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Abstract. This article introduces the DPG-star (from now on, denoted DPG*) finite
element method. It is a method that is in some sense dual to the discontinuous Petrov–
Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an
overdetermined discretization of a boundary value problem. In the same vein, the DPG*
methodology is a means to solve an underdetermined discretization. These two viewpoints
are developed by embedding the same operator equation into two different saddle-point
problems. The analyses of the two problems have many common elements. Comparison to
other methods in the literature round out the newly garnered perspective. Notably, DPG* and
DPG methods can be seen as generalizations of LL∗ and least-squares methods, respectively.
A priori error analysis and a posteriori error control for the DPG* method are considered
in detail. Reports of several numerical experiments are provided which demonstrate the
essential features of the new method. A notable difference between the results from the
DPG* and DPG analyses is that the convergence rates of the former are limited by the
regularity of an extraneous Lagrange multiplier variable.

1. Introduction

The ideal Discontinuous Petrov–Galerkin (DPG) Method with Optimal Test Functions [18,
20] admits three interpretations [22]. First, it can be viewed as a Petrov–Galerkin (PG)
discretization in which optimal test functions are computed on the fly. Here, the word “optimal”
refers to the fact that the test functions realize the supremum in the discrete inf-sup stability
condition and, therefore, the PG discretization automatically inherits the stability of the
continuous method. The DPG method can also be viewed as a minimum residual method in
which the residual is measured in a dual norm implied by an underlying test norm. Finally, the
DPG method can be viewed also as a mixed method [16] wherein one simultaneously solves
for the Riesz representation of the residual — the so-called error representation function —
and the approximate solution. All three equivalent interpretations involve the inversion of
a Riesz operator on the test space which, in general, cannot be done exactly and has to be
approximated. This naturally leads to the introduction of an enriched or search test space —
having dimension larger than that of the latent trial space — and a discretized Riesz operator.
In this way, the corresponding practical DPG method retains its three interpretations, although
now with approximate optimal test functions, an approximate residual, and an approximate
error representation function [35, 43, 11].
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In the DPG method, the word “discontinuous” corresponds to the use of discontinuous,
but conforming, test functions (from broken spaces) which make the whole methodology
computationally efficient. These broken spaces also naturally lead to (hybridized) interface
solution variables. Broken space formulations provide a foundation for the DPG methodology
and can be developed for any well-posed variational formulation [11].

Originally motivated by the duality theory in [39], in this article, the DPG methodology
is expanded on by reconsidering how a given operator equation can be embedded into a
DPG-type saddle-point problem. In turn, the minimum residual principle underpinning DPG
methods can be discarded for a minimum norm principle and a dual class of methods (i.e.
DPG* methods1) can be introduced. Ultimately, an entire class of stable DPG-type mixed
methods can be proposed, simply by changing loads in the saddle-point problem and the
interpretation of the corresponding solution variables. This broad perspective can help relate
several different methods, including weakly conforming least squares methods [28] and LL∗
methods [10] to the existing DPG theory. In addition to being a mathematical curiosity,
the DPG* framework rounds out the a priori error analysis of DPG methods in weak norms
considered in previous articles (e.g., [6, 32, 33]), is instrumental in goal-oriented a posteriori
error analysis of DPG methods [39], and may be used to design new adjoint methods with
DPG [38], such as for the solution of optimal control problems.

This article provides a number of important a priori error analysis results for DPG* methods.
Unlike standard DPG methods, the convergence rate of a DPG* solution is not controlled solely
by the regularity of the solution itself, but instead also by the regularity of a Lagrange multiplier
variable found in the corresponding saddle-point formulation. This article also expands on
the recent a posteriori error estimation theory first introduced in [39] and re-establishes much
of Repin, Sauter, and Smolianski’s abstract a posteriori theory for mixed methods [45] in the
present context. In addition, it includes several standard numerical examples to verify the
theory for DPG* methods, including one example employing hp-adaptive mesh refinement.
This work is part of the PhD thesis [38].

2. The DPG and DPG* methods

2.1. Operator equations. Central to this paper are the twin relatives of the operator equa-
tion

(1) Bu = `,

given in (2) and (3) below. Here B : U → V ′ is a bounded linear operator from a Hilbert
space U to the dual of a Hilbert space V , ` ∈ V ′ is given, and u ∈ U is to be found. All spaces
here are over R, the real field. In any Hilbert space X, the action of a functional E ∈ X ′
on x ∈ X is denoted by 〈E, x〉X . When the space is clear from context, we also use E(x) to
denote the same number. Let B′ : V → U ′ be the dual of B defined by 〈B′v, u〉U = 〈Bu, v〉V
for all u ∈ U and v ∈ V . The reason for using ′ instead of ∗ to denote the dual operator will
become evident when a different, but related, notion of duality is introduced in Section 2.3.2

1DPG* methods are distinct from the saddle point least squares methods [2] which have separately been
contenders for being named “dual” to DPG methods.

2Therefore, the asterisk in the DPG* method is evocative of the connections to the LL∗ method [10].
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The two reformulations are as follows.

Find u ∈ U and ε ∈ V satisfying

{
RV ε+Bu = `,

B′ε = 0.
(2)

Find u ∈ U and λ ∈ V satisfying

{
RUu−B′λ = 0,

Bu = `.
(3)

Here RV : V → V ′ is the Riesz operator acting on V , defined using the inner product (·, ·)V by
(RV v)(ν) = (v, ν)V for all v, ν ∈ V . The Riesz operator RU is defined similarly. It is immediate
that if u solves (1), then with ε = 0 it solves (2), revealing a relationship between (2) and (1).
The relationship between (3) and (1) is also easy to guess: any solution (u, λ) of (3) is such that
the u component solves (1). We shall see below that, even though related, these formulations
are not fully equivalent to (1). The formulation (2) is the one on which the DPG method is
based. The formulation (3), when discretized, results in the new DPG* method, as we shall
see.

Formulations (2) and (3) are structurally similar, differing mainly in the position where the
load ` is placed. Due to the structural similarity, both formulations can be viewed at once as
instantiations of the following general saddle-point problem

Find v ∈ V and w ∈ U satisfying

{
RVv + Bw = F ,

B′v = G ,
(4)

on some Hilbert spaces U and V, some bounded linear operator B : U→ V′, and some given
functionals F ∈ V′ and G ∈ U′. Indeed, with

V = V, U = U, B = B, F = `, G = 0,

we obtain (2). If instead, we set

V = U, U = V, B = −B′, F = 0, G = −`,
then we obtain (3). Admittedly, the alternative mixed form obtained by exchanging B and
B′ in (4) is more natural for studying the DPG* method and even aligns with the standard
notations in mixed method theory [5]. Yet, we have chosen to work with (4) to facilitate
comparison with existing DPG literature where the form of (4) is more natural.

We proceed under the assumption that B is bounded below, i.e., there is a γ > 0 such that

(5) ‖Bµ‖V′ ≥ γ‖µ‖U, ∀µ ∈ U.

Note that the maximum of all such γ is simply ‖B−1‖. Under this assumption, the mixed
system (4) has a unique solution for any F ∈ V′ and G ∈ U′ (see e.g. [5]). Obviously (5) can
also be written out as an inf-sup condition. Here and throughout, for any Banach space X,
the right annihilator of a subset Y ⊆X and the left annihilator of a Z ⊆X ′ are defined by

Y ⊥ = {E ∈ X ′ : 〈E, y〉X = 0 for all y ∈ Y },(6)
⊥
Z = {x ∈ X : 〈E, x〉X = 0 for all E ∈ Z}.(7)

Recall that if Y ⊆X is a closed subspace, Y = Y , then Y ⊥ is isomorphic to (X/Y )′.
Now consider the mixed system (4) when G = 0 and the related problem of finding w ∈ U

satisfying

(8) Bw = F.
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The regularizing effect of the saddle-point formulation above is already evident: while (4)
is always solvable under (5), the related problem (8) is solvable provided F satisfies the
compatibility condition F ∈ (NullB′)⊥. To reiterate the above observation that (8) is not fully
equivalent to (4), we may view (8) as an overdetermined system. Overdetermined systems are
solvable only if they are consistent, i.e., have compatible data. Irrespective of the data, what
the mixed system (4) solves can be seen by eliminating v (and recalling that G = 0), namely

(9) B′R
−1

V Bw = B′R
−1

V F.

Equation (9) can be immediately identified with what is referred to as a “normal equation” in
linear algebra. This is a regularized version of (8). Indeed, whenever (8) has a solution, it
must be unique due to (5), and that unique solution is recovered by (9). However, (9) has a
unique solution even when (8) does not.

Next, considering the case of F = 0, we may likewise argue that the mixed system (4) also
helps us solve underdetermined systems. Under the same assumption (5), consider

(10) B′v = G.

Assumption (5) implies that B′ is surjective, so (10) is always solvable, but its solution need
not be unique in general. Thus, (10) may be viewed as an example of an underdetermined
system. Similar to (9), the solution variable v can be readily eliminated from (4) (now recalling
that F = 0):

(11) B′R
−1

V Bw = −G.
This equation is in correspondence with a different normal equation (one of the second type
[3]). Notice that the left-hand side operator B′R−1

V B : U→ U′ is the same in both (9) and (11)
and that the solution v in (11) can be recovered by the relationship v = −R

−1

V Bw.
To reconsider how the mixed system (4) converts (10) into a uniquely solvable problem,

we use orthogonal complements in Hilbert spaces, which we distinguish from the annihilators
in (6) and (7) by placing the symbol ⊥ as a subscript. Thus, while (NullB′)⊥ is a subspace
of V′, the notation (NullB′)⊥ indicates the subspace of V defined by

(NullB′)⊥ = {v ∈ V : (v, ν0)V = 0, ∀ ν0 ∈ NullB′}.
One may then decompose any solution of (10) into V-orthogonal components:

(12) v = v0 + v⊥, v0 ∈ NullB′, v⊥ ∈ (NullB′)⊥.

Observe that

(13) (NullB′)⊥ = RV(NullB′)⊥.

Since F = 0, testing the first equation of (4) with v0, we find that what (4) selects as its
unique solution v is in fact simply v⊥.

Returning to the case of general F and G, we collect a few identities in the next result.
First, note that one may also decompose F into orthogonal components:

(14) F = F 0 + F⊥, F 0 ∈ RV(NullB′), F⊥ ∈ RV(NullB′)⊥ = (NullB′)⊥.

Second, note that when (5) holds, |||µ|||U = ‖Bµ‖V′ generates an equivalent norm on U,
‖B−1‖−1‖µ‖U ≤ |||µ|||U ≤ ‖B‖‖µ‖U, and we may define

(15) |||G|||U′ = sup
06=µ∈U

〈G,µ〉U
|||µ|||U

.
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Proposition 2.1. Suppose F ∈ V′, G ∈ U′, v ∈ V and w ∈ U solve (4) and let v0 and v⊥
be the unique components of the decomposition of v in (12). Similarly, let F 0 and F⊥ be the
unique components of the decomposition of F in (14). Then the following identities hold:

‖v0‖2V + ‖RVv⊥ + Bw‖2V′ = ‖F‖2V′ ,(16)

‖v0‖2V + ‖Bw‖2V′ = ‖F − RVv⊥‖2V′ .(17)

Moreover, v0 = R−1

V F 0 and

‖v0‖V = ‖F 0‖V′ ,(18)

‖Bw‖V′ = ‖F⊥ − RVv⊥‖V′ .(19)

If in addition, (5) holds, then for any F ∈ V′, G ∈ U′, there is a unique v ∈ V and w ∈ U

satisfying (4) and the following identities hold:

‖v⊥‖V = |||G|||U′ ,(20)

‖v‖2V + |||w|||2U = ‖F − RVv⊥‖2V′ + |||G|||2U′ .(21)

If in addition, either F ∈ (NullB′)⊥ or B is a bijection, then v0 = 0 and

‖v‖V = |||G|||U′ .(22)

Proof. For any ν0 ∈ NullB′, we have (R−1

V Bw, ν0)V = 〈Bw, ν0〉V = 〈B′ν0, w〉U = 0. Hence
R−1

V Bw is in (NullB′)⊥. Therefore, when the first equation of (4) is rewritten as

(23) v0 + (v⊥ + R
−1

V Bw) = R
−1

V F,

an application of the Pythagorean theorem gives (16). Rewriting (23) as v0 + R−1

V Bw =
R−1

V F − v⊥, and applying the Pythagorean theorem again, we obtain (17). Rewriting (23)
instead as

v0 − R
−1

V F 0 = R
−1

V F⊥ − (v⊥ + R
−1

V Bw),

we note that v0 = R−1

V F 0 and R−1

V F⊥ = v⊥ + R−1

V Bw, by orthogonality. Equations (18)
and (19) are now obvious.

