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SPECTRAL DISCRETIZATION ERRORS IN FILTERED

SUBSPACE ITERATION

JAY GOPALAKRISHNAN, LUKA GRUBIŠIĆ, AND JEFFREY OVALL

Abstract. We consider filtered subspace iteration for approximating a clus-

ter of eigenvalues (and its associated eigenspace) of a (possibly unbounded)
selfadjoint operator in a Hilbert space. The algorithm is motivated by a quad-

rature approximation of an operator-valued contour integral of the resolvent.

Resolvents on infinite dimensional spaces are discretized in computable finite-
dimensional spaces before the algorithm is applied. This study focuses on how

such discretizations result in errors in the eigenspace approximations computed

by the algorithm. The computed eigenspace is then used to obtain approxima-
tions of the eigenvalue cluster. Bounds for the Hausdorff distance between the

computed and exact eigenvalue clusters are obtained in terms of the discretiza-

tion parameters within an abstract framework. A realization of the proposed
approach for a model second-order elliptic operator using a standard finite ele-

ment discretization of the resolvent is described. Some numerical experiments
are conducted to gauge the sharpness of the theoretical estimates.

1. Introduction

The goal of this study is to provide an analysis of discretization errors that
arise when a popular filtered subspace iteration algorithm is employed to com-
pute eigenvalues of selfadjoint partial differential operators. Instead of a spe-
cific differential operator, we consider a general linear, closed, selfadjoint operator
A : dompAq Ď H Ñ H (not necessarily bounded) in a complex Hilbert space H,
whose (real) spectrum is denoted by ΣpAq. We are interested in computationally
approximating a subset Λ of the spectrum that consists of a finite collection of
eigenvalues of finite multiplicity.

Filtered subspace iteration is a method for approximating Λ and its correspond-
ing eigenspace (invariant subspace) and is a natural generalization of the power
method [22,27]. It can roughly be described as follows. First, the eigenspace of the
cluster Λ is transformed to the dominant eigenspace of another, bounded operator
called the “filter.” Next, a subspace iteration is applied using the bounded filter.
Starting with an initial subspace (usually chosen randomly), the bounded operator
is repeatedly applied to it, generating a sequence of subspaces that approximates
the eigenspace of Λ. Approximations of Λ are obtained from the approximate
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eigenspaces by a Rayleigh-Ritz procedure. To apply this filtered subspace iteration
in practice requires computable finite-rank approximations of the resolvent at a few
points, obtained by some discretization process. It is the errors incurred by such
discretizations that form the subject of this paper.

The exact eigenspace, namely the span of all the eigenvectors associated with
elements of Λ, is denoted by E. Then m “ dimE, being the sum of multiplicities
of each element of Λ, is finite, and we assume m ě 1. Throughout this paper, the
multiplicity ` of an eigenvalue λ of an operator refers to its algebraic multiplicity,
i.e., λ is a pole of order ` of the resolvent of that operator. Recall that, for a
selfadjoint operator A, the algebraic multiplicity of λ coincides with its geometric
multiplicity, dim kerpλ´Aq.

As mentioned above, the idea behind filtered subspace iteration is to transform
E into the dominant eigenspace of certain filter operators. We shall see in the next
section that the construction of these filters can be motivated by approximations
of a Dunford-Taylor contour integral. There has been a resurgence of interest in
contour integral methods for eigenvalues due to their excellent parallelizability [2,
4, 13, 14, 23]. Following [2], we identify two different classes of methods in the
existing literature that use contour integrals for computation of a targeted cluster
of matrix eigenvalues. One class of methods, that often goes by the name SSM or
SS methods [23] (see also [4,15]), approximates Λ by the eigenvalues of a system of
moment matrices based on contour integrals. The moment matrices are obtained
by approximating the integrals by a quadrature, and the spectral approximation
error depends on the accuracy of the quadrature.

The other class of methods are referred to by the name FEAST [20] (see also [13,
27]). They are more related to our present contribution (the difference being that
while FEAST is a matrix algorithm, we focus on filtered subspace iterations applied
to infinite-dimensional selfadjoint operators and their discretizations). Like SS
methods, FEAST also uses quadratures to approximate a contour integral. In
our view, the use of quadratures in FEAST is essentially different from their use in
approaches like the SS method. Quadratures in FEAST are only used to develop
the filter used in a subspace iteration. A consequence of this is that the quadrature
error is not as relevant in FEAST as in the SS method. The analysis in this paper
will show this in precise terms. In particular, our findings show that the rate of
convergence of the discretization error is unaffected by the quadrature error.

When A is a differential operator on an infinite-dimensional space, some approx-
imations to bring the computations into finite-dimensional spaces are necessary.
The central concern in this paper is the study of how these approximations affect
the final spectral approximations that the filtered subspace iteration yields asymp-
totically. The main technical difficulty in analyzing discretization errors for the
unbounded operator eigenproblem is that many of the existing standard tools [3]
to bound spectral discretization errors are not directly applicable to our situa-
tion. We present an abstract framework that allows one to study approximation
of spectral clusters of unbounded selfadjoint operators with compact resolvent, ob-
tained through filtered subspace iterations. Very general discretizations are allowed
through a set of abstract assumptions.

To quickly outline the approximation approach studied in this paper, recall that
the spectral projector onto E, which we denote by S, is characterized by a Dunford-
Taylor contour integral of the resolvent Rpzq. Its N -term quadrature approximation
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is denoted by SN . In the expression defining SN , when Rpzq is replaced by a com-
putable finite-rank approximation Rhpzq, we obtain ShN , a practically computable
filter. Here h is some discretization parameter (such as the grid spacing) inversely
related to a computational finite-dimensional space. By repeated application of
ShN , the iteration produces a sequence of subspaces tE

p`q
h : ` “ 1, 2, . . .u, which

we study. While sufficient conditions for convergence of the FEAST iteration for
matrices can be found in [13,27], it is not immediately clear that the iteration con-
tinues to converge when the operator is perturbed, such as the perturbation of SN
to ShN . We begin our analysis by showing that the iterates E

p`q
h do converge under

certain sufficient conditions, after which we focus on analyzing the limit.
To summarize the novelty of this work, this is the first work to study the effect

of the discretization parameter h (in addition to N). The errors in eigenspace
approximations often need to be measured in stronger norms than the base H-
norm. The example of elliptic differential operators on H “ L2pΩq illustrates the
need to measure eigenfunction errors in a stronger norm like the H1pΩq-norm. To
our knowledge, this is the first work to give bounds for eigenspace discretization
errors arising in filtered subspace algorithms in H-norm as well as a stronger V-
norm (see Theorem 4.1). We provide the first result showing that the Hausdorff
distance between the eigenvalue cluster computed by filtered subspace iteration and
Λ converges to zero at predictable rates as the discretization parameter hÑ 0 (see
Theorem 5.7 and Corollary 5.8). In the process of doing so, we develop a general
result (Lemma 5.1) bounding the perturbation of Ritz values of an unbounded
selfadjoint operator. To highlight one more conclusion from our analysis, increasing
N has little effect on the spectral discretization error as measured by the gap

between E and Eh (although it may affect the speed of convergence of E
p`q
h as

implied by the results of [13,27]).
The rest of the paper is organized as follows. In Section 2, we describe precisely

the above-mentioned process of double approximation (going from S to ShN ) and
introduce the necessary assumptions for the error analysis. Section 3 introduces
the space to which filtered subspace iteration using ShN converges. Bounds for the
gap between computed and exact eigenspaces are proved in Section 4. Eigenvalue
errors are then bounded using the square of this gap. Analysis of a standard finite
element discretization of the resolvent of a model operator in Section 6 provides
an example of how abstract conditions on the resolvent might be verified in prac-
tice. The practical performance of the algorithm with the Lagrange finite element
discretization is reported in Section 7.

2. Preliminaries

Let A, Λ and E be as discussed previously. As already mentioned, filters are
linear operators on H having E as their dominant eigenspace, in the sense made
precise below.

