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Abstract. Considering a simple model transport problem, we present a new finite el-
ement method. While the new method fits in the class of discontinuous Galerkin (DG)
methods, it differs from standard DG and streamline diffusion methods, in that it uses a
space of discontinuous trial functions tailored for stability. The new method, unlike the
older approaches, yields optimal estimates for the primal variable in both the element size
h and polynomial degree p, and outperforms the standard upwind DG method.

1. Introduction

We introduce a new Petrov-Galerkin method for advective problems. While it belongs in
the class of discontinuous Galerkin (DG) methods, unlike the standard upwind DG method,
we are able to prove optimal h and p error estimates in the L2-norm for our discrete solution
on general meshes (where, as usual, h is the mesh size and p is the polynomial degree).
The method includes a separate outflux approximation on element interfaces and a space
of non-standard test functions designed for stability.

The boundary value problem that is the subject of this paper is posed on a polyhedral
domain Ω. Given f and g, we need to find a finite element approximation to the solution
u of

~β · ~∇u = f on Ω, (1a)

u = g on ∂inΩ. (1b)

We only consider the case of constant ~β in this paper (but extensions are possible, as
mentioned in Section 5). The inflow boundary ∂inΩ appearing in (1), is defined, letting ~n
denote the unit outward normal, by

∂inΩ = {~x ∈ ∂Ω : ~β · ~n(~x) < 0}, (2)

i.e., ∂inΩ denotes the global inflow boundary. While non-finite-element numerical techniques
can be designed for this problem (e.g. the method of characteristics), we aim for finite
elements because of its versatility in handling complicated domains as well as certain regular
and singular perturbations of the above problem. A regular perturbation of (1) is

~β · ~∇u+ α(~x)u = f. (3)

A singular perturbation of (1) is obtained by the addition of a small viscosity term with
second derivatives. This is harder to analyze. Within the domain of finite element methods
for (1), there are two broad categories (see [11] for a review). One is the very popular

The work of the first author was supported by DOE through Predictive Engineering Science (PECOS)
Center at ICES (PI: Bob Moser), and by a research contract with Boeing.

The second author was supported in part by the National Science Foundation under grants 0713833,
0619080, and an Oden fellowship at ICES.

1



2 L. DEMKOWICZ AND J. GOPALAKRISHNAN

streamline diffusion method [13] and its descendants. The other category is composed of
DG methods. Since our contribution fits in the latter, we shall now review previous works
in this category in detail.

The well known first papers proposing and analyzing the original DG method for (1)
are [14, 15, 18]. To distinguish this method from our DG method, we will call the original
DG method the “upwind DG method” and denote it by UDG, while we call ours the
“discontinuous Petrov-Galerkin method” and denote it by DPG. It is proved in [15] that if
uh is the UDG approximation, then (for a fixed p) it satisfies ‖u− uh‖L2(Ω) ≤ O(hs−1) for
some s ≤ p + 1 dictated by the regularity of the exact solution. This result was improved
by [14] wherein it was shown that the rate of convergence is in fact O(hs−1/2). In both
cases convergence with respect to p was not studied. Even if we set aside the p-convergence
issue, notice that both the results are suboptimal in h, as the best approximation error of
the finite element space is O(hs).

For some special classes of meshes however, many authors have observed (and proved)
the optimal rate of convergence of the UDG method [8, 19] with respect to h. Nonetheless,
on general meshes, the suboptimal rate of convergence cannot be improved, as shown by
a numerical example in [17] using a particular quasiuniform mesh and a smooth exact
solution. To express the sentiment of many, we quote from [8] that “the mechanisms that
induce the loss of h1/2 in the order of convergence of the L2-norm of the error are not very
well known yet”.

An hp analysis of the UDG scheme was first provided in [3]. They considered the regular
perturbation (3) under the assumption that

0 < c0 ≤ α(~x) ∀~x ∈ Ω (4)

Because of this assumption, they are able to control the L2(Ω)-norm of the solution. They
also introduced a stabilization parameter into the original upwind DG method. A few years
later, the paper [12] extended the results of [3] in several directions, providing a unified
theory for an hp version of the streamline diffusion method, as well as the upwind DG

method. Their analysis did not assume (4), rather they let the advection vector ~β depend
on ~x and assumed

0 < c0 ≤ −
1

2
∇ · β(~x) + α(~x) ∀~x ∈ Ω, (5)

as a consequence of which they have stability in c0‖u‖L2(Ω). (Note that for the case we
intend to study (1), the right hand side of (5) evaluates to zero, so (5) does not hold.)
Both papers analyzed the stabilized version of the upwind DG method and both relied on
the proper choice of the stabilization parameter. While the results of [12] are optimal in p,
those of [3] are suboptimal in p. In all these works, the L2(Ω)-rate of convergence of the
error with respect to h remained suboptimal by h1/2. In contrast, our results do not exhibit
this suboptimality, nor do we add any stabilization parameter. We believe our method is
the first in the finite element (not just DG) family of methods for the transport equation
which has provably optimal convergence rates on very general meshes.

The design of our method is guided by a generalization of Céa lemma due to Babuška
[1, 5]. We only need a simple version of the result, which we now describe using the following
notations (all our spaces are over R): Let X, Xh ⊂ X, and Vh be Banach spaces and let
ah(·, ·) be a bilinear form on X × Vh. Suppose the exact solution U ∈ X satisfies and the
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discrete solution Uh ∈ Xh satisfies

ah(U − Uh, vh) = 0 for all vh ∈ Vh. (6)

If the bilinear form is continuous in the sense that there is a C1 > 0 such that

ah(w, vh) ≤ C1‖w‖X‖vh‖Vh for all w ∈ X, vh ∈ Vh (7)

and also the inf-sup condition, i.e., there is a C2 > 0 such that

C2‖wh‖X ≤ sup
vh∈Vh

ah(wh, vh)

‖vh‖Vh
for all wh ∈ Xh, (8)

then, as is well known, the following theorem can be formulated:

Theorem 1.1. Under the above setting, we have the following error estimate:

‖U − Uh‖X ≤ (1 +
C1

C2

) inf
wh∈Xh

‖U − wh‖X .

Proof. The argument is simple and standard:

‖U − Uh‖X = ‖U − wh‖X + ‖wh − Uh‖X

≤ ‖U − wh‖X +
1

C2

sup
vh∈Vh

ah(wh − Uh, vh)
‖vh‖Vh

by (8),

≤ ‖U − wh‖X +
1

C2

sup
vh∈Vh

ah(wh − U, vh)
‖vh‖Vh

by (6),

≤ ‖U − wh‖X +
C1

C2

‖wh − U‖X by (7).