Next, if (5) holds, then standard mixed theory [5] gives existence of a unique (v, w) ∈ V×U,
and |||·|||U is an equivalent norm on U. To prove (20), we begin by noting that the isometry
induced by RV implies

‖v⊥‖V = sup
ν⊥∈(NullB′)⊥

(ν⊥, v⊥)V
‖ν⊥‖V

= sup
ν⊥∈(NullB′)⊥

〈RVν⊥, v⊥〉V
‖RVν⊥‖V′

= sup
E⊥∈RV(NullB′)⊥

〈E⊥, v⊥〉V
‖E⊥‖V′

.

Here and throughout, supremums over spaces are only taken over nonzero elements of the
space. Again, from the identity RangeB = (NullB′)⊥ and (13), we conclude that

‖v⊥‖V = sup
E⊥∈RangeB

〈E⊥, v⊥〉V
‖E⊥‖V′

= sup
µ∈U

〈Bµ, v⊥〉V
‖Bµ‖V′

= sup
µ∈U

〈µ,B′v⊥〉V
|||µ|||U

.

Thus, (20) follows after using the second equation in (4), namely G = B′(v0 + v⊥) = B′v⊥.
Identity (21) now follows by squaring both sides of (20) and adding it to (17).

Finally, when B is a bijection or F ∈ (NullB′)⊥, we conclude that F 0 = 0. Therefore,
v0 = 0 and (22) follows from (20). �

Identities like (21) have often been referred to by the name hypercircle identities [45] and
their use in a posteriori error estimation is now standard. We shall return to this in Section 4.
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2.2. Forms and discretization. It is traditional to write mixed systems using a bilinear
form defined by

(24) b(µ, ν) = 〈Bµ, ν〉V
for all µ ∈ U, ν ∈ V. In terms of b, the mixed problem (4) is to find v ∈ V and w ∈ U satisfying

(25)

{
(v, ν)V + b(w, ν) = F (ν) , ∀ ν ∈ V,

b(µ, v) = G(µ) , ∀µ ∈ U.

Suppose b arises from a weak formulation of a PDE on a domain Ω⊆Rd, which is partitioned
into a mesh Ωh of finitely many open connected elements K with Lipschitz boundaries ∂K,
such that Ω is the union of the closures of all mesh elements K in Ωh. In this scenario, if
there are Hilbert spaces V(K) on each mesh element K such that

(26) V =
∏
K∈Ωh

V(K),

then the system (25), in the case G = 0, is called a DPG formulation. In the case F = 0, it is
called a DPG* formulation. Spaces of the form (26) are called broken spaces [11].

A discrete method based on (25) would require a pair of discrete finite-dimensional spaces
Uh⊆U and Vh⊆V, not necessarily of the same dimension. The discrete problem would then
read as the problem of finding vh ∈ Vh and wh ∈ Uh satisfying

(27)

{
(vh, ν)V + b(wh, ν) = F (ν) , ∀ ν ∈ Vh,

b(µ, vh) = G(µ) , ∀µ ∈ Uh.

When V is a broken space of the form (26), Vh can be chosen to consist of functions with no
continuity constraints across mesh element interfaces. Then the case G = 0 delivers DPG
methods and the case F = 0 delivers DPG* methods. In both cases, we must typically find Vh
with dim(Vh) > dim(Uh) with provable discrete stability.

A key feature of (27) is that the the top left form, (v, ν)V, being an inner product, is always
coercive. Hence the discrete stability of (27) is guaranteed solely by a discrete inf-sup condition,
which is often easy to obtain in practice since we can increase dim(Vh) without violating the
coercivity of the top left term. This inf-sup condition has been analytically established for
various DPG methods through the construction of local [35, 11, 43] or global [12] Fortin
operators on generously large test spaces. The same inf-sup condition also confirms the
stability of the corresponding DPG* methods. An alternative characterization of the methods
above can be found in a Petrov–Galerkin form in [39, Section 4.1].

Upon the choice of bases {vi} and {wj} for the discrete spaces Vh and Uh, (27) can be
identified with the following system of matrix equations:

(28)
[
G B
BT 0

] [
v
w

]
=

[
f
g

]
.

Here, B is a rectangular matrix with coefficients determined by the bilinear form, Bij = b(wj , vi),
and, by conventional notation, G is a Gram matrix governed by the chosen inner product,
Gik = (vi, vk)V. Naturally, the vectors fi = F (vi), gj = G(wj) are identified with the two loads
in (27) and the vectors v and w correspond to the coefficients of the chosen basis functions. In
the broken space setting (26), the Gram matrix can be block-diagonal. In that case, inverting



THE DPG-STAR METHOD 7

G is computationally feasible and the Schur complement of (28) (cf. (9) and (11)) may be
used to solve for the vector w in a much smaller system, independent of v:

(29) BTG−1Bw = BTG−1f − g .

Notice that the DPG stiffness matrix, BTG−1B, is always symmetric and positive-definite
and that after solving for w via (29), v can always be recovered with only local cost, i.e.,
v = G−1(f−Bw). Construction of the stiffness matrix BTG−1B with broken spaces is considered
in detail in [42].

2.3. Ultraweak formulations. Many PDEs originate in the following strong form:

(30) Lu = f ,

where L is a linear differential operator and f is a prescribed function. It is possible to give
many general DPG and DPG* formulations for such operator equations using the framework
of [23, Appendix A] (which generalizes the Friedrichs systems framework in [27, 9, 53]).
Let d, k,m, l ≥ 1 be integers and let Ω ⊆ Rd be a bounded open set. We use multiindices
α = (α1, . . . αd) of length |α| = α1+· · ·+αd ≤ k. Suppose we are given functions aijα : Ω → R
for each i = 1, . . . , l, j = 1, . . . ,m, and each |α| ≤ k. Let L be the differential operator acting
on functions u : Ω → Rm such that

[Lu]i =
m∑
j=1

∑
|α|≤k

∂α(aijαuj), i ∈ {1, . . . , l}.

Wherever appropriate, let L2 denote either the l- or m-fold Cartesian product of L2(Ω).
Likewise, let D denote either the l- or m-fold Cartesian product of D(Ω), where D(Ω) is the
space of infinitely differentiable functions that are compactly supported on Ω (and accordingly,
D′ denotes distributional vector fields). Let L∗ be the formal adjoint differential operator of L,
i.e., it satisfies (Lφ, ψ)L2 = (φ,L∗ψ)L2 for all φ, ψ ∈ D. From now on, we will simply denote
all such L2-inner products on Ω as (·, ·)Ω = (·, ·)L2 . Likewise, all L2-inner products restricted
to a measurable subset K ⊆Ω will be denoted (·, ·)K .

The action of L∗ on v : Ω → Rl is given by

(31) [L∗v]j =

l∑
i=1

∑
|α|≤k

(−1)|α|aijα ∂
αvi, j ∈ {1, . . . ,m}.

We assume that the coefficients aijα are such that both Lu and L∗v are well-defined distribu-
tions for all u, v ∈ L2, i.e.,

(32a) Lu and L∗v are in D′ for all u, v ∈ L2.

(This holds e.g., if aijα are constant [23].)
We may now define Sobolev-like graph spaces by virtue of (32a). On any nonempty open

subset K ⊆ Ω, define the Hilbert spaces H(L,K) = {u ∈ L2(K)m : Lu ∈ L2(K)l} and,
likewise, H(L∗,K) = {v ∈ L2(K)l : L∗v ∈ L2(K)m}. (E.g., if we let L = grad, the canonical
gradient operator, then L∗ = −div and H(L,K) = H(grad,K) = H1(K) and H(L∗,K) =
H(div,K).) To simplify notation, we abbreviate H(L) = H(L, Ω) and H(L∗) = H(L∗, Ω).
Also define linear operatorsD : H(L)→ H(L∗)′ andD ∗ : H(L∗)→ H(L)′ such that

〈D u, v〉H(L∗) = (Lu, v)Ω − (u,L∗v)Ω, 〈D ∗v, u〉H(L) = (L∗v, u)Ω − (v,Lu)Ω,
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for all u ∈ H(L) and v ∈ H(L∗). Note thatD ∗ = −D ′, by these definitions. These graph
spaces are equipped with natural graph norms:

‖u‖2H(L) = ‖Lu‖2L2 + ‖u‖2L2 , ‖v‖2H(L∗) = ‖L∗v‖2L2 + ‖v‖2L2 .

With these norms, notice that bothD andD ∗ are bounded. Indeed, |〈D u, v〉H(L∗)| ≤
‖Lu‖L2‖v‖L2 + ‖u‖L2‖L∗v‖L2 ≤ ‖u‖H(L)‖v‖H(L∗).

Finally, we may incorporate homogeneous boundary conditions. Recall the definition of
the left annihilator in (7). Define H0(L)⊆H(L) and H0(L∗)⊆H(L∗) to be two subspaces
satisfying

(32b) H0(L) = ⊥
D
∗(H0(L∗)), H0(L∗) = ⊥

D (H0(L)) .

Observe that (32b) does not uniquely characterize either H0(L) or H0(L∗). These definitions
permit many different so-called “mixed” homogeneous boundary conditions.

We will consider two boundary value problems: Given f, g ∈ L2,

find u ∈ H0(L) satisfying Lu = f,(33a)
find v ∈ H0(L∗) satisfying L∗v = g.(33b)

To derive a broken “ultraweak formulation” for (33a) and (33b), we focus on the scenario
where Ω is partitioned into a mesh Ωh of finitely many open disjoint elements K such that
Ω is the union of closures of all mesh elements K in Ωh. For functions u and v, we denote
by Lhu and L∗hv the functions obtained by applying L and L∗ to u|K and v|K , respectively,
element by element, for all K ∈ Ωh. With this in mind, define the broken spaces

H(Lh) =
∏
K∈Ωh

H(L,K), H(L∗h) =
∏
K∈Ωh

H(L∗,K),

which naturally conform to (26).
Clearly, H(Lh) and H(L∗h) are inner product product spaces with corresponding graph

norms. The natural inner products on these spaces, induced by these graph norms, are defined

(34) (u, ũ)H(Lh) = (Lhu,Lhũ)Ω + (u, ũ)Ω, (v, ṽ)H(L∗h) = (L∗hv,L∗hṽ)Ω + (v, ṽ)Ω,

for all u, ũ ∈ H(Lh), v, ṽ ∈ H(L∗h). Now define the corresponding bounded linear operators
D h : H(Lh)→ H(L∗h)′ andD ∗

h : H(L∗h)→ H(Lh)′ by

〈D hu, v〉H(L∗h) = (Lhu, v)Ω − (u,L∗hv)Ω, 〈D ∗
hv, u〉H(Lh) = (L∗hv, u)Ω − (v,Lhu)Ω,

for all u ∈ H(Lh), v ∈ H(L∗h). From now on, when using the operatorsD h andD ∗
h, we

will simply denote 〈D h·, ·〉h = 〈D h·, ·〉H(L∗h) or, likewise, 〈D
∗
h·, ·〉h = 〈D ∗

h·, ·〉H(Lh), since the
meaning can easily be deduced from context. Finally, let

Q(Lh) = {p ∈ H(Lh)′ : there is a v ∈ H0(L∗) such that p =D
∗
hv},

Q(L∗h) = {q ∈ H(L∗h)′ : there is a u ∈ H0(L) such that q =D hu}.
These are Hilbert spaces when normed by the so-called minimum energy extension (quotient)
norm [11, 36], i.e., ‖q‖Q(L∗h) = inf{‖u‖H(L) : u ∈ H(L) satisfyingD hu = q}.

Multiplying (33a) by a function ν ∈ H(L∗h) and applying the definition ofD h, we get
(u,L∗hν)Ω + 〈D hu, ν〉h = (f, ν)Ω for all ν in H(L∗h). SettingD hu to q, a new unknown
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in Q(L∗h), we obtain the following ultraweak formulation with F (ν) = (f, ν)Ω. Given any
F ∈ H(L∗h)′, find u ∈ L2 and q ∈ Q(L∗h) such that

(35a) (u,L∗hν)Ω + 〈q, ν〉h = F (ν) ∀ ν ∈ H(L∗h).

Similarly proceeding with (33b) and setting F (ν) = (g, ν)Ω, we obtain an ultraweak formulation
of the dual problem: Given any F ∈ H(Lh)′, find u ∈ L2 and p ∈ Q(Lh) such that

(35b) (v,Lhν)Ω + 〈p, ν〉h = F (ν) ∀ ν ∈ H(Lh).

The next result shows that (35a) is uniquely solvable whenever (33a) is, as well as similar
connection between (35b) and (33b).

Theorem 2.2 (Wellposedness of broken forms). Suppose (32) holds. Then
(1) Whenever L : H0(L) → L2 is a bijection, problem (35a) is well-posed. Moreover, if

F (ν) = (f, ν)Ω for some f ∈ L2, then the unique solution u of (35a) is in H0(L),
solves (33a), and satisfies q =D hu.

(2) Whenever L∗ : H0(L∗) → L2 is a bijection, problem (35b) is well-posed. Moreover,
if F (ν) = (g, ν)Ω for some g ∈ L2, then the unique solution v of (35b) is in H0(L∗),
solves (33b), and satisfies p =D ∗

hu.