Suppose that Γ Ă CzΣpAq is a positively oriented, simple, closed contour that
encloses Λ and excludes ΣpAqzΛ, and let G Ă C be the open set whose boundary
is Γ. By the Cauchy Integral Formula,

rpξq “
1

2πi

¿

Γ

pz ´ ξq´1 dz “

#

1, ξ P G,

0, ξ P CzpGY Γq.
(2.1)
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Thus rpξq equals a.e. the indicator function of G in C. The associated (orthogonal)
spectral projection S : HÑ H is the bounded linear operator given by the Dunford-
Taylor integral

S “
1

2πi

¿

Γ

Rpzq dz,(2.2)

where Rpzq “ pz ´ Aq´1 is the resolvent, a bounded linear operator on H for each
z P Γ. Since Γ encloses Λ and no other element of ΣpAq, its well known that

E “ ranpSq.(2.3)

Furthermore, by functional calculus (see [21, Theorem VIII.5], [25, Theorem 5.9]
or [5, Section 6.4]), if pλ, φq P ΣpAqˆdompAq satisfies Aφ “ λφ, then Sφ “ rpAqφ “
rpλqφ. Since rpλq equals 1 for all λ P Λ and equals 0 for all other elements of ΣpAq,
the desired eigenspace E of A is now the dominant eigenspace of S “ rpAq. In this
sense, S is an ideal filter.

Motivated by quadrature approximations of (2.1), in the same spirit as [4,12,20,
23,27], we approximate rpξq by

rN pξq “ wN `
N´1
ÿ

k“0

wkpzk ´ ξq
´1 ,(2.4)

for some wk, zk P C. The corresponding rational filter is the operator

SN “ rN pAq “ wN `
N´1
ÿ

k“0

wkRpzkq,(2.5)

which can be viewed as an approximation of S. It is common to refer to SN , as
well as the rational function rN pξq, as the filter. As in the case of S, if pλ, φq P
ΣpAq ˆ dompAq satisfies Aφ “ λφ, then SNφ “ rN pλqφ. In particular, the set Λ of
eigenvalues of interest have been mapped to trN pλq : λ P Λu by the filter.

These mapped eigenvalues are dominant eigenvalues of SN if

min
λPΛ

|rN pλq| ą sup
µPΣpAqzΛ

|rN pµq|(2.6)

holds. This dominance can be obtained provided Λ is strictly separated from the
remainder of the spectrum. To quantify the separation, we consider the following
strictly separated subsets of R centered around y P R

Iyγ “ tx P R : |x´ y| ď γu, Oyδ,γ “ tx P R : |x´ y| ě p1` δqγu.

for some positive numbers γ and δ. If the spectral cluster of interest is within Iyγ ,
then the number δ provides a measure of the relative gap between it and the rest of
the spectrum—relative to the radius γ of the interval wherein we seek eigenvalues.
Using the numbers y, γ, and δ, define

W “

N
ÿ

k“0

|wk|, κ̂ “

sup
xPOyδ,γ

|rN pxq|

inf
xPIyγ

|rN pxq|
.(2.7)

These definitions help us to formulate the following assumption on the filter and
cluster separation.
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Figure 1. The Butterworth filter with N “ 8 points: the points
zk are plotted in the complex plane (top) and the functions r and
rN are compared on the real line (bottom).

Assumption 2.1. There exist y P R, δ ą 0 and γ ą 0 such that

Λ Ă Iyγ , ΣpAqzΛ Ă Oyδ,γ .(2.8)

Moreover, there is a rational function rN of the form (2.4) with the property that

zk R ΣpAq, W ă 8, and κ̂ ă 1.

Note that if κ̂ ă 1, then (2.6) holds. When an N -point trapezoidal rule is used
for quadrature approximation we obtain an rN as in (2.4) with wN “ 0. When the
Zolotarev rational approximation of rpξq is used to construct rN , the term wN is
nonzero [13].

Example 2.2 (Butterworth filter). Consider the filter obtained by setting wN “ 0,
and for k “ 0, . . . , N ´ 1,

zk “ γeipθk`φq ` y, wk “ γeipθk`φq{N.(2.9)

with θk “ 2πk{N and φ “ ˘π{N. These weights and points are obtained using
the N -point uniform trapezoid rule approximation of the contour integral in (2.1)
when Γ is set to the circle Γ “ tγeipθ`φq ` y : θ P r0, 2πqu enclosing a spectral
cluster Λ that satisfies (2.8) – see Figure 1. It is obvious from the expression for

wk that W “
řN´1
k“0 γ{N “ γ, so the requirement of Assumption 2.1 that W ă 8

is satisfied.
An additional important requirement of Assumption 2.1 is that the filter should

satisfy κ̂ ă 1. Let us now show this holds for the Butterworth filter when N is
even. We claim that

rN pξq “
N´1
ÿ

k“0

wkpzk ´ ξq
´1 “

eiNφ

eiNφ ´ ppξ ´ yq{γqN
.(2.10)

For the special case γ “ 1, y “ 0, φ “ 0, this claim follows from a partial frac-

tion decomposition of pξN ´ 1q´1, recognizing that ξN ´ 1 “
śN´1
k“0 pξ ´ zkq. Its
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extension to the general case readily follows from the obvious change of variable.
Restricting (2.10) to the real line, it follows by inspection that

min
xPIyγ

|rN pxq| “
1

2
max
xPOyδ,γ

|rN pxq| “
1

p1` δqN ` 1

for any y P R. Thus κ̂ “ 2rp1` δqN ` 1s´1 ă 1. l

Next, we introduce a subspace V Ď H, motivated by the need to prove results
that bound discretization errors in norms stronger than the H-norm. Differential
operators provide common examples for which it may be considered more natural to
measure errors in norms more closely associated to the operator, such as the norm
for V “ H1pΩq, as opposed that for H “ L2pΩq, when A “ ´∆. We make the
following assumption and give example classes of operators where the assumption
holds.

Assumption 2.3. There is a Hilbert space V Ď H such that E Ď V, there is a
CV ą 0 such that for all u P V, }u}H ď CV}u}V , and V is an invariant subspace of
Rpzq for all z in the resolvent set of A.

Example 2.4 (V is the whole space). Set V “ H, with p¨, ¨qV “ p¨, ¨qH. In this case
it is obvious that all statements of Assumption 2.3 hold. l

Example 2.5 (V is the domain of a positive form). Suppose apu, vq is a densely
defined closed sesquilinear Hermitian form on H and there is a δ ą 0 such that

(2.11) apv, vq ě δ}v}2H, v P dompaq.

Set

V “ dompaq, }v}V “ apv, vq1{2.

To show that Assumption 2.3 holds in this case, first set the operator A to be the
closed selfadjoint operator associated with the form, namely it satisfies apu, vq “
pAu, vq for all u P dompAq Ď dompaq and all v P dompaq (see the first representation
theorem [17, Theorem VI.2.1] or [25, Theorem 10.7]). Note that, in this case, A
is a positive operator. Hence A has a unique selfadjoint positive square root [17,
Theorem V.3.35], denoted by A1{2, that commutes with any bounded operator that
commutes with A. By the second representation theorem [17, Theorem VI.2.23],
the form domain is characterized by dompaq “ dompA1{2q, and }v}V “ }A

1{2v}H
for v P V. The strict positivity of ap¨, ¨q ensures that both A and A1{2 are invertible
on their respective domains.

Since a is closed, V is complete. Due to (2.11), V is continuously embedded
in H, with the constant CV “ δ´1{2. The exact eigenspace E is contained in
dompAq Ď dompA1{2q “ V. Since A1{2 and A´1{2 commutes with Rpzq, for any
v, w P V, we have for any v P V “ dompA1{2q and z in the resolvent set of A,

Rpzqv “ pz ´Aq´1v “ A´1{2pz ´Aq´1A1{2v .

Since ranpA´1{2q “ dompA1{2q “ V, we see that RpzqV Ď V. Thus Assumption 2.3
is verified. l

Example 2.6 (V is a graph space). Given A, let V “ dompAq Ď H and endow the
set V with the topology of the graph norm

}v}V “
`

}v}2H ` }Av}
2
H
˘1{2

, v P V.
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We claim that Assumption 2.3 holds in this case. Indeed, since A is closed, the
graph norm makes V into a Hilbert space. Obviously E Ă V, and V is continuously
embedded into H with CV “ 1. Since A commutes with Rpzq for any z in the
resolvent set of A, we have RpzqdompAq Ď dompAq. l

The next essential ingredient in our study is the approximation of Rpzq. When
A is a differential operator on an infinite-dimensional space, to obtain numerical
spectral approximations, we perform a discretization to approximate the resolvent
of A in a computable finite-dimensional space. Accordingly, let Vh be a finite-
dimensional subspace of V, where h is a parameter inversely related to the finite
dimension, e.g., a mesh size parameter h that goes to 0 as the dimension increases.
Let Rhpzq : HÑ Vh be a finite-rank approximation to the resolvent Rpzq satisfying
the following assumption.