This finishes the proof. �

Many refinements and improvements of such a theorem are known. But our purpose
in going through the above simple argument is to clearly show that the test space need
not have approximation properties. Hence, in designing Petrov-Galerkin methods, while
we must choose trial spaces with good approximation properties, we may design test spaces
solely to obtain good stability properties. This will be our guiding principle in designing
our method. In fact, the test spaces we propose shortly can have discontinuities inside the
mesh elements.

Many researchers have put the above principle to good use. In fact, even the abbreviation
we use for our new method “DPG method”, has been previously used [4, 6] for other
methods. The theme in these works is the search for stable test spaces using bubbles or
other polynomials. Our test space functions, in contrast, need not be polynomial on an
element, and indeed, need not even be continuous. We are also not the first to consider
such functions with discontinuities within a finite element. Such elements are routinely
used in X-FEM and similar methods [2] for difficult simulations like crack propagation.
However, we use discontinuities solely for stability purposes, and solely in test spaces.
Our trial spaces, being standard polynomial spaces, possess provably good approximation
properties.

Our method also introduces a new flux unknown on the element interfaces. This is in
line with the recent developments on hybridized DG (HDG) methods [9]. HDG methods
that extend the ideas in [9] to the case of convection can be found in recent works [10, 16].
These methods are constructed by defining a independent flux variable on the element
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interfaces which can solved for first, after which the internal variables can be locally solved
for. While this can be thought of as akin to static condensation, additional advantages
can be exploited, such as easy stabilization [16] using a penalty parameter. However, p-
independent stability for such methods has not been proved yet. While we borrow the idea
of letting the fluxes be independent variables in the design of our method, our method does
not have stabilization parameters, and has p-independent stability.

We organize our presentation such that a spectral version of the method is first exhibited
(in Section 2). Details regarding the new space of test functions and the stability estimates
for the method on a single element are presented in that section. Section 3 then presents
the composite method on a triangular mesh. Optimal L2 error estimates are proved in
Theorem 3.2 there. We conclude in Section 5 opining on important future directions.
Proofs of a few technical estimates are gathered in Appendix A.

2. The spectral method on one element

We start by considering the one-element case to fix the ideas and study the element
spaces. In other words, we let Ω be an N -simplex (N = 2, 3 are the cases of most practical
importance) which we denote by K throughout this section. We now describe and analyze
the DPG method on the single element K.

Define the outflow and inflow boundaries of K by

∂outK = {~x ∈ ∂K : ~β · ~n > 0}, (9a)

∂inK = {~x ∈ ∂K : ~β · ~n < 0}. (9b)

Here, and throughout the paper, we use ~n to generically denote the unit outward normal
on the boundary of a polygonal domain (the domain will vary at different occurrences of ~n,
but will always be clear from the context, e.g., above it is K, while in (2) it was Ω). Note

that we omitted the ~β · ~n = 0 case in (9). This, and any concerns regarding computational
inaccuracies in determination of strict inequalities of (9), will be allayed in § 2.3.

2.1. Petrov-Galerkin method using a new test space. Before we describe the method,
we need to introduce a new test space. For this, we need a coordinate system aligned with
the flow – see Figure 1. Let ~e (1), . . . , ~e (N), denote the standard unit vectors and let ~eβ
denote the unit vector in the ~eβ-direction. Completing {~eβ} to form an orthonormal basis

{~eβ, ~e (2)
β , . . . ~e

(N)
β } for RN , we write the new coordinates as ηi, i.e.,

~x = x1~e
(1) + · · ·+ xN~e

(N)

= η1~eβ + η2~e
(2)
β + · · ·+ ηN~e

(N)
β .

(10)

Any function defined on ∂outK can be extended into K in such a way that the extension

is constant along the ~β-direction, i.e., the extension is independent of η1. We call this the
extension from outflow boundary and denote it by Eout. We can think of the outflow surface
as the graph of a function η1 = Fout(η2, . . . , ηN). Then, a function on the outflow surface
can be expressed (after eliminating the η1 variable) as φ(η2, . . . , ηN). These coordinates
make the expression for Eout φ trivial, namely Eout φ(η1, η2, . . . , ηN) = φ(η2, . . . , ηN).

Let us consider the question of computing a polynomial approximation of the transport
solution u satisfying (1) with Ω = K. The starting point in deriving the DPG method is
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regarding computational inaccuracies in determination of

strict inequalities of (9), will be allayed in § 2.3.

2.1. Petrov-Galerkin method using a new test space

Before we describe the method, we need to introduce

a new test space. For this, we need a coordinate system

aligned with the flow. Let �e (1), . . . ,�e (N), denote the stan-

dard unit vectors and let �eβ denote the unit vector in the

�eβ-direction. Completing {�eβ} to form an orthonormal

basis {�eβ ,�e
(2)
β , . . .�e

(N)
β } for RN , we write the new coordi-

nates as ηi, i.e.,

�x = x1�e
(1) + · · · + xN�e (N)

= η1�eβ + η2�e
(2)
β + · · · + ηN�e

(N)
β .

(10)

Any function defined on ∂outK can be extended into K

in such a way that the extension is constant along the �β-

direction, i.e., the extension is independent of η1. We call

this the extension from outflow boundary and denote it by

Eout.

Let us consider the question of computing a polynomial

approximation of the transport solution u satisfying (1)

with Ω = K. The starting point in deriving the DPG

method is to multiply (1a) by a test function v and inte-

grate by parts:

(f, v) = (�β · �∇u, v)K

= −(u, �β · �∇ v)K + ��β · �nu, v�∂K

= −(u, �β · �∇ v)K + �φ, v�∂outK + ��β · �n g, v�∂inK (11)

with φ = �β · �n u on ∂outK, the outflux variable.

The method finds an approximation to the pair (u,φ)

using the spaces

M�(∂outK) = {µ : µ|F ∈ P�(F ), for all faces F

of K contained in ∂outK}, (12a)

V�(K) = η1P�(K) + Eout(M�+1(∂outK)). (12b)

Here, for any domain D, we use P�(D) to denote the space

of polynomials of degree at most �, and

η1P�(K) = {η1p� : p� ∈ P�(K)}.

Note that if ∂outK consists of a single face of K, then

V�(K) consists of polynomials, but in general, V�(K) is a

non-polynomial space, as it can have lines of discontinuity

within K.

The spectral DPG method, motivated by (11), defines

approximations (up, φp+1) ∈ Pp(K)×Mp+1(∂outK), satis-

fying

−(up, �β · �∇ v)K + �φp+1, v�∂outK

= (f, v)K − ��β · �n g, v�∂inK ,
(13)

for all v ∈ Vp(K). For compact notation, we write

a( (up, φp+1), v) def= −(up, �β · �∇ v)K + �φp+1, v�∂outK

b(v) def= (f, v)K − ��β · �n g, v�∂inK ,

Xp(K) def= Pp(K)×Mp+1(∂outK),

so that (13) can be written as the problem of finding

(up, φp+1) ∈ Xp(K) such that

a( (up, φp+1), v) = b(v) ∀v ∈ Vp(K).