Proof. The first statement is exactly the statement of [23, Theorem A.5]. The second statement
also follows from [23, Theorem A.5] when L is replaced by L∗. �

Naturally, formulations (35a) and (35b) also have adjoints. For instance, the adjoint of the
ultraweak formulation (35a) is the following: Given any G ∈ (L2 ×Q(L∗h))′, find v ∈ H(L∗h)
such that

(36a) (µ,L∗hv)Ω + 〈ρ, v〉h = G(µ, ρ) ∀µ ∈ L2, ρ ∈ Q(L∗h).

Similarly, the adjoint of (35b) is: Given any G ∈ (L2 ×Q(Lh))′, find u ∈ H(Lh) such that

(36b) (µ,Lhu)Ω + 〈ρ, u〉h = G(µ, ρ) ∀µ ∈ L2, ρ ∈ Q(Lh).

Under similar conditions to Theorem 2.2, these variational formulations are also well-posed,
as the following theorem demonstrates.

Theorem 2.3 (Wellposedness of the adjoint problems). Suppose (32) holds. Then
(1) Whenever L : H0(L) → L2 is a bijection, problem (36a) is well-posed. Moreover, if

G(µ, ρ) = (g, µ)Ω for some g ∈ L2, then the unique solution v of (36a) is in H0(L∗)
and solves (33b).

(2) Whenever L∗ : H0(L∗)→ L2 is a bijection, problem (36b) is well-posed. Moreover, if
G(µ, ρ) = (f, µ)Ω for some f ∈ L2, then the unique solution u of (36b) is in H0(L)
and solves (33a).

Proof. Both claims are closely related and follow similarly from Theorem 2.2. Therefore, we
prove only the first statement.

Let the operatorB : L2×Q(L∗h)→ H(L∗h)′ be defined 〈B(µ, ρ), ν〉H(L∗h) = (µ,L∗hν)Ω+〈ρ, ν〉h,
for all ν ∈ H(Lh) and (µ, ρ) ∈ L2 ×Q(L∗h). Recall that F ∈ H(L∗h)′ = RangeB in (35a) was
arbitrary. Therefore, as a consequence of the first statement in Theorem 2.2, we conclude that
B is both bounded below (cf. (5)) and surjective. That is, B is a bijection and, by the Closed
Range Theorem, (NullB′)⊥ = {0}. Hence, we conclude that (36a) is well-posed.
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Next, suppose G((µ, ρ)) = (g, µ)Ω. Then (36a) yields

(µ,L∗hv)Ω = (g, µ)Ω,(37)
〈ρ, v〉h = 0,(38)

for all µ ∈ L2 and ρ ∈ Q(L∗h). Equation (37) yields L∗hv = g since H(L∗h) is continuously
embedded in L2. It remains to show that v is in H0(L∗). Note that for all φ ∈ D, by the
distributional definition of L and the definition ofD h,

〈L∗v, φ〉D = (Lφ, v)Ω = (L∗hv, φ)Ω + 〈D hφ, v〉h.
Since D is contained in H0(L),D hφ is in Q(L∗h) and the last term vanishes by virtue of
(38). Moreover, since D is densely contained in L2, this shows that L∗v = L∗hv = g. Thus
v ∈ H(L∗). Using (38) again, observe (cf. [23, Lemma A.3]) that

0 = 〈ρ, v〉h = 〈D hµ, v〉h = 〈D µ, v〉H(L∗) ,

for all ρ =D hµ ∈ Q(L∗h), where µ ∈ H0(L). Therefore, v ∈ ⊥D (H0(L)). Finally, v is in
H0(L∗) simply by (32b). �

Evidently, this result gives a class of examples where DPG* methods can be formulated.
Letting U = L2 ×Q(Lh) and V = H0(Lh), define the bilinear form b : U× V→ R as follows

(39) b((µ, ρ), ν) = (µ,Lhν)Ω + 〈ρ, ν〉h ∀ (µ, ρ) ∈ U, ν ∈ V.

We may now consider the DPG* formulations of (33a). Treatment of the dual problem (33b)
is similar.

Theorem 2.4 (Ultraweak DPG* formulation of (33a)). Let (·, ·)V be any inner product on
H(Lh) equivalent to (·, ·)H(Lh). Suppose (32) holds, L∗ : H0(L∗)→ L2 is a bijection, and b is
as in (39). Then, given a G ∈ (L2 × Q(Lh))′, the problem of finding a function u ∈ H(Lh)
satisfying

(40)

{
(u, ν)V − b((λ, σ), ν) = 0 ∀ ν ∈ H(Lh),

b((µ, ρ), u) = G((µ, ρ)) ∀ (µ, ρ) ∈ L2 ×Q(Lh),

is well-posed. Moreover, if G((µ, ρ)) = (f, µ)Ω for some f ∈ L2, then the unique solution u is
in H0(L) and satisfies Lu = f , i.e., u solves (33a).

Proof. Define the operator B : H(Lh)→ (L2 ×Q(Lh))′, by 〈Bν, (µ, ρ)〉L2×Q(Lh) = b((µ, ρ), ν)

for all (µ, ρ) ∈ L2 × Q(Lh) and ν ∈ H(Lh). As in the proof of Theorem 2.3, the operator
B = B′ is a bijection. Hence, (40) is a problem of form (4) (also (3)) with B satisfying (5)
and we conclude that (40) has a unique solution (see, e.g., Proposition 2.1). The remaining
statements immediately follow from Theorem 2.3. �

Remark 2.5. Note that the notation in Theorem 2.4 expresses the DPG* solution u ∈ V and
(λ, σ) ∈ U in the form of (3). That is, the first solution component is denoted by the symbol
u. From now on, in order to more closely follow the abstract notation used in (4), we will only
use the symbol v for the V-solution in all DPG* problems.

Remark 2.6. A very general broken space theory applicable of both DPG and DPG* methods
has been established in the literature. This theory encompasses more traditional weak formula-
tions and has been applied to a wide variety different boundary value problems [21, 8, 11, 41, 30].
For brevity, we will not expand on the intricate details here, but simply act to remind the
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reader that ultraweak variational formulations are not a prerequisite for any DPG-type method
coming from (27).

Example 2.7 (Poisson equation). In this example, which resurfaces throughout the document,
~v = (~p, v) will denote the DPG* solution variable. Similarly, ~λ = (~ζ, λ, ζ̂n, λ̂) will come to
denote the associated Lagrange multiplier (see Section 3.2).

On a bounded open set Ω ⊆ Rd with connected Lipschitz boundary, set m = d+ 1 and

(41) L(~p, v) = (~p− grad v,−div ~p) ,

where ~p : Ω → Rd represents the flux variable and v : Ω → R represents the solution variable.
Note that the equation L(~p, v) = (~0, f), after elimination of ~p, results in the well-known
Poisson equation −∆v = f .

We want to write out the DPG* formulation studied in Theorem 2.4 for this L. Begin by
observing that L∗ given by (31) can be written as

(42) L∗(~σ, µ) = (~σ + gradµ,div ~σ).

Obviously (32a) is satisfied. In this case, by the triangle inequality, we immediately see that
both H(L) and H(L∗) coincide with H(div, Ω)×H1(Ω). By integration by parts,

〈D ∗(~σ, µ), (~p, v)〉h = 〈~σ · ~n, v〉H1/2(∂Ω) + 〈~p · ~n, µ〉H1/2(∂Ω),(43)

where ~n denotes the unit outward normal on ∂Ω. Put

(44) H0(L∗) = H(div, Ω)×H1
0 (Ω).

One may verify that this choice corresponds to the Dirichlet problem, v = 0 on ∂Ω, and
H0(L) = H0(L∗).

From (43), it is immediate that (32b) holds. Along the lines of (43), we also have

〈D ∗
h(~σ, µ), (~p, v)〉h =

∑
K∈Ωh

[
〈~σ · ~n, v〉H1/2(∂K) + 〈~p · ~n, µ〉H1/2(∂K)

]
.

The range ofD ∗
h|H0(L∗) is Q(Lh). In this example, this can be characterized using standard

trace operators. The domain-dependent trace operators trK u = u|∂K and trKn ~σ = ~σ|∂K · ~n
for smooth functions are well-known to be continuously extendable to bounded linear maps
trK : H1(K) → H1/2(∂K) and trKn : H(div,K) → H

−1/2(∂K). Let tr =
∏
K∈Ωh trK and

trn =
∏
K∈Ωh trKn . Then define

(45) H
−1/2(∂Ωh) = trn(H(div, Ω)), H

1/2
0 (∂Ωh) = tr(H1

0 (Ω)).

Clearly, Q(Lh) = H
−1/2(∂Ωh)×H1/2

0 (∂Ωh).
Applying the abstract setting to these definitions, the DPG* bilinear form in (39), becomes

(46)

b((~σ, µ, σ̂n, µ̂), (~τ , ν)) =
∑
K∈Ωh

[
(~σ, ~τ − grad ν)K − (µ, div ~τ)K

]

+
∑
K∈Ωh

[
〈~τ · ~n, µ̂〉H1/2(∂K) + 〈σ̂n, ν〉H1/2(∂K)

]
.

Here, (·, ·)K denotes the inner product in L2(K) or its Cartesian products, ~σ ∈ L2(Ω)d,
µ ∈ L2(Ω), (σ̂n, µ̂) is in the space Q(Lh) defined above, and the solution variable (~σ, µ) is in
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the broken space H(Lh) = H(div, Ωh)×H1(Ωh), where

H(div, Ωh) =
∏
K∈Ωh

H(div,K), H1(Ωh) =
∏
K∈Ωh

H1(K).

Finally, the bijectivity of L : H0(L)→ L2 can be proved by standard techniques (see e.g. [19]).
Hence Theorem 2.4 yields that this DPG* formulation is well posed.

We shall revisit this example later. In order to shorten the notation for later discussions,
we shall denote the expression

(gradh µ, ~σ)Ω + (µ, divh ~σ)Ω

by 〈µ, ~σ · ~n〉h or 〈~σ · ~n, µ〉h without explicitly indicating the application of the trace maps trn
and tr. Accordingly, the bilinear form in (46) may be abbreviated as b((~σ, µ, σ̂n, µ̂), (~τ , ν)) =
(~σ, ~τ − grad ν)Ω − (µ,div ~τ)Ω + 〈~τ · ~n, µ̂〉h + 〈σ̂n, ν〉h. �

2.4. Related methods. Let V = H(L∗h). For any F ∈ H(L∗h)′, the ultraweak DPG for-
mulation defined by (40) can be restated as the following system of variational equations:

(47a)


(ε, ν)V + (u,L∗hν)Ω + 〈p, ν〉h = F (ν) , ∀ ν ∈ H(L∗h),

(µ,L∗hε)Ω = 0 , ∀µ ∈ L2,

〈ρ, ε〉h = 0 , ∀ ρ ∈ Q(L∗h).

Likewise, letting V = H(Lh), an ultraweak DPG formulation corresponding to (40) may be
defined for any G = GΩ ×Gh ∈ (L2 ×Q(Lh))′:

(47b)


(v, ν)V − (λ,Lhν)Ω − 〈σ, ν〉h = 0 , ∀ ν ∈ H(Lh),

(µ,Lhv)Ω = GΩ(µ) , ∀µ ∈ L2,

〈ρ, v〉h = Gh(ρ) , ∀ ρ ∈ Q(Lh).

Both of the formulations defined above relate to the primal problem (33a) with u = v. Clearly,
the role of Lh and L∗h can be interchanged if a solution of the dual problem (33b) is of interest.

The link between DPG and least-squares methods is well established in the literature (see
e.g. [42]). DPG* methods, as it turns out, can be readily identified with the category of
so-called LL∗ methods [10]. In this subsection, we briefly illustrate this and a couple of other
notable relationships in the context of the mixed problems introduced in Section 2.1.

2.4.1. Least-squares methods. Let V = L2 and U = H0(L). It is well-known that least-squares
finite element methods [4] follow from the following saddle-point formulation (cf. (2) and (47a)):

(48)

{
(ε, ν)Ω + (Lu, ν)Ω = F (ν) , ∀ ν ∈ L2 ,

(Lµ, ε)Ω = 0 , ∀µ ∈ H0(L) .

This may be identified with a mixed problem akin to (2) using the strong formulation of (33a),
rather than the ultraweak formulation, as in (47a). Indeed, let RL2 be the L2 Riesz operator
appearing in each term in (48) and recall identity (9), where (Bµ)(·) = (Lµ, ·)Ω. Then observe
that B′R−1

V B = (RL2 L)′R−1

L2(RL2 L) = L′RL2 L and B′R
−1

V F = L′F . That is,
〈B′R−1

V Bu, µ〉U = 〈B′R−1

V F, µ〉U ⇐⇒ (Lu,Lµ)Ω = F (Lµ) .
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In the case F (·) = (f, ·)Ω, observe that F (Lν) = (f,Lν)Ω. Therefore, the variational equation
above can be readily identified with the first-order optimality condition for the functional
J : u 7→ ‖Lu− f‖2L2 , ∂uJ = 0.