Assumption 2.7. The operators Rhpzkq and Rpzkq are bounded in V and satisfy

(2.12) lim
hÑ0

}Rhpzkq ´Rpzkq}V “ 0

for all k “ 0, 1, . . . , N ´ 1.

Note that this assumption implies that Rpzkq, being the limit of finite-rank
operators, is compact in V. Its also compact as an operator on H due to Assump-
tion 2.3. Consequently Rpzq is compact for all z in the resolvent set. Relaxing
Assumption 2.7 to go beyond operators with compact resolvent is outside the scope
of the current work.

Consider the approximation of SN given by

ShN “ wN `
N´1
ÿ

k“0

wkRhpzkq.(2.13)

In view of Assumption 2.7, we shall from now on view both SN and ShN as bounded
operators on V. Note that ShN need not be selfadjoint. In Section 6, we shall
consider an example of ShN , obtained by a standard finite element discretization of
Rpzq based on symmetrically located zk, that is selfadjoint. But in general ShN may
fail to be selfadjoint due to the configuration of tzku or due to the properties of the
discretization (see e.g., [7]).

With the resolvent discretization, filtered subspace iteration can be described

mathematically in very simple terms. Namely, starting with a subspace E
p0q
h Ď Vh,

compute

(2.14) E
p`q
h “ ShNE

p`´1q
h , for ` “ 1, 2, . . . .

Of course, in practice, one must include (implicit or explicit) normalization steps
and maintain a basis for the spaces E

p`q
h , but these details are immaterial in our

ensuing analysis. The convergence of the FEAST algorithm in Euclidean (`2 and
matrix-based) norms was previously studied in [13,22]. In Section 3, we shall utilize
some of their ideas to show that (2.14) converges in V, despite the perturbations
caused by the above-mentioned resolvent approximations. Here however, we are
solely interested in studying the discretization errors found in the final asymptotic
product of the algorithm, i.e., the discretization errors in what the algorithm outputs
as the “limit space” when (2.14) converges.
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3. The limit space

The purpose of this section is to identify to what space convergence of (2.14)
might happen. We also briefly examine in what sense E

p`q
h converges to it.

In view of Assumption 2.3, V is an invariant subspace of the resolvent. Hence in
the remainder of the paper, we will proceed viewing SN and ShN as operators on V.
To measure the distance between two linear subspaces M and L of V, we use the
standard notion of gap [17] defined by

(3.1) gapVpM,Lq “ max

«

sup
mPUV

M

distVpm,Lq, sup
lPUV

L

distVpl,Mq

ff

.

Here and throughout, for any linear subspace M Ď V, we use UV
M to denote its unit

sphere tw PM : }w}V “ 1u.
Recall that E “ ranS, the exact eigenspace corresponding to eigenvalues λ1, . . . , λm

of A that we wish to approximate. If Assumption 2.1 holds, then the operator
SN “ rN pAq has dominant eigenvalues

µi “ rN pλiq, i “ 1, 2, . . . ,m,

strictly separated (in absolute value) from the remainder of ΣpSN q. In particu-
lar, since κ̂ ă 1, we have µi ‰ 0 for i ď m, and letting µ˚ “ supt|µ| : µ P
ΣpSN qztµ1, . . . µmuu,

(3.2) µ˚ ă |µi|, i “ 1, 2, . . . ,m.

In view of these facts, we can find a simple rectifiable curve Θ in the complex
plane that encloses tµ1, . . . , µmu and lies strictly outside the circle of radius µ˚. In
particular, Θ encloses no other element of ΣpSN q. Define the spectral projector of
SN by

PN “
1

2πi

¿

Θ

pz ´ SN q
´1 dz.

Then EN “ ranPN is the eigenspace of SN corresponding to its eigenvalues µ1, . . . , µm.

Lemma 3.1. We have EN “ E and PN “ S.

Proof. Since dimEN “ dimE “ m, it suffices to prove that E Ď EN . If ei P E is an
eigenfunction of A corresponding to the eigenvalue λi P Λ, then SNei “ rN pλiqei,
so ei P EN . Since PN and S are both orthogonal projectors and have the same
range, they are the same operator. �

Next, observe that when Assumption 2.7 is used after subtracting the expression
for ShN in (2.13) from that of SN , we obtain

(3.3) }SN ´ S
h
N }V ďW max

k“0,...,N´1
}Rhpzkq ´Rpzkq}V Ñ 0

as hÑ 0. Let us recall the standard ramifications of the convergence of operators
in norm given by (3.3) (see e.g., [17, Theorem IV.3.16] or [1]). Given an open disc
enclosing an isolated eigenvalue of SN of multiplicity n, (3.3) implies that for suf-
ficiently small h, there are exactly n eigenvalues (counting algebraic multiplicities)
of ShN in the same disc. In particular, this implies that, for sufficiently small h, the
contour Θ is in the resolvent set of ShN and encloses only semisimple eigenvalues of
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joint multiplicity m of ShN , which we shall enumerate as µh1 , µ
h
2 , . . . , µ

h
m. Hence, the

integral

Ph “
1

2πi

¿

Θ

`

z ´ ShN
˘´1

dz

is well defined. Henceforth we assume that h has been made small enough as
discussed above.

Definition 3.2. Let Eh denote the range of Ph.

Clearly, Ph is the spectral projector of ShN corresponding to the eigenvalues
µh1 , µ

h
2 , . . . , µ

h
m. Hence,

(3.4) dimEh “ m.

Note also that by construction of Θ,

(3.5) µhi ‰ 0, i “ 1, 2, . . . ,m.

Remark 3.3. We may consider approximating A by Ah and then setting Rhpzkq “
pzk ´ Ahq

´1 in the formation of ShN , or more generally, approximate the resolvent
Rpzkq “ pzk ´ Aq´1 directly by some Rhpzkq. In the former case, the results
of [13, 27] will show convergence of the FEAST iteration, applied to the matrix
Ah, provided their assumptions on Ah can be verified. The latter case allows for
different discretizations at different zk, as well as for discretizations of the resolvent
by least-squares approaches, including discontinuous Petrov-Galerkin methods [7].
These approaches are of interest because, even when Rhpzkq is not selfadjoint, the
application of Rhpzkq reduces to the solution of a Hermitian positive definite system.

We now show that the above-defined Eh (see Definition 3.2) is the limit space of

subspace iterates E
p`q
h .

Theorem 3.4. Starting with a subspace E
p0q
h Ď Vh satisfying m “ dimpE

p0q
h q “

dimpPhE
p0q
h q, we compute E

p`q
h by (2.14). Suppose Assumptions 2.1, 2.3 and 2.7

hold. Then there is an h0 ą 0 such that, for all h ă h0,

lim
`Ñ8

gapVpE
p`q
h , Ehq “ 0.

Proof. Step 1: Recall from (3.4) that dimpEhq “ m for sufficiently small h. To-

gether with PhE
p0q
h Ď Eh and the assumption dimpPhE

p0q
h q “ m, this leads to the

equality

(3.6) PhE
p0q
h “ Eh.

Thus
PhE

p`q
h “ PhpS

h
N q

`E
p0q
h “ pShN q

`PhE
p0q
h “ pShN q

`Eh “ Eh.

In particular, this implies that dimpE
p`q
h q ě dimpPhE

p`q
h q “ dimpEhq. Hence,

(3.7) dimpE
p`q
h q “ dimpEhq “ m, ` “ 0, 1, 2, . . . .

Step 2: Let vi be an eigenvector of ShN corresponding to the eigenvalue µhi . We

shall now find an approximant of vi in E
p`q
h . Due to (3.6), there is a q

p0q
i in E

p0q
h

such that Phq
p0q
i “ vi. Set

q
p`q
i “

ˆ

1

µhi

˙`

pShN q
` q
p0q
i .
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Clearly q
p`q
i is well defined due to (3.5) and is in E

p`q
h . Moreover,

vi ´ q
p`q
i “ vi ´ pµ

h
i q
´`pShN q

`
“

Phq
p0q
i ` pI ´ Phqq

p0q
i

‰

“ ´pµhi q
´`pShN q

`pI ´ Phqq
p0q
i ,

Since pI ´ Phqq
p0q
i “ pI ´ Phq

2q
p0q
i “ pI ´ Phqpq

p0q
i ´ viq, we conclude that

(3.8) vi ´ q
p`q
i “ ´pµhi q

´`pShN q
`pI ´ Phqpq

p0q
i ´ viq.

Step 3: Since ShN commutes with Ph, equation (3.8) implies

}v ´ q
p`q
i }V ď

1

|µhi |
`

›

›

›

“

ShN pI ´ Phq
‰`
›

›

›

V
}v ´ q

p0q
i }V .