This is a Petrov-Galerkin method because the test and

trial spaces are different. The solvability of this method

will be clear shortly, as soon as we study the new finite

element space.

Proposition 2.1 The component spaces η1Pp(K) and

Eout(Mp+1(∂outK)) are linearly independent, so that

Vp(K) can be written as the direct sum

Vp(K) = η1Pp(K)⊕ Eout(Mp+1(∂outK)). (14)

4

Figure 1. Streamline coordinates

to multiply (1a) by a test function v and integrate by parts:

(f, v) = (~β · ~∇u, v)K

= −(u, ~β · ~∇ v)K + 〈~β · ~n u, v〉∂K
= −(u, ~β · ~∇ v)K + 〈φ, v〉∂outK + 〈~β · ~n g, v〉∂inK (11)

with φ = ~β · ~n u on ∂outK, the outflux variable.
The method finds an approximation to the pair (u, φ) using the spaces

M`(∂outK) = {µ : µ|F ∈ P`(F ), for all faces F

of K contained in ∂outK}, (12a)

V`(K) = η1P`(K) + Eout(M`+1(∂outK)). (12b)

Here, for any domain D, we use P`(D) to denote the space of polynomials of degree at
most `, and

η1P`(K) = {η1p` : p` ∈ P`(K)}.
Note that if ∂outK consists of a single face of K, then V`(K) consists of polynomials, but

in general, V`(K) is a non-polynomial space, as it can have lines of discontinuity within K.
The spectral DPG method, motivated by (11), defines approximations (up, φp+1) ∈ Pp(K)×

Mp+1(∂outK), satisfying

−(up, ~β · ~∇ v)K + 〈φp+1, v〉∂outK

= (f, v)K − 〈~β · ~n g, v〉∂inK ,
(13)

for all v ∈ Vp(K). For compact notation, we write

a( (up, φp+1), v)
def
= −(up, ~β · ~∇ v)K + 〈φp+1, v〉∂outK

b(v)
def
= (f, v)K − 〈~β · ~n g, v〉∂inK ,

Xp(K)
def
= Pp(K)×Mp+1(∂outK),

so that (13) can be written as the problem of finding (up, φp+1) ∈ Xp(K) such that

a( (up, φp+1), v) = b(v) ∀v ∈ Vp(K).
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This is a Petrov-Galerkin method because the test and trial spaces are different. The
solvability of this method will be clear shortly, as soon as we study the new finite element
space.

Proposition 2.1. The component spaces η1Pp(K) and Eout(Mp+1(∂outK)) are linearly in-
dependent, so that Vp(K) can be written as the direct sum

Vp(K) = η1Pp(K)⊕ Eout(Mp+1(∂outK)). (14)

Proof. Suppose there is an r ∈ Pp(K) and µ ∈Mp+1(∂outK) such that

η1r = Eout µ,

then, letting ∂η1 denote the distributional derivative with respect to the variable η1, we
have

∂η1(η1r) = ∂η1(Eout µ) = 0.

Integrating from the η1 = 0 plane (extending the polynomial r to all R3 if necessary) we
find that

t r(t, η2, . . . , ηN) =

∫ t

0

∂η1(η1 r(η1, . . . , ηN)) ds = 0,

for any t, so r ≡ 0, which in turn implies that µ = 0 as well. Thus the sum in (14) is indeed
a direct sum. �

The degrees of freedom of Vp(K) can be inferred from the next lemma.

Lemma 2.1. Given any µ in Mp+1(∂outK) and any w in Pp(K), there is a unique v in
Vp(K) satisfying

~β · ~∇ v = w, (15a)

v|∂outK = µ. (15b)

Proof. We construct the required v as a sum of two functions v1 and v2, defined below.
First set

v1(η1, . . . , ηN) =

∫ η1

0

1

|~β|
w(s, η2, . . . , ηN) ds,

where |~β| denotes the length of the vector ~β. Note that v2, when restricted to each face of
∂outK is a polynomial of degree at most p+ 1. Now let

v2 = Eout(µ− v1|∂outK).

It is easy to verify that v = v1 + v2 satisfies both the equalities of (15). The uniqueness of
v is also easy to see: If v satisfies (15) with w = 0 and µ = 0, then integrating into K from

the outflow boundary along the ~β-direction, we find that v ≡ 0. �

One can now define a new finite element formally in the sense of Ciarlet [7] as follows.
Let Σ denote the set of linear functionals `q, `η defined by

`q(v) = (~β · ~∇ v, q)K , for all q ∈ Pp(K),

`η(v) = 〈v, η〉F , for all η ∈ Pp+1(F ),

for all faces F ⊆ ∂outK.

Then, with Σ as the set of degrees of freedom (d.o.f), the geometry-space-d.o.f triple
(K,Vp(K),Σ) defines a unisolvent finite element because of Lemma 2.1. Although Vp(K)
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may contain discontinuous functions, implementation of this finite element can proceed
using standard finite element technology using the above d.o.fs.

Proposition 2.2. There is a unique solution to the spectral DPG method (13).

Proof. The system (13) is square. This follows because the space of trial functions has
dimension

dim(Xp(K)) = dim(Pp(K)) + dim(Mp+1(∂outK))

= dim(η1Pp(K)) + dim(Eout(Mp+1(∂outK)))

which equals the dimension of the test space Vp(K), due to Proposition 2.1.
Hence it suffices to show that if the right hand side of (13) vanishes, the only possible

solution is trivial. But this is immediate from Lemma 2.1, by which we may choose v such

that ~β · ~∇ v = −up and v|∂outK = φp+1. �

Let us now outline an error analysis. We want to apply Theorem 1.1. The continuity of
the form a(·, ·) is evident from

a( (up, φp+1), v) = −(up, ~β · ~∇ v)K + 〈φp+1, v〉∂Ko
≤ ‖up‖K‖~β · ~∇ v‖K + h

−1/2
K ‖φp+1‖∂outKh

1/2
K ‖v‖∂outK (16)

≤
(
‖up‖2

K + h−1
K ‖φp+1‖2

∂outK

)1/2 |||v|||K
where we have chosen the test space norm

|||v|||K =
(
‖~β · ~∇ v‖2

K + hK‖v‖2
∂outK

)1/2

.

The inf-sup condition also holds, because applying Lemma 2.1, we can find a v such that

−~β · ~∇ v = up and v|∂outK = h−1
K φp+1, so

sup
v∈Vp(K)

a( (up, φp+1), v)

|||v|||K
≥ ‖up‖

2
K + h−1

K ‖φp+1‖2
∂outK

|||v|||K

=

(
‖up‖2

K + h−1
K ‖φp+1‖2

∂outK

)1/2 |||v|||K
|||v|||K

.