2.4.2. LL∗ methods. Let V = L2 and U = H0(L∗). Contrary to (48), so-called LL∗ methods
[10] relate to the following system (cf. (3) and (47b)):{

(v, ν)Ω − (L∗λ, ν)Ω = 0 , ∀ ν ∈ L2 ,

(L∗µ, v)Ω = G(µ) , ∀µ ∈ H0(L∗) .

Likewise, consider (11), where (Bµ)(·) = (L∗µ, ·)Ω and G(·) = (f, ·)Ω. In this case, we see
that LL∗ formulations may again be identified with (33a), in this case using a saddle-point
expression akin to (3). Indeed, observe that

〈B′R−1

V Bλ, µ〉U = 〈G,µ〉U ⇐⇒ (L∗λ,L∗µ)Ω = (f, µ)Ω .

The variational equation above indicates, in a weak sense, that LL∗λ = f . Recalling that the
solution is determined by the transformation v = R

−1

V Bλ = L∗λ, we have Lv = f weakly, as
well.

2.4.3. Weakly conforming least-squares methods. A weakly conforming least squares method
[28] for the primal problem (33a) seeks a minimizer of the least squares functional

w 7→ ‖Lw − f‖2L2 ,

under the conformity constraint

〈w, ρ〉h = 0 , ∀ ρ ∈ Q(Lh) .

Here, of course, the operator L is understood element-wise so we may saliently replace it by
Lh. This leads to the following saddle-point problem for the two solution components w and
σ:

(49)

{
(Lhw,Lhν)Ω + 〈σ, ν〉h = (f,Lhν)Ω , ∀ ν ∈ H(Lh) ,

〈w, ρ〉h = 0 , ∀ ρ ∈ Q(Lh) .

If we use an ultraweak DPG* formulation (47b) with its corresponding graph inner product
(34), scaled by an arbitrary constant α > 0, we arrive at

(50)


(Lhv,Lhν)Ω + α(v, ν)Ω − (λ,Lhν)Ω − 〈σ, ν〉h = 0 , ∀ ν ∈ H(Lh) ,

(µ,Lhv)Ω = (f, µ)Ω , ∀µ ∈ L2 ,

〈v, ρ〉h = 0 , ∀ ρ ∈ Q(Lh) .

From the second equation in (50), observe that f = Lhv. Therefore, the first equation can be
rewritten as

(f − λ,Lhν)Ω + α(v, ν)Ω = 〈σ, ν〉h , ∀ ν ∈ H(Lh) .

Testing only with ν ∈ H(L), so that the term 〈σ, ν〉h vanishes, it can now be seen that λ→ f
as α→ 0. Consequently, this particular DPG* formulation can be viewed as a regularization
of the weakly conforming least-squares formulation (49).



14 DEMKOWICZ, GOPALAKRISHNAN, AND KEITH

2.5. Solving the primal and dual problems simultaneously. In (4), we may hypotheti-
cally consider any F ∈ V′ and G ∈ U′ we wish:

(51)

{
RVv + Bw = F ,

B′v = G .

Let B be an isomorphism and define F = RV(B′)−1G+ `, for some fixed ` ∈ (NullB′)⊥ = V′.3
Noting that v = (B′)−1G, by the second equation in (51), it is readily seen that Bw = `.
Therefore, with this choice of loads, w = u solves the primal problem (1) and v solves the
dual problem (10), simultaneously.

Introducing the load F , as proposed above, involves the inversion the linear operator B′.
In practice, this is usually not feasible and, therefore, precludes the construction of any such
load in most circumstances. Nevertheless, consider the following system of equations:

(52)

{
(L∗v,L∗ν)Ω + (w,L∗ν)Ω = (g,L∗ν)Ω + (f, ν)Ω , ∀ ν ∈ H(L∗) ,
(L∗v, µ)Ω = (g, µ)Ω , ∀µ ∈ L2 .

This corresponds to a system like (51) with V = H(L∗) and U = L2. In (52), v clearly satisfies
(L∗v, µ)Ω = (g, µ)Ω. That is, v solves the dual problem (33b), L∗v = g, in a strong sense.
Substituting µ = L∗ν into (52) and canceling terms in the first equation, we immediately find
that (w,L∗ν)Ω = (f, ν)Ω. That is, w = u solves the primal problem (33a), Lu = f , in the
ultraweak sense.

To avoid solving the mixed problem for both v and w at the same time, upon discretization,
broken test spaces spaces can be used. In this setting, we must consider the following related
system with solution (w, σ) ∈ U = L2 ×Q(L∗h) and v ∈ V = H(L∗h):

(53)


(L∗hv,L∗hν)Ω + α(v, ν)Ω + (w,L∗hν)Ω + 〈σ, ν〉h = (g,L∗hν)Ω + (f, ν)Ω , ∀ ν ∈ H(L∗h),

(L∗hv, µ)Ω = (g, µ)Ω, ∀µ ∈ L2,

〈v, ρ〉h = 0, ∀ ρ ∈ Q(L∗h).

Here the parameter α > 0 has been added only to ensure that the (1, 1)-block of the discrete
system is locally invertible. Due to the constraint 〈v, ρ〉h = 0, it can be shown that (53) is
well-posed for any α ≥ 0.

The consequent manipulations are inspired by [33, Lemma 7]. First, notice that the last
two equations in (53) uniquely determine v. Therefore, after testing the middle equation with
µ = L∗hν, observe that the first equation can be rewritten

(w,L∗hν)Ω + 〈σ, ν〉h = (f, ν)Ω − α(v, ν) .

By linearity, (w, σ)Ω = (u, q)Ω +α(e, r), where (u, q) ∈ U solves the ultraweak primal problem
(u,L∗hν)Ω + 〈q, ν〉h = (f, ν)Ω (cf. (33a)) and (e, r) = (e(v), r(v)) is a pollution term defined by
the equation (e,L∗hν)Ω + 〈r, ν〉h = −(v, ν). Clearly, w → u as α→ 0+.

3. A priori error analysis

3.1. General results. Having explained the connections between the DPG* method and the
mixed formulation (4), it should not be a surprise that its error analysis reduces to standard

3In the case of an injective but not surjective B, consider F = B(B′ R
−1

V B)
−1
G+ ` ∈ (NullB′)⊥ ( V′.
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mixed theory. To state the result, let v ∈ V and λ ∈ U satisfy

(54)

{
(v, ν)V − b(λ, ν) = 0 , ν ∈ V,

b(µ, v) = G(µ) , µ ∈ U.

The DPG* approximation (vh, λh) ∈ Vh × Uh satisfies

(55)

{
(vh, ν)V − b(λh, ν) = 0 , ν ∈ Vh,

b(µ, vh) = G(µ) , µ ∈ Uh.

We assume that b(·, ·) : V× U→ R is generated by a bounded linear operator B (as in (24))
that satisfies (5). The only further assumption we need for error analysis is the existence of a
Fortin operator. Namely, we assume that there is a continuous linear operator Πh : V→ Vh
such that

(56) b(µ, ν −Πhν) = 0, µ ∈ Uh, ν ∈ V.

Under these assumptions, the standard theory of mixed methods [5] yields the following a
priori estimate.

Theorem 3.1. Suppose (5) and (56) hold. Then there is a constant C such that the complete
DPG* solution (v, λ) ∈ V× U satisfies the error estimate

‖v − vh‖V + ‖λ− λh‖U ≤ C
[

inf
ν∈Vh

‖v − ν‖V + inf
µ∈Uh

‖λ− µ‖U
]
.

At times, it is possible to get an improvement using the Aubin-Nitsche duality argument.
Suppose F is a functional in (NullB′)⊥ and we are interested in bounding F (v − vh), a
functional of the error v − vh. Consider ε ∈ V and u ∈ U satisfying

(ε, ν)V + b(u, ν) = F (ν),(57a)
b(µ, ε) = 0,(57b)

for all ν ∈ V, µ ∈ U. To conduct the duality argument, we suppose that there is a positive
c0(h) that goes to 0 as h→ 0 satisfying

(58) inf
µ∈Uh

‖u− µ‖U ≤ c0(h) ‖F‖V′ .

This usually holds when the solution of (57) has sufficient regularity.

Theorem 3.2. Suppose (58) holds in addition to the assumptions of Theorem 3.1. Then there
exists a positive function c0(h), which goes to 0 as h → 0, such that the error in the DPG*
solution component vh satisfies

F (v − vh) ≤ c0(h) ‖B‖ ‖F‖V′
[

inf
ν∈Vh

‖v − ν‖2V + inf
µ∈Uh

‖λ− µ‖2U
]1/2

.

Proof. By Proposition 2.1, ε = 0 since F ∈ (NullB′)⊥. Put ν = v− vh in (57a). Then for any
µ ∈ Uh, we have

F (v − vh) = (ε, v − vh)V + b(u, v − vh) by (57a),
= b(u, v − vh) since ε = 0,
= b(u− µ, v − vh) by (54) and (55),
≤ c0(h)‖B‖‖F‖V′‖v − vh‖V by (58).
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The proof is completed by applying Theorem 3.1. �

It is interesting to note that the duality argument for the DPG* method uses a DPG
formulation: the system (57) is clearly a DPG formulation. Vice versa, the duality argument for
DPG methods uses DPG* formulations, as can be seen from the duality arguments in [6, 32, 33].
Even though these references did not use the name “DPG*,” one can see DPG* formulations
at work within their proofs.

At this point, an essential difficulty in DPG* methods (that was not present in DPG
methods) becomes clear. Consider using a DPG* form b(·, ·) given by Theorem 2.4 for solving
the primal problem Lv = f . Then the error in vh computed by the DPG* method not
only depends on the regularity of the solution v, but also on the regularity of an extraneous
Lagrange multiplier λ. This is evident from the best approximation error bounds appearing
in Theorems 3.1 and 3.2. The following example will clarify this observation further.

3.2. Application to the Poisson example. Given f ∈ L2(Ω), consider approximating the
Dirichlet solution v

(59) −∆v = f in Ω, v = 0 on ∂Ω,

by the DPG* method. We follow the setting of Example 2.7. Accordingly, we set

U = L2(Ω)d × L2(Ω)×H−1/2(∂Ωh)×H1/2
0 (∂Ωh), V = H(div, Ωh)×H1(Ωh),

where H−1/2(∂Ωh) and H
1/2
0 (∂Ωh) are defined in (45). The DPG* formulation (54) of (59)

characterizes two variables,

~v = (~p, v) ∈ V, ~λ = (~ζ, λ, ζ̂n, λ̂) ∈ U,

satisfying

((~p, v), (~τ , ν))V − b((~ζ, λ, ζ̂n, λ̂), (~τ , ν)) = 0,(60a)
b((~σ, µ, σ̂n, µ̂), (~p, v)) = (f, µ)Ω,(60b)

for all ~ν = (~τ , ν) in V and all ~µ = (~σ, µ, σ̂n, µ̂) in U. Here, b(·, ·) as given by (46) and, as
before, (·, ·)Ω denotes the inner product in L2(Ω) (or its Cartesian products).

By Theorem 2.4, B is a bijection, so obviously (5) holds. Let Ωh be a shape regular mesh
of simplices and let Pp(K) denote the space of polynomials of degree at most p on the simplex
K. Define Pp(∂K) = {µ : µ|E ∈ Pp(E) for all codimension-one sub-simplices E of K} and
set

Pp(Ωh) =
∏
K∈Ωh

Pp(K), Pp(∂Ωh) =
∏
K∈Ωh

Pp(∂K),

P̃p(∂Ωh) = Pp(∂Ωh) ∩ tr(H1
0 (Ω)), P̂p(∂Ωh) = Pp(∂Ωh) ∩ trn(H(div, Ω)).(61)

Clearly P̃p(∂Ωh) is a subspace ofH
1/2
0 (∂Ωh) which consists of continuous single-valued functions

on mesh interfaces. It is also obvious that the space P̂p(∂Ωh) is a subspace of H−1/2(∂Ωh). Fur-
thermore, it may be shown that every σ̂n ∈ P̂p(∂Ωh) has a corresponding σ̂ in

∏
K∈Ωh ~xPp(K)+

Pp(K)d such that σ̂n = σ̂ · n. In particular, the value of σ̂n|∂K+ has the opposite sign of the
value of σ̂n|∂K− at every point of a mesh interface E = ∂K+∩∂K− (so σ̂n is not single-valued
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on E). To remember this orientation dependence, we often write a σ̂n in P̂ (Ωh) as σ̂ · ~n. A
Fortin operator satisfying (56) for the case

Uh = {(~σ, µ, σ̂n, µ̂) ∈ U : ~σ ∈ Pp(Ωh)d, µ ∈ Pp(Ωh), σ̂n ∈ P̂p(∂Ωh), µ̂ ∈ P̃p+1(∂Ωh)}
Vh = {(~τ , ν) ∈ V : ~τ ∈ Pp+d(Ωh)d, ν ∈ Pp+d(Ωh)}.

was constructed in [35].
To understand the practical convergence rates, we must understand the regularity of ~λ.