Let µh˚ denote the supremum of |µ| over all µ in ΣpShN qztµ
h
1 , µ

h
2 , . . . , µ

h
mu, i.e., µh˚

is the spectral radius of ShN pI ´ Phq, so

µh˚ “ lim
`Ñ8

}rShN pI ´ Phqs
`}

1{`
V .

Hence, for any given ε ą 0, there is an `0 ě 1 such that }rShN pI´Phqs
`}V ď pµ

˚
h`εq

`

holds for all ` ą `0 and consequently

(3.9) }v ´ q
p`q
i }V ď

pµh˚ ` εq
`

|µhi |
`
}v ´ q

p0q
i }V .

Step 4: As already seen, a consequence of Assumptions 2.1 and 2.7, is that
by making h sufficiently small, we ensure that the eigenvalues µh1 , µ

h
2 , . . . , µ

h
m of

ShN are strictly separated in magnitude from the remaining eigenvalues – cf. (3.2).
Hence we may choose an ε ą 0 so small that δi “ pµ

h
˚ ` εq{|µhi | ă 1. Then, with

αi “ }vi ´ q
p0q
i }V , the estimate (3.9) implies

(3.10) }vi ´ q
p`q
i }V ď αiδ

`
i , ` ą `0.

Note that vi, i “ 1, . . . ,m form a basis for Eh. Hence, we may expand an arbi-
trary vh P U

V
Eh

in this basis and construct an approximation of vh using the same
coefficients:

vh “
m
ÿ

i“1

civi, q` “
m
ÿ

i“1

ciq
p`q
i .

Then, by (3.10),

distVpvh, E
p`q
h q ď }vh ´ q`}V ď

m
ÿ

i“1

|ciαi|δ
`
i ď α

˜

m
ÿ

i“1

|ci|
2

¸1{2 ˜ m
ÿ

i“1

δ2`
i

¸1{2

.(3.11)

where α “ maxi αi.

Step 5: Denote one of the two suprema in the definition of gapVpEh, E
p`q
h q by

δh,` “ sup
vhPUV

Eh

distV

´

vh, E
p`q
h

¯

.

Let g denotes the minimal eigenvalue of the m ˆ m Gram matrix of the vi-basis
(whose pi, jqth entry is pvi, vjqV). Then g

řm
i“1 |ci|

2 ď }vh}
2
V “ 1. (Note that g may

depend on h, but is independent of `.) Hence (3.11) implies δ2
h,` ď pα

2{gq
řm
i“1 δ

2`
i

which converges to 0 as `Ñ8 since δi ă 1.
In particular, for large enough `, we have δh,` ă 1. Therefore, by [17, Theo-

rem I.6.34] there is a subspace Ẽ
p`q
h Ď E

p`q
h such that gapVpEh, Ẽ

p`q
h q “ δh,` ă 1.
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Hence, dimpEhq “ dimpẼ
p`q
h q “ m. But by (3.7), the only subspace Ẽ

p`q
h Ď E

p`q
h of

dimension m is Ẽ
p`q
h “ E

p`q
h . Thus, for sufficiently large `,

gapVpEh, E
p`q
h q “ δh,`,

and the proof is complete since δh,` Ñ 0 as `Ñ8. �

To summarize this section, we have defined a space Eh (in Definition 3.2) using
ShN , but independently of the filtered subspace iteration (2.14), and have shown (in
Theorem 3.4) that under certain conditions the iteration converges to it. The con-
vergence of FEAST iterations for matrices (disregarding any discretization errors)
were previously studied in [13] when H “ Rn and } ¨ }V “ } ¨ }H using the theory of
subspace iterations [22]. In fact the identity obtained in Step 2 of the above proof
was motivated by a standard argument in the analysis of subspace iterations [22].
Our proof of Theorem 3.4 gives a rigorous justification for the intuition that if
the discretization is good, then despite the errors in the resolvent approximations,
filtered subspace iteration should converge for well-separated eigenvalue clusters.

4. Discretization errors in eigenspace

In this section we study how the discrete eigenspace Eh approaches the exact
eigenspace E as the discretization parameter hÑ 0.

Theorem 4.1. Suppose Assumptions 2.1, 2.3, and 2.7 hold. Then there exist
CN ą 0 and h0 ą 0 such that for all h ă h0,

(4.1) gapVpE,Ehq ď CNW max
k“1,...,N

›

›

›

“

Rpzkq ´Rhpzkq
‰
ˇ

ˇ

E

›

›

›

V
.

In particular,

lim
hÑ0

gapVpE,Ehq “ 0.

Proof. Consider one of the two suprema in the definition of gapVpEN , Ehq, namely

(4.2) δh “ sup
ePUV

EN

distVpe, Ehq.

Then,

δh ď sup
ePUV

EN

}e´ Phe}V ď sup
ePUV

EN

}pPN ´ Phqe}V .(4.3)

Note that

PN ´ Ph “
1

2πi

¿

Θ

“

pz ´ SN q
´1 ´ pz ´ ShN q

´1
‰

dz

“
1

2πi

¿

Θ

pz ´ ShN q
´1pSN ´ S

h
N qpz ´ SN q

´1 dz.

Since EN is an invariant subspace of pz ´ SN q
´1, the above identity gives the

estimate

}PNe´ Phe}V ď

»

–

1

2π

¿

Θ

}pz ´ SN q
´1}V}pz ´ S

h
N q
´1}V dz

fi

fl }pSN ´ S
h
N q|EN }V}e}V .
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Returning to (4.3), we conclude that δh ď CN }pSN ´ ShN q|EN }V , where CN is a
bound for the quantity in square brackets above. Clearly, CN can be bounded
independently of h, since }pz ´ ShN q

´1}V Ñ }pz ´ SN q
´1}V .

Thus, by virtue of (3.3), δh Ñ 0 as hÑ 0. In particular, for sufficiently small h,

we have δh ă 1. Then, by [17, Theorem I.6.34], there is a closed subspace Ẽh Ď Eh
such that gapVpEN , Ẽhq “ δh ă 1 and dim Ẽh “ dimEN “ m. Because of (3.4),

this implies that Ẽh “ Eh. Since EN “ E by Lemma 3.1, we finish the proof
of (4.1) by noting that gapVpE,Ehq “ gapVpEN , Ẽhq “ δh. �

Remark 4.2. If V is replaced by H in (3.1), we obtain gapHpM,Lq, so

gapHpE,Ehq “ max

»

– sup
ePUH

E

distHpe, Ehq, sup
mPUH

Eh

distHpm,Eq

fi

fl .

Its natural to ask if gapVpE,Ehq Ñ 0 implies gapHpE,Ehq Ñ 0 as h Ñ 0. Let
δHh denote the first of the two suprema above. Since E is finite-dimensional, there
exists Cm ą 0 such that }e}H ě Cm}e}V for all e in E. Using Assumption 2.3 yields

δHh “ sup
0‰ePE

distHpe, Ehq

}e}H
ď

CV

Cm
sup

0‰ePE

distVpe, Ehq

}e}V
ď

CV

Cm
gapVpE,Ehq.

Thus, if gapVpE,Ehq Ñ 0, taking h sufficiently small, dimpEhq “ dimpEq “ m and
δHh ă 1, so using [17, Theorem I.6.34] as in the previous proof, we may conclude
that gapHpE,Ehq “ δHh . This implies that, under the same assumptions as in
Theorem 4.1, there exists h1 ą 0 such that

(4.4) gapHpE,Ehq ď
CV

Cm
gapVpE,Ehq

for all h ă h1. Note that Cm depends only on E and is independent of h.

5. Discretization errors in eigenvalues

In this section, we analyze the eigenvalue approximations that are generated
as Ritz values (defined below) of eigenspace approximations obtained from the
filtered subspace iteration. To define the Ritz values maintaining the same level
of generality as we have so far, we need to consider the (possibly unbounded)
sesquilinear form generated by A.

Recall that any selfadjoint operator A admits the polar decomposition A “

UA|A| “ |A|UA (see [17, p. 335]), where UA is selfadjoint and partially isometric,
and |A| is selfadjoint and positive semidefinite. As described in [25, §10.2], the
polar decomposition can be used to define the following symmetric sesquilinear
form associated with the operator A:

(5.1) apx, yq “ pUA|A|
1{2x, |A|1{2yqH

for any x, y in dompaq “ domp|A|1{2q. Let |u|a “ |apu, uq|
1{2 for any u P dompaq.