Thus applying Theorem 1.1, we obtain the following error estimate for the spectral method:

‖u− up‖2
K + h−1

K ‖φ− φp+1‖2
K

≤ 2 inf
(wp,µp+1)∈Xp(K)

(
‖u− wp‖2

K + h−1
K ‖φ− µp+1‖2

K

)
.

Here hK = diam(K). Reviewing the above argument, the introduction of factors hK and
h−1
K in (16) may seem arbitrary, and indeed it is. While we chose these factors above

for simplicity, later we will need to introduce different mesh dependent factors to obtain
stability in more appropriate norms.

Although we used the inf-sup condition to motivate the design of our method, the way
we used it above does not provide us with the best error estimate possible. It is possible
to obtain better error estimates, and indeed to show that the error for each variable is
decoupled. In fact, both variables possess superconvergence in the spectral case, as we see
next.
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Theorem 2.1. Let ΠW and ΠM denote the L2-orthogonal projections into Pp(K) and
Mp+1(∂outK), respectively. Then

φp+1 −ΠMφ = 0,

up −ΠWu = 0.

Proof. Subtracting (11) from (13), we find that

−(up −ΠMu, ~β · ~∇ v)K + 〈φp+1 −ΠMφ, v〉∂outK = 0

for all v in Vp(K). By Lemma 2.1, we can choose v in Vp(K) so that v|∂outK = Eout(φp+1 −
ΠMφ) and β · ~∇ v = ΠMu− up. Hence the identities of the theorem follow. �

2.2. Local stability estimates. Although our error analysis of the spectral method is
already completed (by Theorem 2.1), we want to obtain a few refined stability estimates
for the solutions. This will be needed later, when we analyze the multi-element version of
the method. To this end, we introduce the following local solution operators:

Qp : L2(∂inK) 7−→Mp+1(∂outK),

Up : L2(∂inK) 7−→ Pp(K).

Given φ in L2(∂inK), the local solutions Qpφ and Upφ are defined by the spectral method (13)
with f = 0, element by element, as follows:

−(Upφ, ~β · ~∇ v)K + 〈Qpφ, v〉∂outK = 〈φ, v〉∂inK (17)

for all v ∈ Vp(K). Also define solution operators for element sources

Qf
p : L2(K) 7−→Mp+1(∂outK),

Uf
p : L2(K) 7−→ Pp(K)

by

−(Uf
pz,

~β · ~∇ v)K + 〈Qf
pz, v〉∂outK = (z, v)K , (18)

for all v ∈ Vp(K) and any z in L2(K).
The next theorem is the main result of this subsection. Let hβ,K denote the length of

the longest line segment, in the ~β-direction, contained in K, with one endpoint in ∂inK and
the other in ∂outK (as marked in Fig. 10(b)). We denote by ~nF a unit normal to a mesh

face F . For any subcollection Fh of the set of faces of K where ~β · ~n 6= 0, we define the
following norms:

‖ψ‖2
1
β
,Fh

=
∑

F⊂Fh

1

|~β · ~nF |
‖ψ‖2

F , (19)

‖v‖2
β,Fh

=
∑

F⊂Fh

|~β · ~nF | ‖v‖2
F . (20)

Here the sums run over all mesh faces F contained in Fh.

Theorem 2.2. The local solution operators have the following stability estimates:

‖Qpφ‖2
1
β
,∂outK

≤ ‖φ‖2
1
β
,∂inK

, (21a)

‖Upφ‖2
K ≤

hβ,K

|~β|
‖φ‖2

1
β
,∂inK

, (21b)
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Figure 1. A outflow edge degenerating as "β → "β0

2.3. Remarks on the robustness of the outflux variable. Notice that on faces where
"β · "n = 0, we have not yet defined any outflux approximation. Since the exact outflux
(defined in (26)) vanishes on such faces, we set the discrete outflux φh to zero on those
faces.

Computationally, the identification of inflow and outflow faces can only be as accurate
as the round-off errors permit, i.e., the strict inequalities (9) can only be implemented up

to round-off. This begs the question: On faces F where "β · "nF is close to zero, is φp too
sensitive to whether we set F to be an inflow or outflow face?

We now argue that it is not. For clarity, consider the situation of Figure 1 (which is
entirely typical). The solution φp of (13) can be written as φp = Qpg + Qf

pf . Then, by the
estimates of Theorem 2.2, we have

‖φp‖ 1
β

,∂outK ≤ ‖g‖ 1
β

,∂inK
+

h
1/2
β,K

|"β|1/2
‖f‖K.

This continues to hold as "β ·"n approaches zero on an outflow face (as in Fig. 1). Note that
the right hand side remains bounded during this limiting process. But since the left hand

side norm contains the factor |"β · "n|−1/2 on the outflow face where "β · "n approaches zero,
the solution φp must approach zero there.

It is this robustness in φp that led us to introduce it as the new ‘outflux variable’ to
be solved for. The choice of such a variable is not traditional. In hybridized methods for
elliptic problems [5] one usually sets the trace of the ‘primal’ variable u as a new unknown.
In this spirit, one could contemplate a method where one finds up and λp satisfying

−(up, "β · "∇ v)K + 〈"β · "nλp, v〉∂outK = (f, v)K − 〈"β · "n g, v〉∂inK , (23)

instead of (13). Such methods have appeared in the literature – the standard UDG method
can be recast into hybrid form with the upwind traces set as a new unknown λh, see e.g.,
the method in [6] for the purely convective case and the recent work of [11]). However, an
equation such as (23) can lead to matrices close to singularity in situations like in Figure 1.

Indeed, the λh in (23) cannot be uniquely defined where "β · "n = 0.

Figure 2. A outflow edge degenerating as ~β → ~β0

and

‖Qf
pz‖2

1
β
,∂outK

≤ hβ,K

|~β|
‖z‖2

K , (22a)

‖Uf
pz‖2

K ≤
h2
β,K

|~β|2
‖z‖2

K , (22b)

for all φ ∈ L2(∂inK) and z in L2(K).

A proof of the theorem is given in Appendix A.

2.3. Remarks on the robustness of the outflux variable. Notice that on faces where
~β · ~n = 0, we have not yet defined any outflux approximation. Since the exact outflux
(defined in (26)) vanishes on such faces, we set the discrete outflux φh to zero on those
faces.

Computationally, the identification of inflow and outflow faces can only be as accurate
as the round-off errors permit, i.e., the strict inequalities (9) can only be implemented up

to round-off. This begs the question: On faces F where ~β · ~nF is close to zero, is φp too
sensitive to whether we set F to be an inflow or outflow face?

We now argue that it is not. For clarity, consider the situation of Figure 2 (which is
entirely typical). The solution φp of (13) can be written as φp = Qpg + Qf

pf . Then, by the
estimates of Theorem 2.2, we have

‖φp‖ 1
β
,∂outK

≤ ‖g‖ 1
β
,∂inK

+
h

1/2
β,K

|~β|1/2
‖f‖K .