One way to do this is to write down the boundary value problem that ~λ satisfies, as done
in [6, 32]. An alternate technique can be seen in [33], which directly manipulates the variational
equation (60a) using the information in (60b). We follow the latter approach in the next proof.

Proposition 3.3. The solution components ~ζ, λ, ζ̂n, λ̂ of the system (60) can be characterized
using the remaining solution components, ~p and v, and the function f as

(62)
~ζ = ~p+ ~r, ζ̂n = 2~p · ~n+ ~r · ~n,
λ = f + e, λ̂ = e,

where (~r, e) is in the space H0(L∗) defined in (44) and satisfies the Dirichlet problem L∗(~r, e) =

(~0, v + 2f) where L∗ is as in (42). Specifically, e ∈ H1
0 (Ω) satisfies −∆e = v + 2f and

~r = − grad e.

Proof. By Theorem 2.4, we know that (60b) implies that ~p, v satisfies L(~p, v) = (~0, f), i.e.,

(63) ~p− grad v = ~0, −div ~p = f.

Next, we manipulate the first term of (60a) as follows:

((~p, v), (~τ , ν))V = (~p, ~τ)Ω + (div ~p,div ~τ)Ω + (v, ν)Ω + (grad v, grad ν)Ω

= (~p, ~τ − grad ν)Ω + (div ~p,div ~τ)Ω + (v, ν)Ω + 2(grad v, grad ν)Ω

= (~p, ~τ − grad ν)Ω + (f,−div ~τ)Ω + (v, ν)Ω

+ 2
∑
K∈Ωh

[
〈~n · p, ν〉H1/2(∂K) − (div p, ν)K

]
= b((~p, f, 2~p · ~n, 0), (~τ , ν)) + (v + 2f, ν)Ω,

where we have used (63) twice. Now, let ~r ∈ L2(Ω)d, e ∈ L2(Ω) and (r̂n, ê) ∈ Q(Lh) satisfy

b((~r, e, r̂n, ê), (~τ , ν)) = (v + 2f, ν)Ω

for all (~τ , ν) ∈ H(Lh) = V. This is a variational equation of the form (35a). Hence, by the
first item of Theorem 2.2, ~r and e are unique. Moreover, (~r, e) ∈ H0(L∗) satisfies L∗(~r, e) =
(0, v + 2f), and ~r · ~n|∂K = r̂n|∂K , e|∂K = ê|∂K on all mesh element boundaries. Thus,

((~p, v), (~τ , ν))V = b((~p+ ~r, f + e, (2~p+ ~r) · ~n, e), (~τ , ν)).

Comparing this with (60a), the result follows. �

We may now apply Theorem 3.1 along with standard Bramble-Hilbert arguments (see [35,
Corollary 3.6] for details) to obtain convergence rates dictated by the following corollary to
Theorem 3.1.
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Corollary 3.4. Let h = maxK∈Ωh diam(K), d = 2, 3, and let the assumptions of Theorem 3.1
and Proposition 3.3 hold. Let ~vh = (~ph, vh) ∈ Vh and ~λh = (~ζh, λh, ζ̂n,h, λ̂h) ∈ Uh be the DPG*
solutions to (55), with G(~µ) = (f, µ). Let e ∈ H1

0 (Ω) satisfy −∆e = v + 2f . Then

‖~v − ~vh‖V + ‖~λ− ~λh‖U ≤ Chs
(
‖v‖Hs+2(Ω) + ‖e‖Hs+2(Ω)

)
,(64)

for all 1/2 < s ≤ p+ 1.

Proof. Note that the left-hand side of the inequalities in Theorem 3.1 and Corollary 3.4
coincide. Therefore, our proof proceeds by showing that inf~ν∈Vh ‖~v − ~ν‖2V + inf~µ∈Uh ‖~λ− ~µ‖U
is bounded from above by the right-hand side of (64).

Let 1/2 < s ≤ p+1 and notice that ‖~v−~ν‖2V = ‖~p−~τ‖2H(div,Ωh)
+‖v−ν‖2H1(Ωh)

. Therefore, the
following inequality, inf~ν∈Vh ‖~v−~ν‖2V ≤ Chs(‖~p‖Hs+1(Ω)+‖v‖Hs+1(Ω)), is immediate upon sub-
stituting ~ν =

∏
K∈Ωh(ΠK

div~p,Π
K
gradv), where ΠK

div : H(div,K) ∩Hs(K) → ~xPp(K) + Pp(K)d

andΠK
grad : H1+s(K)→ Pp+1(K) are the local Raviart–Thomas and nodal interpolation opera-

tors, for each elementK ∈ Ωh. Since ~p = grad v, we see that inf~ν∈Vh ‖~v−~ν‖2V ≤ Chs‖v‖Hs+2(Ω).
To handle the term inf~µ∈Uh ‖~λ− ~µ‖U, we remark that it is well known (cf. [24]) that there

also exist global interpolants Πgradv ∈ H1
0 (Ω), Πdiv~p ∈ H(div, Ω), and Πλ ∈ L2(Ω) such

that Πgradv|K ∈ Pp+1(K), Πdiv~p|K ∈ ~xPp(K) + Pp(K)d, and Πλ|K ∈ Pp(K), for all K ∈ Ω.
Moreover, there exist constants C, depending on the polynomial degree p and the shape of
the domain Ω, such that

‖v −Πgradv‖H1(Ω) ≤ Chr|v|Hs+1(Ω), (1/2 < r ≤ p+ 1),(65a)
‖~p−Πdiv~p‖H(div,Ω) ≤ Chr|~p|Hs+1(Ω), (0 < r ≤ p+ 1),(65b)
‖λ−Πλ‖L2(Ω) ≤ Chr|λ|Hs(Ω), (0 < r ≤ p+ 1).(65c)

Notice that ‖~λ− ~µ‖2U = ‖~ζ − ~σ‖2L2(Ω) + ‖λ− µ‖2L2(Ω) + ‖ζ̂n− σ̂n‖H−1/2 (∂Ωh) + ‖λ̂− µ̂‖
H

1/2 (∂Ωh)
.

Consider inf~σ∈L2(Ω)d ‖~ζ − ~σ‖L2(Ω) ≤ Chs|~ζ|Hs(Ω) and infµ∈L2(Ω) ‖λ − µ‖L2(Ω) ≤ hs|λ|Hs(Ω),
both by (65c). Now, by (62) in Proposition 3.3, |~ζ|Hs(Ω) ≤ |~p|Hs(Ω) + |~r|Hs(Ω). Similarly, by
invoking the identity f = −∆v, we have |λ|Hs(Ω) ≤ 2|f |Hs(Ω)+|e|Hs(Ω) ≤ 2|v|Hs+2(Ω)+|e|Hs(Ω).
Next, recall that ‖ trn ~σ‖H−1/2 (∂Ωh) ≤ C‖~σ‖H(div,Ωh), for any ~σ ∈ H(div, Ωh), by continuity
of the normal trace operator trn : H(div, Ωh) → H

−1/2(∂Ωh). Therefore, invoking (65b)
and (62), we see that inf

σ̂n∈H
−1/2 (∂Ωh)

‖ζ̂n − σ̂n‖H−1/2 (∂Ωh) ≤ Chs(2|~p|H1+s(Ω) + |~r|H1+s(Ω)).

Likewise, using the trace theorem, (65a), and (62), we find inf
µ̂∈H1/2 (∂Ωh)

‖λ̂− µ̂‖
H

1/2 (∂Ωh)
≤

Chs|e|H1+s(Ω). Recalling that ~p = grad v and ~r = − grad e completes the proof. �

The conclusion from Corollary 3.4 is that even if the solution v has high regularity throughout
the entire domain and up to the boundary, the convergence rate of the DPG* method is still
controlled by a pollution variable e, which may happen to be less regular than v. Indeed, by
elliptic regularity [29], e, which satisfies −∆e = v + 2f , will be at least as regular as v in the
interior of the domain, but may not be as regular up to the boundary.

To illustrate how to get higher order convergence rates in weaker norms using duality, we
want to apply Theorem 3.2. To this end, we require sufficient regularity in the solution of
the dual problem. Consider the case of full regularity, where, for any g ∈ L2(Ω), the solution
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u ∈ H1
0 (Ω) of the Dirichlet problem −∆u = g satisfies

(66) ‖u‖H2(Ω) ≤ C‖g‖L2(Ω).

The inequality above is well known to hold on convex polygonal domains. In this case, we
apply Theorem 3.2 with F ∈ V′ defined

(67) F ((~τ , ν)) = (v − vh, ν)Ω.

Note that F only sees the error in the first solution component of ~vh = (~ph, vh) and that

(68) ‖F‖V′ ≤ ‖v − vh‖L2(Ω).

We now need to verify (58), so let us consider the present analog of (57), with the functional
F in (67):

(69)

{
(~ε, ~ν)V + b(~u, ~ν) = F (~ν), ∀~ν ∈ V,

b(~µ, ~ε) = 0, ∀ ~µ ∈ U.

First, observe that Theorem 2.2 implies B is a bijection, so (57b) implies that ~ε = 0. There-
fore (57a) reduces to finding ~u = (~q, u) ∈ U, where b(~u, ~ν) = F (~ν) for all ~ν ∈ V. This
is an equation of the form (35b). Hence, the second item of Theorem 2.2 implies that
L∗~u = (~0, v − vh); i.e., we may write ~u = (− gradu, u) ∈ H0(L∗) = H(div, Ω)×H1

0 (Ω) such
that u ∈ H1

0 (Ω) satisfies −∆u = v − vh. Now, due to the full regularity estimate (66) applied
to u, we have ‖u‖H2(Ω) ≤ C‖v − vh‖L2(Ω).

We may now invoke the complement of Corollary 3.4, [33, Theorem 6]:

Theorem 3.5. Let p ∈ N0, let ~u be the solution to (69) for some arbitrary F ∈ V′. Then
there exists a constant C, depending only on p and the shape regularity of Ωh, such that

inf
~µ∈Uh

‖~u− ~µ‖U ≤ Chp+1
(
‖u‖Hp+2(Ω) + ‖~q‖Hp+1(Ωh)

)
.

Using the fact that ~q = − gradu, we now have the estimate

inf
~µ∈Uh

‖~u− ~µ‖U ≤ Ch‖u‖H2(Ω) ≤ Ch‖v − vh‖L2(Ω).

Which is of the same form as (58). Finally, it is clear that assumption (58) holds with c0(h) = h.
Then, (68) and Theorem 3.2 imply

‖v − vh‖2L2(Ω) = F (v − vh) ≤ Ch‖v − vh‖L2(Ω)

[
inf
ν∈Vh

‖~v − ~ν‖2V + inf
~µ∈Uh

‖~λ− ~µ‖2U
]1/2

,

which provides one higher order of convergence in the L2 norm for the solution component vh.
Ultimately, the upshot of the entire a priori error analysis above is that poor a priori

convergence rates are possible with this method, even for infinitely smooth solutions v, due to
the Lagrange multiplier λ, which may not be as smooth (cf. Section 5.3). Thus, without an
adaptive algorithm that helps one capture irregular solutions, the DPG* method is generally
impractical for high-order methods. We therefore proceed by studying a posteriori error
control.
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4. A posteriori error control

In this section, we will present an abstract a posteriori error estimator valid for all ultraweak
DPG* formulations (see Section 2.3). We then proceed to work out the example of the Poisson
problem in full detail. Note that abstract ultraweak formulations encompass many physical
models besides the Poisson example given above. Other important examples with similar
functional settings include convection-dominated diffusion [25, 14], Stokes flow [48, 13], linear
elasticity [7, 12], and acoustics [34, 44, 51].

4.1. Designing error estimators for general ultraweak DPG* formulations. Consider
the general setting of Section 2.3 and the broken ultraweak DPG* formulation which is proved
to be well posed in Theorem 2.4. Namely, with L set to the general partial differential operator
in (30), the problem of finding a v ∈ H0(L) satisfying Lv = f is reformulated as (40), where

〈B(µ, ρ), ν〉V = b((µ, ρ), ν) = (µ,Lhν)Ω + 〈ρ, ν〉h,
for all (µ, ρ) ∈ U = L2 × Q(Lh) and ν ∈ V = H(Lh). The DPG* method produces an
approximation to v using two finite-dimensional subspaces Uh⊆U and Vh⊆V. Let

(70) η(ν) = sup
ρ∈Q(Lh)

〈ρ, ν〉h
‖ρ‖Q(Lh)

, ν ∈ Vh.