By the properties of UA,

(5.2) |u|a ď p|A|
1{2u, |A|1{2uq1{2 “ }|A|1{2u}H, u P dompaq.

Let F Ă dompaq be a closed finite-dimensional subspace of H. We define AF :
F Ñ F by the following relation,

(5.3) pAFx, yqH “ apx, yq for all x, y P F.
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The spectrum of the linear operator AF on F , namely ΣpAF q, is called the set of
Ritz values of A on F . The operator AE is defined by (5.3) with E in place of F .
Note that the exact eigenspace we wish to approximate, namely E, is contained in
dompAq Ă dompaq, and the exact eigenvalue cluster Λ that we wish to approximate
is the set of Ritz values of A on E.

Central to the discussion of this section is how the Ritz values change when F
is a perturbation of E. To formulate a result on sensitivity of Ritz values, we need
more notation. Recall that S is the H-orthogonal projection onto E. Let Q denote
the H-orthogonal projection onto F . Using S, we may express AE as

AE “ S|A|1{2UA|A|
1{2S

ˇ

ˇ

E

and AF may be similarly expressed using Q. Let

(5.4) |pS ´ IqQ|a,F “ sup
0‰vPF

|pS ´ IqQv|a
}v}H

“ sup
0‰vPF

|pS ´ Iqv|a
}v}H

.

Note that there is a finite positive constant }AE} such that }AEe}H ď }AE}}e}H
for all e P E (since AE : E Ñ E and E is finite-dimensional). Define the Hausdorff
distance between two subsets Υ1,Υ2 Ă R by

distpΥ1,Υ2q “ max

„

sup
µ1PΥ1

distpµ1,Υ2q, sup
µ2PΥ2

distpµ2,Υ1q



where distpµ,Υq “ infνPΥ |µ´ν| for any Υ Ă R. The following lemma is a perturba-
tion result that can be understood independently of the filtered subspace iteration.
In particular, we have no need for Assumptions 2.1, 2.3, or 2.7 in the lemma.

Lemma 5.1. Suppose gapHpE,F q ă 1. Then there exists C0 ą 0 such that

distpΣpAEq,ΣpAF qq ď |pS ´ IqQ|
2
a,F ` C0}AE} gapHpE,F q

2.

Proof. Step 1: LetR “ pS´Qq2 and let δ ă 1 be any number satisfying gapHpE,F q ď
δ ă 1. Since }R}H ď gapHpE,F q

2 ď δ2 ă 1, the binomial series
ř8

n“0p
´1{2
n qp´Rqn

converges and defines pI´Rq´1{2. Subtracting the first term from this series, define
T “ pI ´Rq´1{2´ I. Since p1´xq´1{2´ 1 “ xr

?
1´ x`p1´xqs´1, we obtain that

}T }H ď
8
ÿ

n“1

ˆ

´1{2

n

˙

}R}nH “ p1´ }R}Hq
´1{2 ´ 1 “ }R}Hr

a

1´ }R}H ` p1´ }R}Hqs
´1 ,

which implies

(5.5) }T }H ď }R}H

”

a

1´ δ2 ` p1´ δ2q

ı´1

.

We use R to define an isometry J “ pI ´ Rq´1{2rQS ` pI ´ QqpI ´ Sqs on H
(cf. [17, p. 33]) which maps E one-to-one onto F , and whose inverse is

(5.6) J´1 “ J˚ “ rSQ` pI ´ SqpI ´Qqs pI ´Rq´1{2.

Note that the spectra of AE and the unitarily equivalent JAEJ
˚|F are identical.

Step 2: Let D “ JAEJ
˚|F ´ AF , which is a selfadjoint operator on F . By [17,

Theorem V.4.10],

(5.7) distpΣpAEq,ΣpAF q ď }D|F }H “ sup
0‰fPF

|pDf, fqH|

pf, fqH
.
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For f P F , we have

pDf, fqH “ apJ˚f, J˚fq ´ apf, fq “ apSJ˚f, SJ˚fq ´ apQf,Qfq

“ Re apSJ˚f `Qf, SJ˚f ´Qfq.

Observing that (5.6) implies SJ˚ “ SQpI ´Rq´1{2, we split

pDf, fqH “ Re appSJ˚ `Qqf, SQ
”

pI ´Rq´1{2 ´ I
ı

fq

` Re appSJ˚ `Qqf, pS ´ IqQfq.

Labelling the two terms on the right as t1 and t2, we proceed to estimate them.
Step 3: The first term t1 “ Re appSJ˚`Qqf, SQTfq “ Re appSJ˚`SQqf, SQTfq.

Here we have used S2 “ S and apSx, yq “ apx, Syq for all x, y P dompaq. The
latter follows from (5.1) because S commutes with A, so it commutes with |A|
and U [17, p.335ff], and moreover, it commutes with |A|1{2 (see e.g. [17, Theo-
rem V.3.35]). Continuing,

|t1| “ |Re appSJ˚ `Qqf, SQTfq| “ |Re pAESpJ
˚ `Qqf, SQTfqH|

ď }AE}}SpJ
˚ `Qqf}H}SQTf}H ď

2}AE}}R}H
?

1´ δ2 ` p1´ δ2q
}f}2H

where we have used the fact that orthogonal projectors have unit norm as well as
the isometry of J˚. Thus

|t1| ď
2}AE}

?
1´ δ2 ` p1´ δ2q

gapHpE,F q
2}f}2H.

Step 4: Next, we estimate t2. Since appS ´ Iqx, yq “ apx, pS ´ Iqyq for all
x, y P dompaq,

|t2| “ |Re appS ´ IqpSJ˚ `Qqf, pS ´ IqQfq|

“ |Re appS ´ IqQf, pS ´ IqQfq|

ď |pS ´ IqQ|2a,h}f}
2
H.

Adding the estimates for |t1| and |t2| and using it in (5.7) completes the proof. �

Before applying this lemma to filtered subspace iteration, a few remarks are in
order. (i) Its clear from the proof that the result of the lemma holds even when
dimension of E (and F ) is infinite, as long as }AE} ă 8. Its also clear from the
proof that the constant C0 “ 2{p

?
1´ δ2 ` 1´ δ2q is independent of the location

of eigenvalue cluster Λ. (ii) The quantity |pS ´ IqQ|2a,F is related to the square of

the gap (like the other term in the bound of Lemma 5.1). Indeed, if ca,F is any
constant that satisfies |v|2a ď ca,F }v}

2
H for all v P E ` F, then

(5.8) |pS ´ IqQ|2a,F ď ca,F }pS ´ IqQ}
2
H ď ca,F gapHpE,F q

2.

However, in applications, we usually need to make the dependence of ca,F more ex-
plicit (say, on discretization parameters). One technique for this is developed in the
proof of Corollary 5.8 below. (iii) We highlight that Lemma 5.1 applies to general
unbounded selfadjoint operators, even those whose spectra extends throughout the
real line. (iv) Bounds for the Hausdorff distance between Ritz values under space
perturbations have been previously studied for bounded operators [18, Theorem 5.3]
and part of the above proof above is inspired by their arguments. However we are
not able to use their result directly because it holds only for Ritz values located at
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the extremes (top or bottom) of the spectrum of the bounded operator. Nonethe-
less, an approach to bring [18, Theorem 5.3] to bear on unbounded operators is
to apply it to Rpµq “ pµ ´ Aq´1, which is bounded (even if A is unbounded) pro-
vided µ is in the resolvent set of A. To quickly sketch this approach, one chooses
a µ such that E becomes the eigenspace of Rpµq corresponding to the top of its
spectrum, then apply [18, Theorem 5.3] to obtain an estimate that bounds the
distance between Ritz values of Rpµq, from which one then concludes estimates on
the distance between Ritz values of A on E and on F . This technique would yield
bounds involving gapHpE,F q

2 like that of Lemma 5.1 but with other µ-dependent
constants. (v) For finite-dimensional E,F, perturbations in eigenvalues of bounded
operators corresponding to the top or bottom of the spectrum have also been stud-
ied in [19, Theorem 2.7] using majorization techniques. These estimates can also
be used to study spectral perturbations of unbounded operators by the technique
mentioned in item (iv) above. In cases where one can bound specific angles be-
tween E and F , [19, Theorem 2.7] may provide bounds for individual eigenvalue
errors that are sharper than what can be concluded from bounds of the Hausdorff
distance.

We now turn to the issue of approximating the eigenvalue cluster Λ using the
subspaces of Vh generated by the filtered subspace iteration using ShN . Our analysis
of this approximation is done under Assumption 5.2 below. Example 5.4 illustrates
why we may want Vh Ă dompaq instead of Vh Ă dompAq, the latter of which may
be unnecessarily restrictive.

