second prolongation candidate we shall consider is I
(2)
k : Mk−1 7→Mk is defined by

I
(2)
k χAB =





1/2 on the 2 new edges (DE,DF )
1 on the 2 new edges (AD,BD)
0 on the other 5 new edges (AF,CF ,BE,CE,EF )
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F

A

E

D

C

B

Figure 4. A refined triangle with the notations used to describe the failed intergrid transfer operators.

Size MG iteration counts

with I
(1)
k with I

(2)
k

74 34 34
316 71 81

1304 * *
5296 * *

21344 * *

Table V. Failure of certain intergrid operators. (An entry * indicates that the iteration diverged.)

Each of these operators gives a different multigrid algorithm. We report on the performance
of the V-cycle algorithm with these two prolongation candidates and a fixed number of
smoothingsmk = 1 in Table V. Clearly, the results are dismal. We believe that the failure is due

to the fact that prolongation operators like I
(1)
k and I

(2)
k increase energy upon continual transfer

of a coarse grid function to increasingly finer levels. In contrast, the successful prolongation
Ik that we analyzed, does not increase energy, as can be seen from Condition 4.1, which we
verified for our Ik.
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