This quantity can usually be interpreted as a “jump term” in applications. The message of the
next theorem is that, notwithstanding the generality of the operators considered, the design of
a posteriori error estimators for all ultraweak DPG* formulations reduces to obtaining upper
and lower bounds for η.

Theorem 4.1. Consider the ultraweak DPG* formulation (40) with G((µ, ρ)) = (f, µ), for
some f ∈ L2. Suppose (32) holds and L∗ : H0(L∗)→ L2 is a bijection. Then, for any vh ∈ Vh
(not necessarily equal to the DPG* solution),

(71) ‖B‖−1‖G−B′vh‖U′ ≤ ‖v − vh‖V ≤ ‖B−1‖‖G−B′vh‖U′

and, moreover,

(72) ‖G−B′vh‖2U′ = ‖Lhvh − f‖2Ω + η(vh)2.

Proof. In view of (40), v − vh satisfies

(73)

{
RV(v − vh) + B((λ, σ)) = −RVvh,

B′(v − vh) = G−B′vh.

By Theorem 2.4, B is a bijection. Hence, applying the identity (22) of Proposition 2.1 to the
system (73), we arrive at

‖v − vh‖V = |||G−B′vh|||U′ = sup
µ∈U

〈G−B′vh, µ〉U
|||µ|||U

,

where the second equality comes directly from definition (15). Next, recall that the norms
‖ ·‖U and ||| · |||U are equivalent. Indeed, ‖B−1‖−1‖µ‖U ≤ |||µ|||U ≤ ‖B‖‖µ‖U, for all µ ∈ U. The
first result, (71), now follows immediately.
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To arrive at (72), simply observe that

‖G−B′vh‖2U′ = sup
µ∈L2, ρ∈Q(Lh)

∣∣(f, µ)Ω − b((µ, ρ), vh)
∣∣2

‖(µ, ρ)‖2U

= sup
µ∈L2, ρ∈Q(Lh)

∣∣(f − Lhvh, µ)Ω − 〈ρ, vh〉h
∣∣2

‖µ‖2Ω + ‖ρ‖2Q(Lh)

= sup
µ∈L2

∣∣(f − Lhvh, µ)Ω
∣∣2

‖µ‖2Ω
+ sup
ρ∈Q(Lh)

∣∣〈ρ, vh〉h∣∣2
‖ρ‖2Q(Lh)

and the second result also follows. �

4.2. A posteriori error analysis for the Poisson example. In this subsection, we develop
a computable quantity that is equivalent to the function η defined above, for the example of
the DPG* method for Poisson equation. We then provide a complete analysis of reliability
and efficiency of the resulting error estimator.

Recall the variational formulation derived in Example 2.7 for Poisson’s equation. Its bilinear
form (see (46)) is

b((~σ, µ, σ̂n, µ̂), (~τ , ν)) = ((~σ, µ),Lh(~τ , ν))Ω + 〈µ̂, ~τ · ~n〉h + 〈σ̂n, ν〉h ,

where Lh(ν, ~τ) = (~τ − gradh ν, −divh ~τ). In this subsection, we proceed by assuming, for
simplicity, that Ω⊆R2, and that Ωh is a geometrically conforming triangular shape-regular
mesh. Let E denote the set of all mesh edges and let Eint⊆E be the set of all interior edges
of Ωh. Let hE be the length of any edge E ∈ E . Any E ∈ Eint has two adjacent elements K+

and K− such that E = ∂K+ ∩ ∂K−. Let

J~τ · ~nK = ~τK+ · ~nK+ + ~τK− · ~nK− , J~τ · ~n⊥K = ~n⊥K+ · ~τK+ + ~n⊥K− · ~τK− .

Here, ~n⊥K is the tangential unit vector; i.e., if ~nK = (n1, n2) then ~n⊥K = (−n2, n1). If E ∈ E\Eint

is an exterior edge on the boundary of an element K, then with ~n equal to the outward unit
normal on ∂Ω, we simply set J~τ · ~nK = ~τK · ~n and J~τ · ~n⊥K = ~n⊥ · ~τK . Similarly, for any scalar
function ν that may be discontinuous across an interface E ∈ Eint, we define

Jν~nK = νK+~nK+ + νK−~nK−

and set JνK = νK~n on boundary edges E ∈ E \ Eint.
The setting for the DPG* method for the Poisson equation (of Example 2.7), including its

discrete spaces Uh,Vh, is described in Section 3.2. We continue with these settings in this
subsection. Let h denote the maximum of hE over all E ∈ E . When mesh dependent quantities
A and B satisfy A ≤ CB, with a positive constant C independent of h, then we write A . B.
When A . B and B . A, then we write A h B. The main result of this subsection is the
next theorem.

Theorem 4.2. Under the above settings, suppose (~p, v) ∈ V and (~ph, vh) ∈ Vh are the exact
solution and the discrete DPG* solution of the Laplace problem, respectively. Then

‖(~p, v)− (~ph, vh)‖V h ηi(~ph, vh)
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for i ∈ {1, 2}, where the computable error estimators ηi are defined by

η1(~ph, vh)2 =
∥∥L(~ph, vh)− f

∥∥2
Ω

+
∑
E∈Eint

hE
∥∥J~ph · ~nK

∥∥2
L2(E)

+
∑
E∈E

hE
∥∥Jvh~nK

∥∥2
H1(E)

,

η2(~ph, vh)2 =
∥∥L(~ph, vh)− f

∥∥2
Ω

+
∑
E∈Eint

hE
∥∥J~ph · ~nK

∥∥2
L2(E)

+
∑
E∈E

h−1E
∥∥Jvh~nK

∥∥2
L2(E)

.

The remainder of this subsection is devoted to proving this theorem. The main idea is to
apply Theorem 4.1, but some intermediate results need to be established first. To this end,
recall that there exists a H1-norm minimum energy extensionEgrad that provides a continuous
right inverse of tr : H1(Ω)→ H1/2(∂Ωh). Indeed, for all ŵ ∈ H1/2(∂Ωh), Egrad is defined using
the pre-image set tr−1{ŵ} simply as

Egrad(ŵ) = arg min
w∈tr−1{ŵ}

‖w‖H1(Ω).

Similarly, for all q̂n ∈ H−1/2(∂Ωh), the continuous right inverse of trn : H(div, Ω)→ H
−1/2(∂Ωh)

is defined
Ediv(q̂n) = arg min

~qn∈tr−1
n {q̂}

‖ ~q ‖H(div,Ω).

Clearly these operators can also be applied element by element.
Before establishing a number of lemmas, we pause to construct two helpful observations.

First, for any q̂n ∈ P̂p(∂Ωh), let q̂E denote the function in P̂p(∂Ωh) that vanishes on all
edges of E , except on the edge E where it equals q̂|E . Observe that Ediv(q̂E) is supported
only on ΩE =

⋃{K ∈ Ωh : meas(∂K ∩ E) 6= ∅}. Second, let bE denote the edge bubble
of E (i.e., the product of the barycentric coordinates of the endpoints of E) and define
P̃ 0
p+2(∂Ωh) = {µ ∈ tr(Pp+2(Ωh) ∩ H1

0 (Ω)) : on any edge E ∈ E , µ|E = rpbE for some
rp ∈ Pp(E)}. Likewise, for any µ̂ ∈ P̃ 0

p+2(∂Ωh), the function Egrad(µ̂) is supported only on
ΩE .

Our first lemma may be thought of as an inf-sup condition involving the space of edge
bubbles P̃ 0

p+2(∂Ωh).

Lemma 4.3. For any degree p ≥ 0 and for any ~qh ∈ Pp(Ωh)2,∑
E∈Eint

hE

∥∥∥J~qh · ~nK
∥∥∥2
L2(E)

. sup
µ̂∈P̃ 0

p+2(∂Ωh)

〈~qh · ~n, µ̂〉2h
‖Egrad(µ̂)‖2

H1(Ω)

.

Proof. We shall use the following two estimates that can be proved by scaling arguments using
finite dimensionality (see e.g. [52]). For all ŵ ∈ tr(Pp(Ωh) ∩H1

0 (Ω)),

‖bEŵ‖2L2(E) ≤ ‖ŵ‖2L2(E) . (bEŵ, ŵ)E ,(75)

|Egrad(bEŵE)|H1(ΩE) . h
−1/2
E ‖ŵ‖L2(E),(76)

where (·, ·)E denotes the inner product of L2(E) and ŵE is as defined above. For any ~qh ∈
Pp(Ωh) with nontrivial J~qh · ~nKE , we have

(77)
hE
∥∥J~qh · ~nK

∥∥2
L2(E)

. hE(bEJ~qh · ~nK, J~qh · nK)E by (75)

.
(bEJ~qh · ~nK, J~qh · ~nK)E

|Egrad(bEJ~qh · ~nKE)|H1(ΩE)
h

1/2
E ‖J~qh · ~nKE‖L2(E) by (76),
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which, after canceling h
1/2
E ‖J~qh ·~nKE‖L2(E) from both sides, provides a local version of the result

we want to prove.
To get to the global estimate, we will accumulate the contributions of jumps across each

edge. For this, its useful to observe that for all µ̂ ∈ P̃ 0
p+2(∂Ωh), we have

(78) |Egrad(µ̂)|2H1(Ω) .
∑
E∈Eint

|Egrad(µ̂E)|2H1(ΩE)
.

This can be seen beginning from the linearity of Egrad and the fact that EK = {E ∈ E :
meas(E ∩ ∂K) 6= 0} has fixed finite cardinality:

|Egrad(µ̂)|2H1(Ω) =

∣∣∣∣ ∑
E∈Eint

Egrad(µ̂E)

∣∣∣∣2
H1(Ω)

=
∑
K∈Ωh

∣∣∣ ∑
E∈Eint

Egrad(µ̂E)
∣∣∣2
H1(K)

=
∑
K∈Ωh

∣∣∣ ∑
E∈EK

Egrad(µ̂E)
∣∣∣2
H1(K)

.
∑
K∈Ωh

∑
E∈EK

|Egrad(µ̂E)|2H1(K) .
∑
E∈Eint

|Egrad(µ̂E)|2H1(ΩE)
,

which proves (78).
We can now complete the proof as follows. Starting from (77),∑
E∈Eint

hE

∥∥∥J~qh · ~nK
∥∥∥2
L2(E)

.
∑
E∈Eint

(bEJ~qh · ~nK, J~qh · ~nK)2E
|Egrad(bEJ~qh · ~nKE)|2

H1(ΩE)

≤
∑
E∈Eint

sup
µ̂∈P̃ 0

p+2(∂Ωh)

(µ̂E , J~qh · ~nK)2E
|Egrad(µ̂E)|2

H1(ΩE)

= sup
µ̂∈P̃ 0

p+2(∂Ωh)

(∑
E∈Eint

(µ̂E , J~qh · ~nK)E
)2∑

E∈Eint
|Egrad(µ̂E)|2

H1(ΩE)

,

where, in the equality, we have exploited a property of suprema over components of a Cartesian
product space (noting that the space P̃ 0

p+2(∂Ωh) is the Cartesian product of bEPp(E) over
all interior edges E). Now, the result follows by noting that the numerator above equals
〈µ, ~qh · ~n〉2h and by bounding the denominator using (78) and the Poincaré inequality. �

Lemma 4.4. For any degree p ≥ 1 and for any wh ∈ Pp(Ωh),∑
E∈Eint

hE

∣∣∣Jwh~nK
∣∣∣2
H1(E)

. sup
σ̂·~n∈P̂p(∂Ωh)

〈σ̂ · ~n,wh〉2h
‖Ediv(σ̂ · ~n)‖2H(div,Ω)

,

where P̂p(∂Ωh) is as defined in (61).

Proof. For any wh ∈ Pp(Ωh) and any E ∈ E , the function J~n⊥ · gradwhK represents the
tangential derivative of the jump of wh across E. Then φE = Egrad(Jgradwh · ~n⊥KEbE) is
supported on ΩE and the trace of φE vanishes on all edges except E. Let Ωh,E = {K ∈ Ωh :
K ⊆ ΩE}. Using the vector curl of the scalar function φE , by an application of (75), we have∣∣Jwh~nK

∣∣2
H1(E)

. (bEJ~n⊥ · gradwhK, J~n⊥ · gradwhK)E

=

∫
E
φEJ~n⊥ · gradwhK =

∑
K∈Ωh,E

∫
∂K

φE~n
⊥ · gradwh

=
∑

K∈Ωh,E

(curlφE , gradwh)K =
∑

K∈Ωh,E

∫
∂K

~n · curlφEwh = (curlφE , Jwh~nK)E ,
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where we have also used the Stokes and the divergence theorems in succession. Now, noting that
‖ curlφE‖H(div,ΩE) = |φE |H1(ΩE) = |Egrad(Jgradwh · ~n⊥KEbE)|H1(ΩE) we deduce using (76)
that ‖ curlφE‖H(div,ΩE) . h

−1/2
E |Jwh~nK|H1(E). Hence∣∣Jwh~nK

∣∣2
H1(E)

.
(curlφE , Jwh~nK)E
‖ curlφE‖H(div,ΩE)

‖ curlφE‖H(div,ΩE) .
(curlφE , Jwh~nK)E
‖ curlφE‖H(div,ΩE)

h
−1/2
E

∣∣Jwh~nK
∣∣
H1(E)

.