Assumption 5.2. Vh Ă dompaq.

Example 5.3 (Positive operators). Consider the operator A and the form a in
Example 2.5. Here, since A is positive, the factors of the polar decomposition of
A are UA “ I and |A| “ A. Thus dompaq “ domp|A|1{2q “ dompA1{2q. Moreover,
V “ dompA1{2q in Example 2.5. Since Vh Ă V by definition, we conclude that
Assumption 5.2 holds. l

Example 5.4 (A differential operator). To give an example of a partial differential
operator fitting the scenario of Example 5.3, suppose Ω is an open subset of Rd,
β : Ω Ñ R is a bounded positive function, and α : Ω Ñ Cdˆd is a bounded
Hermitian positive definite matrix function. Suppose the smallest eigenvalue of
αpxq and βpxq are greater than some δ ą 0 for a.e. x P Ω. Put H “ L2pΩq and set
a by

(5.9) apu, vq “

ż

Ω

α gradu ¨ grad v dx`

ż

Ω

βuv dx

for all u, v in dompaq “ H1pΩq. This is a densely defined closed form. Now, we set
A to be the closed selfadjoint operator associated with the form a, obtained by a
representation theorem [25, Theorem 10.7].

When α and β equal the identity and Ω has Lipschitz boundary, the operator
A is a Neumann operator whose domain satisfies dompAq Ď H3{2pΩq by a result
of [16]. Thus dompAq is strictly smaller than dompaq “ dompA1{2q “ H1pΩq in
this case. Therefore, if Vh is set to the Lagrange finite element subspace of H1pΩq,
then Assumption 5.2 holds. Note that it is easier to build finite element subspaces
of H1pΩq than H3{2pΩq, which is why we did not require Vh to be contained in
dompAq in Assumption 5.2. l
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Example 5.5 (Semibounded operators). Suppose A is lower semibounded, i.e.,
there is a µ P R such that pAx, xqH ě µ px, xqH for all x in dompAq. Then,
by [25, Proposition 10.5],

(5.10) domp|A|1{2q “ domppA´ µq1{2q.

An example of such an operator is the operator associated with the form a in (5.9)
when β no longer satisfies β ą 0, but instead changes sign while remaining bounded
on Ω. Then fixing some µ ă ´}β}L8pΩq, we note that the operator A´µ is positive
and is the operator associated with the positive form aµpu, vq “ apu, vq ´ µpu, vqH.

Thus, by Example 5.3, dompaµq “ domppA´ µq1{2q “ H1pΩq. Hence by (5.10) we
conclude that dompaq “ H1pΩq. l

Remark 5.6. Above we have encountered two related, but distinct concepts, of
the form associated with an unbounded operator (via the polar decomposition as
in (5.1)) and the operator associated to a unbounded form (by the first representation
theorem [17, TheoremVI.2.1]). If one begins with a form a and then considers
the operator A associated with it, we can define another form ã that is the form
associated with A. The form ã need not equal a for a general selfadjoint operator as
shown in [11, Example 2.11]). However, a and ã are equal if a is a densely defined
lower semibounded closed form, see [25, Theorem 10.7].

With the above background in mind, we now return to the analysis of eigenvalue
approximations. Recall Eh Ă Vh Ă domp|A|1{2q, the space we studied in Section 3.
Using Eh, we compute the spectrum of the finite-dimensional operator AEh ,

Λh “ ΣpAEhq.

This set forms our approximation to Λ. In practice, the elements of Λh are computed
by solving a small dense generalized eigenproblem: find λh P R and 0 ‰ uh P Eh
satisfying

apuh, vhq “ λhpuh, vhqH

for all vh P Eh. The collection of all such λh forms Λh. In the next theorem, we
use Qh to denote the H-orthogonal projection onto Eh.

Theorem 5.7. Suppose Assumptions 2.1, 2.3, 2.7 and 5.2 hold. Then there are
positive constants C0 and h0 such that for all h ă h0,

distpΛ,Λhq ď |pS ´ IqQh|
2
a,Eh

` C0}AE} gapHpE,Ehq
2.

Proof. By Theorem 4.1 and (4.4) we may choose h so small that gapHpE,Ehq ď
δ ă 1. Hence, applying Lemma 5.1 completes the proof. �

Corollary 5.8. In addition to Assumptions 2.1, 2.3, 2.7 and 5.2, suppose }u}V “
}|A|1{2u}H. Then there are positive constants C0 and h0 such that for all h ă h0,
we have gapVpE,Ehq ă 1 and

distpΛ,Λhq ď pΛ
max
h q2 gapVpE,Ehq

2 ` C0}AE} gapHpE,Ehq
2,

where Λmax
h “ supehPEh }|A|

1{2eh}H{}eh}H satisfies

pΛmax
h q2 ď

ˆ

1

1´ gapVpE,Ehq

˙2

}AE}.
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Proof. The first inequality will follow from Theorem 5.7 by establishing that

|pS ´ IqQ|a,Eh ď Λmax
h gapVpE,Ehq.

Since S is a H-orthogonal projection, it is selfadjoint in H-inner product. Moreover,
since S commutes with A, it commutes with |A| and hence with |A|1{2. Therefore,

pSu, vqV “ p|A|
1{2Su, |A|1{2vqH “ pS|A|

1{2u, |A|1{2vqH

“ p|A|1{2u, S|A|1{2vqH “ pu, SvqV ,

for all u, v P V, i.e., S is selfadjoint in the V-inner product too. This implies that
S is also the V-orthogonal projector onto E. Hence, using (5.2),

(5.11) |Seh ´ eh|a ď }Seh ´ eh}V “ distVpeh, Eq

for any eh P Eh. Combining (5.4) with (5.11) yields

|pS ´ IqQ|a,Eh ď

ˆ

sup
0‰ehPEh

}eh}V
}eh}H

˙ˆ

sup
0‰ehPEh

|pS ´ Iqeh|a
}eh}V

˙

ď Λmax
h

ˆ

sup
0‰ehPEh

distVpeh, Eq

}eh}V

˙

.

The first inequality of the corollary now follows from (3.1).
Let g “ gapVpE,Ehq and eh P Eh. Then (5.11) implies

}Seh}V ě }eh}V ´ }eh ´ Seh}V “ }eh}V

ˆ

1´
distVpeh, Eq

}eh}V

˙

ě }eh}V p1´ gq .

(5.12)

Therefore,

}eh}V
}eh}H

“
}eh}V
}Seh}V

}Seh}V
}eh}H

ď
1

1´ g

}Seh}V
}eh}H

.

Since }Seh}
2
V “ |p|A|Seh, SehqH| “ |pUAASeh, SehqH| ď }AE}}Seh}

2
H ď }AE}}eh}

2
H,

Λmax
h “ sup

0‰ehPEh

}eh}V
}eh}H

ď
1

1´ g
sup

0‰ehPEh

}Seh}V
}eh}H

ď
1

1´ g
}AE}

1{2.

This completes the proof. �

Note that the second inequality of Corollary 5.8 allows one to bound Λmax
h in-

dependently of h when gapVpE,Ehq Ñ 0. A class of examples where Corollary 5.8
immediately applies is given by the positive forms of Example 5.3. For such op-
erators, we have |A|1{2 “ A1{2, so pu, vqV “ apu, vq “ pA1{2u,A1{2vq holds for all
u, v P dompaq and Corollary 5.8 applies. As a final remark, we also note that in
the case in which V is normed with a norm equivalent to }|A|1{2 ¨ }H, the above
argument provides the estimate

(5.13) distpΛ,Λhq ď pC1 Λmax
h q2 gapVpE,Ehq

2 ` C0}AE} gapHpE,Ehq
2.

where C1 depends on the equivalence constants for norms } ¨ }V and }|A|1{2 ¨ }H.
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6. Application to the discretization of a model operator

The purpose of this section is to provide an example for application and illus-
tration of the theoretical framework developed in the previous sections. A simple
model problem is obtained by setting

H “ L2pΩq, A “ ´∆, dompAq “ tψ P H1
0 pΩq : ∆ψ P L2pΩqu, V “ H1

0 pΩq,

where Ω Ă Rd (d “ 2, 3) is a bounded polyhedral domain with Lipschitz bound-
ary. Note that here }u}V is set to }A1{2u}H “ } gradu}L2pΩq “ |u|H1pΩq, which

is equivalent to H1pΩq-norm due to the boundary condition. Throughout, we use
standard notations for norms (} ¨ }X) and seminorms (| ¨ |X) on Sobolev spaces (X).
The above set operator A is the operator associated with the form

apu, vq “

ż

Ω

gradu ¨ grad v dx, u, v P dompaq “ V “ H1
0 pΩq.