This continues to hold as ~β ·~n approaches zero on an outflow face (as in Fig. 2). Note that
the right hand side remains bounded during this limiting process. But since the left hand

side norm contains the factor |~β · ~n|−1/2 on the outflow face where ~β · ~n approaches zero,
the solution φp must approach zero there.

It is this robustness in φp that led us to introduce it as the new ‘outflux variable’ to
be solved for. The choice of such a variable is not traditional. In hybridized methods for
elliptic problems [9] one usually sets the trace of the ‘primal’ variable u as a new unknown.
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In this spirit, one could contemplate a method where one finds up and λp satisfying

−(up, ~β · ~∇ v)K + 〈~β · ~nλp, v〉∂outK = (f, v)K − 〈~β · ~n g, v〉∂inK , (23)

instead of (13). Such methods have appeared in the literature – the standard UDG method
can be recast into hybrid form with the upwind traces set as a new unknown λh, see e.g.,
the method in [10] for the purely convective case). However, an equation such as (23) can
lead to matrices close to singularity in situations like in Figure 2. Indeed, the λh in (23)

cannot be uniquely defined where ~β · ~n = 0.

3. Approximations using a triangular mesh

In this section, we move to the multi-element case, restricting ourselves to the case of
two space dimensions. We consider the composite DPG method on a mesh of the domain
Ω, and a general polynomial degree p. Since the degree is uniformly set to p on all elements
this is the “p-version” of the method.

We assume that the domain Ω is meshed by a geometrically conforming mesh of triangles,
denoted by Th, and set h = max{hK : K ∈ Th}. Define the (discontinuous) finite element
spaces

Wh = {w : w|K ∈ Pp(K),

for all mesh elements K ∈ Th}, (24a)

Mh = {µ : µ|F ∈ Pp+1(F ),

for all mesh edges F not on ∂inΩ}, (24b)

Vh = { v : v|K ∈ Vp(K),

for all mesh elements K ∈ Th}. (24c)

Here Vp(K) is the new finite element we introduced in Section 2.

3.1. Definition of the composite method. We put together the spectral method on
each element to get the following composite method on the mesh Th: Find (uh, φh) ∈
Xh

def
= Wh ×Mh satisfying

ah( (uh, φh), vh) = (f, vh)Ω − 〈~β · ~n g, vh〉∂inΩ, (25)

for all vh ∈ Vh, where

ah( (uh, φh), vh) =

∑

K∈Th

[
〈φh, vh〉∂outK − 〈φh, vh〉∂inK\∂inΩ − (uh, ~β · ~∇ vh)K

]
.

We call φh the outflux approximation, because on comparison with (11), we expect it to
approximate

φ
def
= ~βu · ~n+ (26)

on every mesh edge F , where ~n+ is the unit normal on F with its direction chosen so that
~β · ~n+ > 0. On edges where ~β · ~n = 0, we set φh = 0. Equation (11) also shows that this φ
together with the exact solution u, satisfies

ah( (u, φ), v) = (f, v)Ω − 〈~β · ~n g, v〉∂inΩ, (27)



DPG METHOD 11

for all v in V = {ν ∈ L2(Ω) : ν|K ∈ V (K) for all mesh elements K}, where V (K) is as
in (55). In other words, the DPG method is consistent. In order to simplify notation and
write 〈φh, vh〉∂inK for 〈φh, vh〉∂inK\∂inΩ, we identify the space Mh with its extension by zero
to ∂inΩ, i.e., we identify Mh and

{µ : µ|F ∈ Pp+1(F ) for all mesh edge F and µ|∂inΩ = 0},
to be the same (cf. the definition in (24b)).

3.2. Mesh dependent norms. We collect the definitions of various mesh dependent
norms here for ready reference.

First, we extend the definition of the norms ‖ψ‖2
1
β
,Fh

and ‖v‖β,Fh
to more general collec-

tions Fh of edges from the entire mesh (now not necessarily edges of one triangle) simply
by letting the sums in (19) and (20) runs over all such edges in Fh. As before, only edges

with ~β · ~n 6= 0 are picked. Using these extended definitions, we now define more norms on
a subcollection of mesh elements Rh, as follows:

‖v‖2
h,β,Rh

=
∑

K∈Rh

hβ,K ‖v‖2
β,∂outK

, (28)

‖ψ‖2
h, 1
β
,Rh

=
∑

K∈Rh

hβ,K‖ψ‖2
1
β
,∂outK

, (29)

‖ψ‖2
1
h
, 1
β
,Rh

=
∑

K∈Rh

1

hβ,K
‖ψ‖2

1
β
,∂outK

, (30)

|||ψ|||21
h
, 1
β
,Rh

= ‖ψ − Qpψ‖2
1
h
, 1
β
,Rh
. (31)

These norm notations have mnemonic subscripts of h, 1/h, β, or 1/β etc., which indicates

a factor of hβ,K , 1/hβ,K , |~β · ~n|, or 1/|~β · ~n| (resp.) in the sums over mesh objects defining
the norms. With these notations, the norm on the trial space is defined by

|||(u, φ)|||2h =
∑

K∈Th

(
‖u− Upφ‖2

K + ‖ψ − Qpψ‖2
1
h
, 1
β
,K

)
.

The norm on the test space is defined by

|||v|||2h =
∑

K∈Th

‖~β · ~∇ v‖2
K + ‖v‖2

h,β,K .

It is obvious from the construction of Vp(K) that the above is a norm on Vh. To show that
|||(u, φ)|||h is a norm on the test space, we first need to recall the following.

Lemma 3.1. In any triangulation Th of Ω, there is at least one triangle K ∈ Th such that
∂inK ⊆ ∂inΩ.

Proof. See [15]. �

Proposition 3.1. The functional |||(u, φ)|||h is a norm on the space X = L2(Ω)×M , where

M = {µ : µ|F ∈ L2(F ) for all mesh edges F and µ|∂inΩ = 0}.
Proof. Suppose |||(u, φ)||| = 0. Then, in particular

‖φ− Qpφ‖β,∂outK = 0 (32)
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for all elements K. By Lemma 3.1, there is an element K with ∂inK ⊆ ∂inΩ. On this
element, φ|∂inK = 0, so Qpφ|∂outK = 0. Hence (32) implies that φ|∂outK = 0. Proceeding
inductively over all elements we find that φ = 0. This in turn implies that u− Upφ = u =
0. �

3.3. Preliminary error analysis. It is possible to get stability and error estimates for
the DPG method in the mesh dependent norm immediately. Solvability of the method
follows as a particular consequence.