Together with the minimal extension property ‖Ediv(~n · curlφE)‖H(div,Ω) ≤ ‖ curlφE‖H(div,Ω),
this implies that

hE

∣∣∣Jwh~nK
∣∣∣2
H1(E)

.
(curlφE , Jwh~nK)E

‖Ediv(~n · curlφE)‖2H(div,ΩE)

≤ sup
σ̂E ·~n∈P̂p(E)

〈σ̂E · ~n,wh〉h
‖Ediv(σ̂E · ~n)‖2H(div,ΩE)

,

where P̂p(E) denotes the subspace of functions in P̂p(Ωh) supported on E. We have thus
arrived at a local version of the desired inequality. By proving an analogue of (78) for Ediv ,
and following along the lines of the proof of Lemma 4.3, we finish the proof. �

Since the suprema in Lemmas 4.3 and 4.4 are related to the function η in (70), these lemmas
can be thought of providing lower bounds, often called efficiency estimates in the analysis
of a posteriori estimators. To prove upper bounds, also called reliability estimates, we need
some additional tools. Recall that any ~σ ∈ H(div, Ω) may be decomposed using the so-called
regular decomposition [26, Section 3.3] as ~σ = curl(ϕ~σ) + ~ψ~σ such that

‖ϕ~σ‖H1(Ω) + ‖~ψ~σ‖H1(Ω) . ‖~σ‖H(div,Ω) .

We shall also need low-regularity commuting quasi-interpolators of [26], built using refinements
of earlier ideas in [15, 49]. Namely, there exist operators Igrad : H1(Ω) → P1(Ωh) ∩H1(Ω)
and Idiv : H(div, Ω) → RT0(Ωh) ∩ H(div, Ω), such that curl ◦Igrad = Idiv ◦ curl. Here,
RT0(Ωh) = P0(Ωh)2 + ~xP0(Ωh), the lowest order Raviart–Thomas space. In addition, the
following inequalities [26, Lemma 6] hold for all µ ∈ H1(Ω) and ~σ ∈ H(div, Ω):∑

E∈E
h−1E ‖µ− Igradµ‖2L2(E) . ‖µ‖2H1(Ω) ,(79a) ∑

E∈E
h−1E ‖ϕ~σ − Igradϕ~σ‖2L2(E) + h−1E ‖(~ψ~σ − Idiv ~ψ~σ) · ~n‖2L2(E) . ‖~σ‖2H(div,Ω) .(79b)

These results also hold with H1(Ω) replaced by H1
0 (Ω) and H(div, Ω) replaced by H0(div, Ω).

Lemma 4.5. For any degree p ≥ 0 and any ~qh ∈ Pp(Ωh)2 satisfying 〈µ̂1, ~qh · ~n〉h = 0 for all
µ̂1 ∈ tr(P1(Ωh) ∩H1

0 (Ω)), we have

(80)
∑
E∈Eint

hE

∥∥∥J~qh · ~nK
∥∥∥2
L2(E)

h sup
µ∈H1

0 (Ω)

〈µ, ~qh · ~n〉2h
‖µ‖2

H1(Ω)

.

Proof. By Lemma 4.3,∑
E∈Eint

hE

∥∥∥J~qh · ~nK
∥∥∥2
L2(E)

. sup
µ̂h∈P̃ 0

p+2(∂Ωh)

〈~qh · ~n, µ̂h〉2h
‖Egrad(µ̂h)‖2

H1(Ω)

. sup

µ̂∈H
1/2
0 (∂Ωh)

〈µ̂, ~qh · ~n〉2h
‖µ̂‖2

H
1/2 (∂Ωh)

= sup
µ∈H1

0 (Ω)

〈µ, ~qh · ~n〉2h
‖µ‖2

H1(Ω)

,
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where the last identity follows from previous works (see [19] or [11, Theorem 2.3]).
Hence, it suffices to prove the reverse inequality. Since 〈Igradµ, ~qh · ~n〉h = 0,

〈µ, ~qh · ~n〉h = 〈µ− Igradµ, ~qh · ~n〉h =
∑
E∈Eint

(µ− Igradµ, J~qh · ~nK)E

.
∑
E∈Eint

h
−1/2
E ‖µ− Igradµ‖L2(E) h

1/2
E

∥∥∥J~qh · ~nK
∥∥∥
L2(E)

. ‖µ‖H1(Ω)

( ∑
E∈Eint

hE

∥∥∥J~qh · ~nK
∥∥∥2
L2(E)

)1/2

.

Here, in the final line, we have used the Cauchy–Schwarz inequality and (79a). This completes
the proof of (80). �

Lemma 4.6. For any degree p ≥ 1 and any wh ∈ Pp(Ωh) satisfying
∫
EJwh~nK = 0 on all edges

E ∈ E ,

(81)
∑
E∈E

hE

∥∥∥Jwh~nK
∥∥∥2
H1(E)

h
∑
E∈E

h−1E

∥∥∥Jwh~nK
∥∥∥2
L2(E)

h sup
~σ∈H(div,Ω)

〈~σ · ~n,wh〉2h
‖~σ‖2H(div,Ω)

.

Proof. The first equivalence in (81) immediately follows from the Poincaré inequality since
the mean value of Jwh~nK vanishes. To prove the remaining equivalence, first observe that
Lemma 4.4 implies

∑
E∈Eint

hE

∣∣∣Jwh~nK
∣∣∣2
H1(E)

. sup
σ̂·~n∈P̂p(∂Ωh)

〈σ̂ · ~n,wh〉2h
‖Ediv(σ̂ · ~n)‖2H(div,Ω)

≤ sup
σ̂·~n∈H−1/2 (∂Ωh)

〈σ̂ · ~n,wh〉2h
‖σ̂ · ~n‖2

H
−1/2 (∂Ωh)

= sup
σ∈H(div,Ω)

〈σ · ~n,wh〉2h
‖σ‖2H(div,Ω)

,

where the last identity is well known (see [11, Theorem 2.3]). This proves one side of the
stated equivalence.

To prove the remaining inequality, we start by decomposing any given ~σ ∈ H(div, Ω) using
above-mentioned regular decomposition: ~σ = curlϕ~σ + ~ψ~σ. Then, since the jump of wh has
zero mean value on every edge, we observe that 〈~n · Idiv ~ψ~σ, wh〉h = 〈~n · Idiv(curlϕ~σ), wh〉h = 0.
Therefore, by the commutativity property of the quasi-interpolators,

〈~σ · ~n,wh〉h = 〈~n · (curlϕ~σ − Igradϕ~σ), wh〉h + 〈~n · (~ψ~σ − Idiv ~ψ~σ), wh〉h.

We proceed labeling the terms on the right as t1 and t2, respectively. Using the divergence
theorem and the Stokes theorem in succession,

t1 = (curl(ϕ~σ − Igradϕ~σ), gradwh)Ω

= 〈ϕ~σ − Igradϕ~σ, ~n⊥ · gradwh〉h =
∑
E∈E

(ϕ~σ − Igradϕ~σ, J~n⊥ · gradwhK)E

.
∑
E∈E

h
−1/2
E ‖ϕ~σ − Igradϕ~σ‖L2(E) h

1/2
E

∣∣∣Jwh~nK
∣∣∣
H1(E)

. ‖~σ‖H(div,Ω)

(∑
E∈E

hE

∣∣∣Jwh~nK
∣∣∣2
H1(E)

)1/2

.
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Here, in the final line, we have also used the Cauchy–Schwarz inequality and (79b). The term
t2 can be estimated similarly:

t2 =
∑
E∈E

(~ψ~σ − Idiv ~ψ~σ, Jwh~nK)E ≤
∑
E∈E

h
−1/2
E ‖~ψ~σ − Idiv ~ψ~σ‖L2(E)h

1/2
E

∥∥∥Jwh~nK
∥∥∥
L2(E)

. ‖~σ‖H(div,Ω)

(∑
E∈E

hE

∥∥∥Jwh~nK
∥∥∥2
L2(E)

)1/2

.

Thus, the proof of the remaining inequality is complete:
〈~σ · ~n,wh〉2h
‖~σ‖2H(div,Ω)

=
(t1 + t2)

2

‖~σ‖2H(div,Ω)

.
∑
E∈E

hE

∥∥∥Jwh~nK
∥∥∥2
L2(E)

. �

Proof of Theorem 4.2. The DPG* solution (~ph, vh) satisfies the equations of (60) for all (~τ , ν) ∈
Vh and all (~σ, µ, σ̂n.µ̂) ∈ Uh. In particular, (60b) implies that 〈~ph · ~n, µ̂〉h = 〈vh, σ̂n〉h = 0.
Hence the conditions of Lemmas 4.5 and 4.6 are satisfied. The conclusions of these lemmas
show that the η in Theorem 4.1 satisfies

η((~ph, vh)) h
∑
E∈Eint

hE
∥∥J~ph · ~nK

∥∥2
L2(E)

+
∑
E∈E

hE
∥∥Jvh~nK

∥∥2
H1(E)

and, moreover, the last term may be replaced by h−1E
∥∥Jvh~nK

∥∥2
L2(E)

, if we please. Hence an
application of Theorem 4.1 completes the proof. �

5. Numerical experiments

In order to verify the mathematical theory developed above, we conducted several standard
numerical verification experiments using two finite element software packages which have been
used extensively for implementing DPG methods. In our first set of experiments, we used
Camellia [46, 47], a user-friendly C++ toolbox developed by Nathan V. Roberts which itself
relies on Sandia’s Trilinos library of packages [37]. Specifically, Camellia was used for the a
priori convergence rate verification on the model square domain Ω� = [0, 1]2 reported on in
Section 5.3. In our second set of experiments, we used hp2D, a sophisticated suite of Fortan
routines with support for 2D local hierarchical and anisotropic h- and p-refinements on hybrid
meshes [17] and corresponding oriented embedded shape functions for both quadrilateral and
triangular elements in each of the canonical 2D de Rham sequence energy spaces [31]:

H1(K)
grad−−−→ H(rot,K)

rot−−−→ L2(K) and H1(K)
curl−−−→ H(div,K)

div−−−→ L2(K) .

hp2D was used to implement a simple hp-adaptive algorithm for a singular solution to Poisson’s
equation on the canonical L-shaped domain, Ω = (−1, 1)2 \ [0, 1] × [−1, 0]; see Section 5.4.
This experiment parallels a similar study with the analogous DPG method in [19].

5.1. Set-up. Let Ω ∈ {Ω�, Ω } and let ΓD, ΓN be disjoint and relatively open subsets com-
prising ∂Ω; ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = ∂Ω. All of our experiments investigate some form of
Poisson’s equation:

(82)


−∆v = f in Ω ,

v = v0 on ΓD ,

∂v

∂n
= pn on ΓN ,
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where the load f ∈ L2(Ω) and the boundary data v0 and pn are appropriately smooth.
As before, let Ωh denote the mesh subordinate to Ω and let E denote the corresponding

collection of edges. In each of our experiments, we only considered piecewise-affine two-
dimensional domains Ω ∈ {Ω�, Ω } subdivided into quadtree meshes consisting of either fully
geometrically conforming or 1-irregular quadrilateral elementsK ∈ Ωh.4 During stiffness matrix
assembly, the degrees of freedom of every element edge with a hanging node was constrained
by its common edge. Alternatively, because of the ultraweak variational formulation we
considered, we could have incorporated each edge independently [46, 50].

For each quadrilateral element K ∈ Ωh, we associated a unique (anisotropic) polynomial
order pK , qK ≥ 1, respectively. Each associated polynomial order can be naturally related to
a (pK , qK)-order conforming finite element de Rham sequence. For instance, begin with the
standard Nédélec spaces of the first type,

QpK ,qK (K)
curl−−−→ QpK ,qK−1 ×QpK−1,qK (K)

div−−−→ QpK−1,qK−1(K) ,

where QpK ,qK (K) is the space of bivariate polynomials over K with degree at most pK horizon-
tally and qK vertically. Now, consider the mesh-dependent sequence Whp

curl−−−→ Vhp
div−−−→ Yhp,

where

Whp = {w ∈ H1
0 (Ω) : w|K ∈ QpK ,qK (K) ∀K ∈ Ωh} ,

Vhp = {~q ∈ H(div, Ω) : ~q|K ∈ QpK ,qK−1(K)×QpK−1,qK (K) ∀K ∈ Ωh} ,
Yhp = {w ∈ L2(Ω) : w|K ∈ QpK−1,qK−1(K) ∀K ∈ Ωh} .