Hence this model problem fits into the framework of Example 2.5 and Assump-
tion 2.3 holds.

To calculate the application of the resolvent u “ Rpzqv, we need to solve the
operator equation pz ´ Aqu “ v for any z in the resolvent set of A. Using the
form bzpu, vq “ zpu, vqH´ apu, vq, this equation may be stated in weak form as the
problem of finding Rpzqv P H1

0 pΩq Ă H satisfying

(6.1) bzpRpzqv, wq “ pv, wqH for all w P H1
0 pΩq.

We provide a bound on the bilinear form bz that will be used in subsequent analysis.

Lemma 6.1. It holds that

|bzpu, vq| ď αpzq|u|H1
0 pΩq

|v|H1
0 pΩq

for all u, v P H1
0 pΩq ,

where αpzq “ }zA´1 ´ I}H “ supt|λ´ z|{|λ| : λ P ΣpAqu.

Proof. Recognizing that bzpu, vq “ ppzA
´1 ´ IqA1{2u,A1{2vqH, we see that

|bzpu, vq| ď }zA
´1 ´ I}H}A

1{2u}H}A
1{2v}H “ αpzq|u|H1

0 pΩq
|v|H1

0 pΩq
.

Since zA´1´I is normal, its H-norm, αpzq, is equal to its spectral radius. Therefore,
αpzq “ supt|λ´ z|{|λ| : λ P ΣpAqu, as claimed. �

The quantity

(6.2) βpzq “ }ARpzq}H “ supt|λ|{|λ´ z| : λ P ΣpAqu

also figures in our analysis. The last equality of the H-norm and the spectral radius
again follows from the normality of ARpzq. It can also be found in [17, p. 273,
Equation (3.17)]. Since ΣpAq is real, we see that αpz̄q “ αpzq and βpz̄q “ βpzq.

Next, suppose Ω is partitioned by a conforming simplicial finite element mesh
Ωh, where h equals the maximum of the diameters of all mesh elements. We shall
assume that Ωh is shape regular and quasiuniform (see e.g., [6] for standard finite
element definitions). Set Vh equal to the Lagrange finite element subspace of H1

0 pΩq
consisting of continuous functions, which when restricted to any mesh element K
in Ωh, are in PppKq for some p ě 1. Here and throughout P`pKq denote the set
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of polynomials of total degree at most ` restricted to K. It is well known [6] that
there is a Capp ą 0 independent of h such that

(6.3) inf
νhPVh

|ν ´ νh|H1pΩq ď Capph
r|ν|H1`rpΩq

for any 0 ď r ď p and any ν P H1`rpΩq.
Consider any v P H “ L2pΩq. The approximation of the resolvent by the finite

element method, namely Rhpzqv, is a function in Vh satisfying

(6.4) bzpRhpzqv, wq “ pv, wq for all w P Vh.

It will follow from the ensuing analysis that (6.4) uniquely defines Rhpzqv in Vh
provided h is sufficiently small. The analysis is under the following regularity
assumption.

Assumption 6.2. Suppose there are positive constants Creg and s such that the
solution uf P V of the Dirichlet problem ´∆uf “ f admits the regularity estimate

(6.5) }uf }H1`spΩq ď Creg}f}H for any f P V.

Suppose also that there is a number sE ě s such that

(6.6) }uf }H1`sE pΩq ď Creg}f}H for any f P E.

Standard regularity results for elliptic operators (see, e.g. [9, 10]) yield that
dompAq Ą H1`spΩq for some s ą 0 depending on the geometry of Ω. For ex-
ample, if Ω is convex, we may take s “ 1 in (6.5); and if Ω Ă R2 is non-convex,
with its largest interior angle at a corner being π{α for some 1{2 ă α ă 1, we
may take any positive s ă α. One can often show higher regularity when f is
restricted to the eigenspace E, which is why we additionally assume (6.6). For
example, if Ω “ p0, 1q ˆ p0, 1q, all eigenfunctions are analytic, having the form
sinpmπxq sinpnπyq, for any positive integers m,n. These expressions, when viewed
as functions on the L-shaped hexagon ΩL “ p0, 2q ˆ p0, 2qzr1, 2s ˆ r1, 2s, also yield
smooth eigenfunctions of ΩL. But not all eigenfunctions of ΩL are so regular.

The proof of the next result is modeled after a classical argument of [24], and
employs the quantities αpzq and βpzq introduced above.

Lemma 6.3. Suppose Assumption 6.2 holds. Let z be in the resolvent set of A.
Then there are positive constants C and h0 (depending on z) such that for all h ă h0

}Rpzq ´Rhpzq}V ď Chr,
›

›

›

“

Rpzq ´Rhpzq
‰
ˇ

ˇ

E

›

›

›

V
ď ChrE ,(6.7)

}Rpzq ´Rhpzq}H ď Ch2r,
›

›

›

“

Rpzq ´Rhpzq
‰
ˇ

ˇ

E

›

›

›

H
ď ChrE`r,(6.8)

where r “ minps, pq and rE “ minpsE , pq. We may choose h0 “ r2αpzqβpzq |z|
Capp Cregs

´1{r and C “ 2αpzqβpzqCappCreg.

Proof. Let f P H, e “ Rpzqf ´ Rhpzqf , and w “ Rpzqe. Then ´∆w “ Aw “

ARpzqe. Hence it follows by Assumption 6.2 and (6.2) that

}w}H1`rpΩq ď Creg}ARpzqe}H ď Cregβpzq}e}H “ Cregβpzq}e}H.(6.9)

Subtracting (6.4) from (6.1), we have bzpe, whq “ 0 for any wh P Vh. Note also that
bzpv, wq “ pv, eqH for any v P V. Choosing v “ e and applying Lemma 6.1,

}e}2H “ pe, eqH “ bzpe, wq “ bzpe, w ´ whq ď αpzq|e|H1pΩq|w ´ wh|H1pΩq .
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Using (6.3) with r “ minps, pq ą 0, together with (6.9), we deduce that

}e}2H ď αpzqCapph
r|w|H1`rpΩq|e|H1pΩq ď αpzqβpzqCappCregh

r}e}H|e|H1pΩq,

i.e.,

(6.10) }e}H ď αpzqβpzqCappCregh
r}e}V .

Next, setting u “ Rpzqf , observe that for any vh P Vh we have
ˇ

ˇ

ˇ

ˇ

z}e}2H ´ }e}
2
V

ˇ

ˇ

ˇ

ˇ

“ |bzpe, eq| “ |bzpe, u´ vhq|.

Hence (6.10) and Lemma 6.1 imply
”

1´ pαpzqβpzqCappCregh
rq

2
|z|

ı

}e}2V ď αpzq}e}V inf
vhPVh

}u´ vh}V .

When h is so small that 1´pαpzqβpzqCappCregh
rq

2
|z| ą 1{2, using (6.3), we obtain

}e}V ď 2αpzqCapph
r|u|H1`rpΩq. Moreover, since ´∆u “ Au “ Rpzqf , using As-

sumption 6.2 and arguing as in (6.9), we have }u}H1`rpΩq ď Cregβpzq}f}H. Thus,

(6.11) }Rpzqf ´Rhpzqf}V ď 2CappCregαpzqβpzqh
r}f}H

for any f P H. Now, if f is in V, then since }f}H ď C}f}V , the bound (6.11) proves
the first inequality in (6.7). Combining with (6.10), we obtain the first inequality
of (6.8) as well.

To prove the remaining inequalities, we let f P E and repeat the above argument
leading to (6.11) with rE “ minpsE , pq in place of r. This proves the second
inequality of (6.7). Then using (6.10) (where we cannot, in general, replace r by
rE), the second inequality of (6.8) also follows. �

With the help of the lemma, we can now prove the main result of this section.

Theorem 6.4. Consider the model problem of this section and its above-mentioned
discretization by Lagrange finite elements. Suppose Assumption 2.1 (spectral sepa-

ration) and Assumption 6.2 (elliptic regularity) holds. Suppose also that dimE
p0q
h “

dimpPhE
p0q
h q “ dimE. Then, there are positive constants C and h0 such that for

all h ă h0, the subspace iterates E
p`q
h converge (in gapV) to a space Eh satisfying

gapVpE,Ehq ď C hrE ,(6.12)

gapHpE,Ehq ď C hrE`r,(6.13)

distpΛ,Λhq ď C h2rE ,(6.14)

where r “ minps, pq and rE “ minpsE , pq.