Theorem 3.1. The bilinear form ah(·, ·) satisfies the inf-sup and continuity conditions:

sup
vh∈Vh

ah( (uh, φh), vh)

|||vh|||h
≥ |||(uh, φh)|||h,

holds for all uh ∈ Wh and φh ∈Mh, and

ah( (u, φ), vh) ≤ |||(u, φ)|||h|||vh|||h
for all u ∈ L2(Ω), φ ∈ M, and vh ∈ Vh. If (u, φ) and (uh, φh) are the exact and discrete
solutions, then

|||(u− uh, φ− φh)|||2h ≤ 2 inf
(wh,µh)∈Wh×Mh

|||(u− wh, φ− µh)|||2h.

Proof. We first rewrite (25) using the definition of the local solution operators in (17) as
follows:

ah( (uh, φh), vh)

=
∑

K∈Th

[
− (uh, ~β · ~∇ vh)K + 〈φh, vh〉∂outK

]
− 〈φh, vh〉∂inK

=
∑

K∈Th

−(uh − Upφh, ~β · ~∇ vh)K + 〈φh − Qpφh, vh〉∂outK . (33)

Let us prove the inf-sup condition. By Lemma 2.1, we can choose vh element by element,
such that

−~β · ~∇ vh
∣∣
K

= uh − Up(φh
∣∣
∂inK

),

vh
∣∣
∂outK

=

(
φh − Qp(φh

∣∣
∂inK

)
)∣∣
∂outK

hβ,K |~β · ~n|
.

Then

ah( (uh, φh), vh) =
∑

K∈Th

‖uh − Upφh‖2
K + ‖φh − Qpφh‖2

1
h
, 1
β
,K

= |||(uh, φh)|||h |||vh|||h.
This proves the inf-sup condition.

The proof of the continuity inequality also follows from (33) after applying the Cauchy-
Schwarz inequality.

The error estimate then immediately follows from Theorem 1.1. �
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S3

S0

S1

S0

S2

S1 ∪S0

S2 ∪S1 ∪S0

Figure 2. A mesh being split into layers (flow is along the positive y-direction).

By Lemma 3.1, S0 is not empty. Next, setting T (0)
h = Th, we recursively define, for all

integers ! > 0, the sets

T (!)
h = T (!−1)

h \ S!−1

S! = {K ∈ T (!)
h : ∂inK ⊆ ∂inΩ

(!)},

where Ω(!) is the domain formed by the union of all triangles of T (!)
h . Repeated application

of Lemma 3.1 shows that S! is nonempty for every !, unless T (!)
h is empty. So this process

exhausts all elements of the mesh, at some finite value of !, say ! = n. The domain

Λ!
def
= Ω \ Ω(!) is meshed by S0 ∪S1 · · · ∪S!. Its outflow boundary is denoted by

Γ! = ∂outΛ!.

All mesh edges, excluding those on ∂inΩ, and excluding those where #β ·#n = 0, are contained
in Γ! for some ! ≤ n. With these notations and observations, we impose a mild assumption
on the mesh and prove the Poincaré inequality.

Assumption 3.1. Define the layer width by

d! = max{hβ,K : K ∈ S!}.
We assume that our meshes are such that

n∑

!=0

d! ≤ LΩ

where LΩ is a fixed constant depending on Ω, but independent of the meshes and element
sizes. We also assume that there is a fixed constant C1 such that if K and K ′ are any two

Figure 3. A mesh being split into layers (flow is along the positive y-
direction).

The above analysis is in the most “natural” norms suggested by the method itself. In
fact, we have shown above that

sup
vh∈Vh

ah( (uh, φh), vh)

|||vh|||h
= |||(uh, φh)|||h,

for all uh ∈ Wh, φh ∈ Mh. Nonetheless, convergence rates in standard norms (like L2)
are not obvious from the theorem. The remainder of this section is devoted to obtaining
convergence rates in L2-like norms.

3.4. A Poincaré inequality. As a first step to obtain stability and error estimates in
L2-norm, we prove a Poincaré inequality. Notice that the norm in (31) is applied to the
difference ψ

∣∣
∂outK
−Qp(ψ

∣∣
∂inK

). This is the difference between the outflow values of ψ and its

inflow values transported onto ∂outK. Discrete analogues of the Poincaré inequality bound
L2-like norms using sum of squares of differences (under some discrete analogue of a zero
boundary condition). Therefore, it is perhaps not surprising that such a discrete Poincaré
type estimate can also be found for the norm in (31) (recalling that any ψ in Mh satisfies
a zero boundary condition on the inflow boundary).

To establish the inequality, we first need to define “layers” of mesh elements marching
from ∂inΩ. The first layer is defined by

S0 = {K ∈ Th : ∂inK ⊆ ∂inΩ}.
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By Lemma 3.1, S0 is not empty. Next, setting T (0)
h = Th, we recursively define, for all

integers ` > 0, the sets

T (`)
h = T (`−1)

h \S`−1

S` = {K ∈ T (`)
h : ∂inK ⊆ ∂inΩ(`)},

where Ω(`) is the domain formed by the union of all triangles of T (`)
h . Repeated application

of Lemma 3.1 shows that S` is nonempty for every `, unless T (`)
h is empty. So this process

exhausts all elements of the mesh, at some finite value of `, say ` = n. The domain

Λ`
def
= Ω \ Ω(`) is meshed by S0 ∪S1 · · · ∪S`. Its outflow boundary is denoted by

Γ` = ∂outΛ`.

All mesh edges, excluding those on ∂inΩ, and excluding those where ~β ·~n = 0, are contained
in Γ` for some ` ≤ n. With these notations and observations, we impose a mild assumption
on the mesh and prove the Poincaré inequality.

Assumption 3.1. Define the layer width by

d` = max{hβ,K : K ∈ S`}.
We assume that our meshes are such that

n∑

`=0

d` ≤ LΩ

where LΩ is a fixed constant depending on Ω, but independent of the meshes and element
sizes. We also assume that there is a fixed constant C1 such that if K and K ′ are any two
neighboring elements, then either the inequality

hβ,K′ ≤ C1hβ,K

holds or it holds after exchanging K and K ′.

Above and in the remainder, the letter C, with or without subscripts, denotes generic
constants independent of elements K and polynomial degree p. Their value at different
occurrences may vary.

Assumption 3.1 permits quite general meshes, including anisotropic refinements (e.g., to
capture shock waves). Loosely speaking, the first part assumes that elements within each
layer have about the same length in the flow direction. The second part assumes that ele-
ment lengths in the flow direction for neighboring elements are comparable. Quasiuniform
meshes obviously satisfy the assumption.

Theorem 3.2. If Assumption 3.1 holds, then for all ψ ∈Mh, we have

‖ψ‖2
h, 1
β
,Th
≤ C0L

2
Ω|||ψ|||21

h
, 1
β
,Th
.

(where C0 is independent of Th and p, and the norms are as in (29) and (31)).