We define the (isotropic) uniform-p trial space to be Uh = Yhp × Y 2
hp × tr(Whp) × trn(Vhp),

where pK = qK = p is fixed for all K ∈ Ωh. Similarly, the corresponding (anisotropic) hp trial
space is defined Uh = Yhp × Y 2

hp × tr(Whp)× trn(Vhp), where pK and qK are allowed to vary
freely throughout the mesh. With the latter definition, notice that the polynomial order of
an hp interface function, when restricted to a single shared edge E ∈ E , E =

⋂
K∩E 6=∅K, will

naturally be restricted by the lowest polynomial order of all elements K ∩ E 6= ∅ sharing the
edge.5

For the test functions, define the spaces

W̃hp,dp = {v ∈ H1(Ωh) : v|K ∈ QpK+dp,qK+dp(K) ∀K ∈ Ωh} ,
Ṽ hp,dp = {~q ∈ H(div, Ωh) : ~q|K ∈ QpK+dp,qK+dp−1(K)×QpK+dp−1,qK+dp(K) ∀K ∈ Ωh} .

In all of our numerical experiments, we used Vh = W̃hp,dp × Ṽ hp,dp where dp ∈ {0, 1, 2}.
5.2. Adaptive mesh refinement. In our experiments with h- and hp-adaptive mesh refine-
ment, we used a standard isotropic h-subdivision rule. Namely, at each refinement step, each
element marked for h-refinement was uniformly subdivided into four equal-order quadrilateral
elements. Afterward, a standard so-called “mesh closure” algorithm was called to induce a
small number of additional isotropic h-subdivisions of neighboring elements in order to ensure
1-irregularity of the mesh. Alternatively, at each refinement step, the polynomial order of any
p-refinement marked element was isotropically incremented by one, (pK , qK) 7→ (pK+1, qK+1),

4Although many of the preceding results are proven only for triangular meshes, the numerical experi-
ments documented in this section verify alternative results in the setting of quadrilateral elements, which we
understand to be similar.

5Such a mesh obeys the so-called minimum rule.
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and then the order of all elements neighboring a p-refinement marked element was also isotrop-
ically incremented by one.

Recall that EK = {E ∈ E : meas(∂K ∩ E) 6= ∅} and define EK,int = EK ∩ Eint. Recalling
the global error estimator η1(~vh) appearing in Theorem 4.2, define a refinement indicator
ηK ∈ R≥0 for each K ∈ Ωh, viz.,

ηK =

(
‖L~vh − f‖2L2(K) +

∑
E∈EK,int

hE
∥∥J~ph · ~nK

∥∥2
L2(E)

+
∑
E∈EK

hE
∥∥Jvh~nK

∥∥2
H1(E)

)1/2

.

In element marking, we followed the so-called “greedy” algorithm. That is, at each refinement
step, all elements K ∈ Ωh whose refinement indicator ηK was above 50% of the maximum over
all elements in the mesh, ηmax = maxK∈Ωh ηK , was marked for refinement. In the case of what
we call h-adaptive mesh refinement, every marked element was h-refined, as described above,
i.e. no elements were p-refined. Alternatively, in the case of hp-adaptive mesh refinement, a
common flagging strategy [1] was used to decide whether to h or p refine; see Section 5.4.

5.3. Pure Dirichlet boundary conditions on a square domain. Recall (82). In this
first example, Ω = Ω� and ΓD = ∂Ω. We considered two seemingly benign cases for the loads:
(i) f = 2π2 sin(πx) sin(πy) and v0 = 0; and (ii) f = 0 and v0 = 1. In both cases, the exact
solution is infinitely smooth. Indeed, in case (i), v = sin(πx) sin(πy) and, in case (ii), v = 1.
We first consider DPG* methods and then LL∗ methods.

5.3.1. The DPG* method. Recall from Theorem 3.1 that the best approximation error of a
DPG* method involves the Lagrange multiplier ~λ = (~ζ, λ, ζ̂n, λ̂) as well as the DPG* solution
variable ~v = (~p, v). Assume that v is smooth. With the norm ‖(~τ , ν)‖2V = ‖~τ‖2H(div,Ωh)

+

‖ν‖2H1(Ωh)
, λ solves

(83)
{−∆λ = g in Ω ,

λ = 0 on ∂Ω ,

where g = v − 2∆v + ∆2v. Indeed, recall (62) and observe that −∆λ = −∆f − ∆e =
∆(∆v)+(v+2f) = v−2∆v+∆2v. Here, we have also used that −∆v = f and −∆e = v+2f .
In case (i), g = (1 + 4π2 − 4π4) sin(πx) sin(πy), meanwhile, in case (ii), g = 1. Notice that
g ∈ C∞(Ω) in both cases.

In the first case, λ can easily be shown to be a constant scalar multiple of sin(πx) sin(πy) and
so λ ∈ C∞(Ω) is infinitely smooth. Therefore, by Corollary 3.4, the convergence rate of the
DPG* method under uniform h-refinement will be limited only by the underlying de Rham
sequence polynomial order p. Indeed, Figure 5.5 (A) demonstrates the convergence of the
corresponding discrete solution ~vh = (~ph, vh) to the exact solution, ~v = (grad v, v), measured
in the full test norm above, starting with an single-element mesh with (isotropic) polynomial
order pK = qK = p ∈ {1, 2, 3, 4}. Figure 5.5 (B) presents the convergence of only the solution
variable vh, measured in the L2(Ω)-norm. Although both figures correspond only to a test
space enrichment of dp = 1, similar results were observed for each choice dp ∈ {0, 1, 2}.

In the second case, due to the shape of the domain, we can guarantee that λ ∈ H3(Ω)
but, ultimately, the corresponding Lagrange multiplier λ /∈ C∞(Ω) is still not infinitely
smooth.6 Therefore, with this problem, the DPG* method experiences rate-limited convergence

6Standard elliptic regularity theory can be used to show that λ ∈ C∞(Ω) is, however, infinitely smooth in
the interior of the domain [29].
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(B) Optimal rates in the L2-norm.

Figure 5.1. Convergence under h-uniform mesh refinements with the manufac-
tured solution v(x, y) = sin(πx) sin(πy). (Here, dp = 1.)
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(B) Limited optimal rates in the L2-norm.

Figure 5.2. Convergence under h-uniform mesh refinements with the manufac-
tured solution v(x, y) = 1. (Here, dp = 1.)

under uniform h-refinements. This is evidenced by Figure 5.2. However, as demonstrated by
Figure 5.3, using the greedy h-refinement strategy from Section 5.2, optimal convergence rates
can still be recovered through adaptive mesh refinement. See Figure 5.4 for a visual depiction
of the solution of the corresponding auxiliary problem (83) as well as the corresponding
adaptively refined mesh.

Remark 5.1. Previously in this subsection, we remarked that similar results were observed for
each test space enrichment parameter dp ∈ {0, 1, 2} that we chose in our numerical experi-
ments analyzing case (i). Similary, in case (ii), the behaviour documented above was nearly
indistinguishable for each dp ≥ 1. However, when dp = 0 we observed unexpected effects which
we repeatedly verified with independent implementations of the method. Indeed, starting from
a mesh consisting of a single square element of order p and subsequently performing uniform
h-refinements, the exact solution v = 1 was repeatedly reproduced up to machine zero, no
matter the polynomial order p ∈ {1, 2, 3, 4} considered. In testing more complicated manufac-
tured solutions (not documented here) which also feature a singular Lagrange multiplier λ, we
discovered superconvergence effects from this choice of enrichment parameter. Indeed, in our
numerous additional verification experiments with dp set to zero, the method overcame the
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(B) Recovered optimal rates in the L2-norm.

Figure 5.3. Convergence under h-adaptive mesh refinements with the manufac-
tured solution v(x, y) = 1. (Here, dp = 1.)

Figure 5.4. Left: The DPG* solution variable λ when v = 1. (Color scale
represents the solution values.) Right: The corresponding quadtree mesh coming from
the h-adaptive algorithm after ten refinements. (Here, p = 4 and dp = 1.)

rate-limited behavior illustrated in Figure 5.2. This peculiar superconvergence artifact can
not be explained by the theory presented in this paper. Notably, this artifact also agrees with
previous results seen with a DPG* method for acoustics which can be found in the original
technical report on the method [40] (which portions of this text are based off of) and clearly
warrants further analysis.

5.3.2. Comparison with the LL∗ method. Consider the operator L : H(div, Ω) × H1(Ω) →
(L2(Ω))d×L2(Ω) defined in (41), and its adjoint, L∗ : H(div, Ω)×H1(Ω)→ (L2(Ω))d×L2(Ω),
defined in (42):

L(~p, v) = (~p− grad v,−div ~p), L∗(~σ, µ) = (~σ + gradµ, div ~σ).

One may write an LL∗ formulation of Poisson’s equation (82), with ΓD = ∂Ω, in the following
way:

(84) (L∗(~ζ, λ),L∗(~σ, µ))Ω = (f, µ)Ω + 〈v0, ~σ · ~n〉H−1/2(∂Ω),

for all (~σ, µ) ∈ H(div, Ω) × H1
0 (Ω). After solving (84) for the unique (~ζ, λ) ∈ H(div, Ω) ×

H1
0 (Ω), the solution of (82) may be recovered by simply applying the adjoint operator to the

Lagrange multiplier; L∗(~ζ, λ) = (~p, v) = (grad v, v).
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It is instructive to write out the strong form of the equations for ~ζ and λ, which are implied
by (84):

(85)


~ζ + gradλ− grad div ~ζ = ~0 in Ω,

−div ~ζ −∆λ = f in Ω,
λ = 0 on ∂Ω,

div ~ζ = v0 on ∂Ω.

By simply substituting the following expressions into (85), the reader may verify that the
unique Lagrange multipliers ~ζ and λ can also be written

−∆λ = f + v, ~ζ = − gradλ+ grad v,

where v is just the unique solution of (82).
We can now see that the LL∗ method has precisely the same rate-limited behavior as

the DPG* method. Indeed, consider the following two loading scenarios again: (i) f =
2π2 sin(πx) sin(πy) and v0 = 0; and (ii) f = 0 and v0 = 1. In case (i), both v, λ ∈ C∞(Ω) are
infinitely smooth. On the other hand, in case (ii), λ ∈ H3(Ω) but λ 6∈ C∞(Ω), even though
the solution of (82), v = 1, is just a constant function. The numerical evidence in Figure 5.5
demonstrates that the convergence rate of the LL∗ method is affected in case (ii). One may
also compare this outcome with [10, Theorem 6.1], which guarantees optimal convergence
rates only under the assumption that the Lagrange multiplier is sufficiently smooth.
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(A) Optimal rates; v(x, y) = sin(πx) sin(πy).
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(B) Limited optimal rates; v(x, y) = 1.

Figure 5.5. Convergence under h-uniform mesh refinements with the LL∗ method.

Remark 5.2. Many LL∗ formulations contain additional terms involving a (two- or three-
dimensional) curl operator. Such terms arise due to the general fact that curl ~p = curl grad v =
~0, thus allowing H(div, Ω) to be replaced byH(div, Ω)∩H(curl, Ω)⊆(H1(Ω))d in the domains
of the differential operators above. This space facilitates the use of C0 piecewise polynomial
finite element bases when the solution is sufficiently regular. Nevertheless, enforcing the
additional equation curl ~p = ~0 also requires introducing additional “slack” variables which
make the ultimate expression for the new operators L and L∗ much more complicated. The
analysis above can easily be repeated in such scenarios, but the outcome of limited convergence
rates will not change.
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5.4. Mixed boundary conditions on an L-shaped domain. Again, recall (82). In this
final example, set Ω = Ω , ΓD = [0, 1)× {0} ∪ {0} × [0,−1), and v0 = 0. Additionally, set pn
to be the normal derivative of the exact solution v(r, θ) = r2/3 sin(23θ). For this problem, it is
well known that the solution v ∈ H1+s(Ω), for all s < 2/3.

In each of our experiments, we began with a single three-element mesh composed of congru-
ent squares and uniform order pK = qK = 2 and dp = 1 in all three elements. Figure 5.6 (A)
demonstrates the convergence of the solution error we witnessed under h-uniform, h-adaptive
(as described above), and hp-adaptive refinements using a flagging strategy where all marked
element adjacent to the origin (i.e. the singular point) are h-refined and all other marked
elements are p-refined. As shown in Figure 5.6 (B), the error estimator η(~vh) generally overes-
timated the solution error and the dependence upon dp was not seen to be roundly significant.
Figure 5.7 depicts both the computed solution and the hp mesh mesh after fifteen refinement
steps.
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Figure 5.6. (A) : Comparison of the convergence of various refinement strategies
when dp = 1. (B) : Convergence of the error in the DPG* solution variable ~vh and
the error estimator η(~vh) for two values of dp with the hp-adaptive algorithm.

Figure 5.7. Left: The DPG* solution v. (Color scale represents solution values.)
Right: The corresponding hp quadtree mesh found by the hp-adaptive algorithm after
fifteen refinements. (Colors represent polynomial degrees p.)
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