Proof. The proof proceeds by applying the previous theorems after verifying their
assumptions. We have already verified Assumption 2.3 with above set V “ H1

0 pΩq.
In view of (6.7) of Lemma 6.3, since r ą 0, Assumption 2.7 holds with the same V.

Thus all assumptions of Theorem 3.4 hold. Its conclusion yields gapVpE
p`q
h , Ehq Ñ

0. Now the proof of (6.12) reduces to an application of Theorem 4.1. Next observe
that Assumptions 2.3 and 2.7 also hold when V is set to H (see Example 2.4 and (6.8)
of Lemma 6.3). Applying Theorem 4.1 with V “ H, we obtain the estimate (6.13).
Finally, (6.14) follows by combining Corollary 5.8 with (6.12) and (6.13). �
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7. Numerical Experiments

We illustrate the convergence results of Theorem 6.4 on the model problem

´∆e “ λe in Ω , e “ 0 on BΩ ,

on three different domains Ω Ă R2. More specifically, we consider eigenvalue errors
and (6.14). The experiments were conducted using [8], which builds a hierarchy of
Python classes representing standard Lagrange finite element approximations of the
filter SN based on the resolvent approximations Rhpzq, as described in Section 6.
We do not write out the details of the algorithm because they can be found in
our public code [8] or in many previous papers (see e.g., [22, Algorithm 1.1] and
[13]). As in these references, we perform the implicit orthogonalization through a
small Rayleigh-Ritz eigenproblem at each iteration. In general, it is not necessary
to perform this orthogonalization at every step, but in the experiments reported
below, we do so. For all experiments, filtered subspace iteration is applied using
the Butterworth filter (2.9) with N “ 8. The symmetry (about the real axis)
of our filter weights and nodes are exploited so that only N{2 boundary value
problems (rather than N) need to be solved for each right hand side per iteration.
The subspace iterations are started with a random subspace of dimension at least
as large as the dimension of E, and the algorithm truncates basis vectors that
generate Ritz values that are deemed too far outside the search interval; in all
cases, we choose this initial subspace dimension to be six. We stop the iterations
when successive Ritz values differ by less than 10´9. Though changing N does, in
some cases, change the number of subspace iterations used to achieve a prescribed
error tolerance (e.g. three iterations for N “ 8 versus two iterations for N “ 16
for the Dumbbell problem with p “ 3 and h “ 2´6), it had no effect on the
discretization errors reported here, so we do not discuss this parameter further.
The finite element discretizations are implemented using a Python interface into the
C++ finite element library NGSolve [26]. Two parameters govern the discretization:
h is the maximum edge length in a quasi-uniform triangulation of Ω, and p is the
polynomial degree in each element.

7.1. Unit Square. For the unit square Ω “ p0, 1q ˆ p0, 1q, the eigenvalues and
eigenvectors may be doubly-indexed by

λm,n “ pm
2 ` n2qπ2 , em,n “ sinpmπxq sinpnπyq , m, n P N .

For any subset of the spectrum, the corresponding eigenspaces are analytic (sE “
8), and the convexity of Ω ensures that s “ 1. Therefore, Theorem 6.4 indicates
that the eigenvalue convergence should behave like Oph2pq. This is precisely what
is observed in Figure 2 both at the low end of the spectrum, Λ “ t2π2, 5π2u, and
higher in the spectrum, Λ “ t128π2, 130π2u. We note that both 2π2 and 128π2 are
simple eigenvalues, 5π2 is a double eigenvalue, and 130π2 is a quadruple eigenvalue.

For the first set of experiments, the search interval p0, 60q was chosen, so y “
γ “ 30. In Figure 2a, the eigenvalue error, distpΛ,Λhq, is given with respect to h
for (fixed) p “ 1, 2, 3 and decreasing h “ 2´3, 2´4, . . . , 2´7. For the second set of
experiments, the search interval was p1260, 1290q, so y “ 1275 and γ “ 15. In order
to provide convergence graphs within the same plot for these more highly oscillatory
eigenvectors, we use h “ 2´5, 2´6, 2´7 for p “ 2, and h “ 2´4, 2´5, 2´6, 2´7 for
p “ 3, see Figure 2b. For coarser spaces, the approximations of 130π2 were far
enough outside the search interval to be rejected by the algorithm, and only an
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Figure 2. Square: Convergence rates for clusters located at the
bottom and higher up in the spectrum.

Figure 3. Square: Computed approximations of the eigenvec-
tors corresponding to the simple eigenvalue 128π2 (left) and the
quadruple eigenvalue 130π2.

approximation for 128π2 was obtained. A plot of the computed basis for the five-
dimensional eigenspace corresponding to Λ “ t128π2, 130π2u is given in Figure 3.
If we label the computed eigenvalues λh1 ă λh2 ď . . . ď λh5 , with corresponding
eigenvectors ehj , 1 ď j ď 5, contour plots of these eigenvectors are given, from

left to right, in Figure 3. One sees that spanteh1u approximates spante8,8u, and
it appears that spanteh2 , e

h
5u approximates spante3,11, e11,3u, and that spanteh3 , e

h
4u

approximates spante7,9, e9,7u.

7.2. L-Shape. Let Ω be the L-shaped domain that is the concatenation of three
unit squares; see Figure 4d. In [28], the authors provide very precise approxima-
tions of several eigenvalues for this domain (and other planar domains). Their
approximations of the first three eigenvalues (accurate to eight digits) are

λ1 « 9.6397238 , λ2 « 15.197252 , λ3 “ 2π2 « 19.739209 ,

and we take the first two of these approximations to be the “truth” for purposes of
our convergence studies. We use the search interval p0, 20q.

These eigenvalues correspond to eigenvectors having very different regularities,
and the convergence plots in Figure 4 illustrate that (6.14) can be pessimistic in
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(d) L-Shape: Computed approximations of the first three eigenvectors.

Figure 4. L-Shape: Convergence rates for λ1, λ2 and λ3.

the sense that it ascribes a single convergence rate to an entire eigenvalue cluster,
and this convergence rate is dictated by the worst-case regularity of eigenvectors
associated with the cluster. What we see in practice is that individual eigenvalues
within a cluster converge at rates determined by the regularity of their correspond-
ing eigenvectors. Since Ω has a re-entrant corner with interior angle 3π{2, we have
r “ minps, pq “ s for any s ă 2{3, and the first eigenvector actually has this regular-
ity. As such, Theorem 6.4 indicates essentially Oph4{3q convergence for the cluster.
While this is true for the cluster as a whole, it is only the first eigenvalue that con-
verges this slowly. The convergence order for the second eigenvalue Ophminp2p,3qq, is
consistent with a regularity index s ď 3{2; and the convergence order for the third
eigenvalue, Oph2pq, is precisely what is expected from an analytic eigenvector.

7.3. Dumbbell. Let Ω be the dumbbell-shaped domain that is a concatenation of
two unit-squares joined by a 1{4 ˆ 1{4 square “bridge”; see Figure 5. By tiling
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Table 1. Dumbbell: Computed eigenvalues for the interval
p1262, 1264q, p “ 3 and mesh parameters h “ 2´4, 2´5, 2´6, 2´7.

h λ1 λ2

2´4 1263.178867 1264.020566
2´5 1262.447629 1263.319956
2´6 1262.418298 1263.309521
2´7 1262.410062 1263.309366

Figure 5. Dumbbell: Eigenvectors corresponding to the eigen-
values 1262.41 (left) and 128π2.

the dumbbell with p1{8q ˆ p1{8q squares, we see that λ “ 128π2 « 1263.309 is
an eigenvalue, with corresponding eigenvector e “ sinp8πxq sinp8πyq. In order to
determine whether there are other eigenvalues near 128π2, we choose the search
interval p1262, 1264q. Because of the highly oscillatory nature of the eigenvector e,
we employ relatively fine discretizations, taking p “ 3 and h “ 2´4, 2´5, 2´6, 2´7.
We have determined that there is one other eigenvalue in the search interval, and
it is approximately 1262.41. Labeling these eigenvalues λ1 ď λ2, their computed
approximations are given in Table 1. For the coarsest of these discretizations, the
computed approximation of 128π2, 1264.02, lies slightly outside the search interval,
but is accepted by the algorithm. Since λ2 “ 128π2 is known, we underline the
number of correct digits in our approximations of it. The error in this approximation
is consistent with Oph6q eigenvalue error, in agreement with Theorem 6.4.
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