Proof. The first step is a local inequality. On any triangle K,

‖ψ‖ 1
β
,∂outK

≤ ‖ψ − Qpψ‖ 1
β
,∂outK

+ ‖Qpψ‖ 1
β
,∂outK

≤ ‖ψ − Qpψ‖ 1
β
,∂outK

+ ‖ψ‖ 1
β
,∂inK

,
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where the last inequality was due to Theorem 2.2 (21). Consequently,

‖ψ‖2
1
β
,∂outK

− ‖ψ‖2
1
β
,∂inK

≤
(
‖ψ‖ 1

β
,∂outK

+ ‖ψ‖ 1
β
,∂inK

)
‖ψ − Qpψ‖ 1

β
,∂outK

(34)

holds on every mesh element K.
The next step is to sum over R` = S0 ∪S1 · · · ∪S`. Then, we have

∑

K∈R`

(
‖ψ‖2

1
β
,∂outK

− ‖ψ‖2
1
β
,∂inK

)

≤
∑

K∈R`

(
‖ψ‖ 1

β
,∂outK

+ ‖ψ‖ 1
β
,∂inK

)
‖ψ − Qpψ‖ 1

β
,∂outK

.

When rewriting the left hand side as a sum over the mesh edges, we observe that all
contributions due to edges interior to Λ` cancel out. Furthermore, since ψ ∈Mh, it vanishes
on the inflow boundary ∂inΛ` ⊆ ∂inΩ. Therefore only contributions on the outflow boundary
of Λ`, namely Γ`, remains, i.e.,

‖ψ‖2
1
β
,Γ`
≤ (35)

∑

K∈R`

(
‖ψ‖ 1

β
,∂outK

+ ‖ψ‖ 1
β
,∂inK

)
‖ψ − Qpψ‖ 1

β
,∂outK

.

We apply Cauchy-Schwarz inequality to the right hand side of (35) to get

‖ψ‖2
1
β
,Γ`
≤
( ∑

K∈R`

2hβ,K
(
‖ψ‖2

1
β
,∂outK

+ ‖ψ‖2
1
β
,∂inK

))1/2

( ∑

K∈R`

1

hβ,K
‖ψ − Qpψ‖2

1
β
,∂outK

)1/2

By Assumption 3.1, the lengths hβ,K for neighboring elements are comparable, so that
∑

K∈R`

hβ,K‖ψ‖2
1
β
,∂inK
≤ C

∑

K∈R`

hβ,K‖ψ‖2
1
β
,∂outK

which implies

‖ψ‖2
1
β
,Γ`
≤ C

( ∑

K∈R`

hβ,K‖ψ‖2
1
β
,∂outK

)1/2

( ∑

K∈R`

1

hβ,K
‖ψ − Qpψ‖2

1
β
,∂outK

)1/2

= C‖ψ‖h, 1
β
,R`
|||ψ||| 1

h
, 1
β
,R`
.

The final step involves multiplying by the layer width d`, and summing over `,
n∑

`=0

d`‖ψ‖2
1
β
,Γ`
≤

n∑

`=0

d`C‖ψ‖h, 1
β
,R`
|||ψ||| 1

h
, 1
β
,R`

≤ CLΩ‖ψ‖h, 1
β
,Th
|||ψ||| 1

h
, 1
β
,Th
, (36)
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where we increased the norms over R` to norms over the whole mesh Th. By the definition
of d`, we know that

hβ,K ≤ d`, for all K ∈ S`,

so we have

‖ψ‖2
h, 1
β
,Th

=
n∑

`=0

∑

K∈S`

hβ,K‖ψ‖2
1
β
,∂outK

≤
n∑

`=0

∑

K∈S`

d`‖ψ‖2
1
β
,∂outK

≤ LΩC‖ψ‖h, 1
β
,Th
|||ψ||| 1

h
, 1
β
,Th
,

where the last inequality is due to (36). This proves the result. �

3.5. L2-error estimates. Now we prove an optimal error estimate for uh in the standard
L2(Ω)-norm, as well as error estimates for the outflux approximation φh in L2-like norms
on mesh edges. The estimates are with constants independent of the polynomial degree p
and mesh Th.

Theorem 3.3. Suppose (u, φ) is the exact solution, (uh, φh) is the discrete solution. Then
we have the following error estimates:

|||φ− φh|||21
h
, 1
β
,K
≤ 3 inf

ψp+1∈Mh

1

hβ,K
‖φ− ψp+1‖2

1
β
,∂K

. (37)

If Assumption 3.1 holds, letting

ε(φ)
def
= inf

ψh∈Mh

(
‖φ− ψh‖2

h, 1
β
,Th

+ C0L
2
Ω‖φ− ψh‖2

1
h
, 1
β
,Th

)
,

we have

‖φ− φh‖2
h, 1
β
,Th
≤ 2 ε(φ) and (38)

‖u− uh‖2
Ω ≤ 4

|~β|
ε(φ) + 2 inf

wh∈Wh

‖u− wh‖2
Ω. (39)

Proof. The first step of this proof consists of identifying the equations satisfied by the
following discrete error functions:

εuh = ΠWu− uh, εφh = ΠMφ− φh,
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where ΠW and ΠM are L2-orthogonal projections into Wh and Mh, respectively. Subtracting
the exact and discrete equations,

0 =
∑

K∈Th

(
− (u− uh, ~β · ~∇ vh)K

+ 〈φ− φh, vh〉∂outK − 〈φ− φh, vh〉∂inK
)

=
∑

K∈Th

(
− (ΠWu− uh, ~β · ~∇ vh)K

+ 〈ΠMφ− φh, vh〉∂outK − 〈φ− φh, vh〉∂inK
)
,

where the introduction of ΠW is possible as ~β · ~∇ maps Vp(K) into Pp(K). Notice that in the
last term we may not replace φ by ΠMφ as the inflow traces of vh need not be polynomial.
But we may add and subtract ΠMφ within it. Then, we can express the identity using the
discrete error functions as follows:

ah( (εuh, ε
φ
h), vh) =

∑

K∈Th

〈φ−ΠMφ, vh〉∂inK ,

or equivalently (see (33)),

−(εuh − Upε
φ
h,
~β · ~∇ vh)K + 〈εφh − Qpε

φ
h, vh〉∂outK

= 〈φ−ΠMφ, vh〉∂inK ,
(40)

on every mesh element K. In other words,

εuh − Upε
φ
h = Up(φ−ΠMφ), (41a)

εφh − Qpε
φ
h = Qp(φ−ΠMφ). (41b)

We shall use these identities to bound the errors.
The second step of this proof involves bounding εφh. By (41b),

‖εφh − Qpε
φ
h‖ 1

β
,∂outK

= ‖Qp(φ−ΠMφ)‖ 1
β
,∂outK

≤ ‖φ−ΠMφ‖ 1
β
,∂inK

, (42)

by the bound (21) on Qp(·) of Theorem 2.2. Therefore,

|||φ− φh||| 1
h
, 1
β
,K ≤ |||φ−ΠMφ||| 1

h
, 1
β
,K + |||εφh||| 1h , 1β ,K

= h
−1/2
β,K ‖(φ−ΠMφ)− Qp(φ−ΠMφ)‖ 1

β
,∂outK

+ h
−1/2
β,K ‖εφh − Qpε

φ
h‖ 1

β
,∂outK

≤ h
−1/2
β,K ‖φ−ΠMφ‖ 1

β
,∂outK

+ 2h
−1/2
β,K ‖φ−ΠMφ‖ 1

β
,∂inK

.

By the inequality of arithmetic and geometric means, this implies

|||φ− φh|||21
h
, 1
β
,K
≤ 3h−1

β,K‖φ−ΠMφ‖2
1
β
,∂outK∪∂inK ,
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which gives the first error estimate of the theorem.
The third step again involves a bound on εφh, but now in a weaker norm. We use the

Poincaré inequality of Theorem 3.2:

‖εφh‖2
h, 1
β
,Th
≤ C0L

2
Ω|||εφh|||21

h
, 1
β
,Th

≤ C0L
2
Ω

∑

K∈Th

1

hβ,K
‖φ−ΠMφ‖2

β,∂inK
, (43)

where we have also used (42) in the last step. Splitting φ−φh = (φ−ΠMφ) + εφh as before,
and estimating, we prove the second estimate (38) of the theorem.

Now we come to the final step, where we obtain the error estimate for uh, namely (39),
as follows:

‖εuh‖K − ‖Upε
φ
h‖K ≤ ‖εuh − Upε

φ
h‖K by triangle inequality

= ‖Up(φ−ΠMφ)‖K by (41a)

≤
h

1/2
β,K

|~β|1/2
‖φ−ΠMφ‖ 1

β
,∂inK

by Theorem 2.2.

Using Theorem 2.2 again, we have

‖εuh‖K ≤
h

1/2
β,K

|~β|1/2
(
‖εφh‖ 1

β
,∂inK

+ ‖φ−ΠMφ‖ 1
β
,∂inK

)
.

Summing over all elements and using (43), we obtain

‖εuh‖2
Ω ≤

2

|~β|
(
‖εφh‖2

h, 1
β
,Th

+
∑

K∈Th

hβ,K ‖φ−ΠMφ‖2
β,∂inK

)

≤ 2

|~β|
∑

K∈Th

(
C0L

2
Ω

hβ,K
‖φ−ΠMφ‖2

β,∂inK

+ hβ,K ‖φ−ΠMφ‖2
β,∂inK

)
,

from which the estimate (39) follows. �

3.6. Interior fluxes by postprocessing. The advective flux is ~q = ~βu. A natural ap-

proximation to this is q̃h = ~βuh, where uh is the computed solution. However q̃h is not
conservative. It is possible to easily adapt an idea of [8] to generate a conservative flux by
a simple postprocessing scheme.

Our postprocessed flux is denoted by ~qh. Its restriction to each element K lies in the
Raviart-Thomas space Pp+1(K) + ~xPp+1(K) and is defined by

(~qh, ~r)K = −(~β uh, ~r)K , ∀~r ∈ Pp(K), (44a)

〈~qh · ~n, µ〉F = 〈~ϕh, µ~n〉F , ∀µ ∈ Pp+1(F ), (44b)
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where (44b) is imposed on all edges F of K,

~ϕh =





φh~n, on ∂outK,

−φh~n, on ∂inK \ ∂inΩ,

~β g, on ∂inK ∩ ∂inΩ,

0, on faces where ~β · ~n = 0,

and, as before, ~n denotes the unit outward normal of K. Since (44) uses the well known
degrees of freedom of the Raviart-Thomas space, it is easy to see that (44) uniquely defines
a ~qh in H(div,Ω).

Theorem 3.4. Write uβ
def
= ~β · ~∇u = ∇ · ~q and uβ,h

def
= ∇ · ~qh. Then, ~qh is conservative,

and
uβ,h −Πp+1uβ = 0 (45)

where Πp+1 is the L2(K)-orthogonal projection on Pp+1(K).

Proof. First of all, observe that Pp+1(K) ⊆ Vp(K). Indeed, if zp+1 is any polynomial in
Pp+1(K), then finding a v in Vp(K) as in Lemma 2.1 such that

~β · ~∇ v = ~β · ~∇ zp+1, (46a)

v|∂outK = zp+1|∂outK , (46b)

we find from (46a) that zp+1− v must be a function that is constant along the ~β-direction.
But the same function vanishes on ∂outK by (46b), so it must vanish everywhere. Hence
zp+1 ≡ v ∈ Vp(K).

As a consequence, we have, for all z in Pp+1(K),

(~qh, ~∇ z)K + 〈~qh · ~n, z〉∂K
= −(uh, ~β · ~∇ z)K + 〈φh, z〉∂outK − 〈φh, z〉∂inK

+ 〈~β · ~n g, z〉∂inK∩∂inΩ by (44),

= (f, z)K = (~β · ~∇u, z)K by (25).

With ~q = ~βu, we can rewrite this as

(∇ · ~qh, z)K = (∇ · ~q, z), for all z ∈ Pp+1(K), (47)

which proves (45).
To show that ~qh is conservative, let D be any subdomain formed by a union of some or

all of the mesh elements. Then (47) applied with z = 1 implies∫

∂D

~qh · ~n ds =

∫

∂D

~q · ~n ds,

where we have also used the H(div,Ω)-conformity of ~qh. This shows that the net outward
fluxes of ~qh and ~q coincide on any such subdomain D. �

4. Numerical studies

We present a few small scale numerical studies to illustrate and confirm the theory. For
more realistic and larger size simulations, we will need full hp adaptivity, which will be
presented elsewhere.
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4.1. Implementation aspects. In comparison with the UDG method, we do have more
equations to solve. However, the reason our method remains competitive is that we are
able to solve for the fluxes (φh) first and locally recover uh afterwards. This results in a
dimensional reduction that is quite attractive for high p. Indeed, with respect to p, the
number of degrees of freedom for φh is O(p), while the corresponding number for uh is
O(p2). This dimensional reduction is quite analogous to hybridized methods [9], where the
so-called Lagrange multipliers are solved for first, and the remaining variables are recovered
locally, element by element.

To state the matrix form of the method, we need bases for Wh, Mh, and Vh. For Mh, we
set a basis consisting of functions supported only on one edge, while the bases for the other
spaces consist of functions supported on only one triangle. Let Φ and U denote the vector
of coefficients of φh and uh in their basis expansion, respectively. To show how one solves
for fluxes first, observe that the global finite element space Vh can be split into the outflow
extensions Eout(Mh) plus a linearly independent remainder Rh. We enumerate the global
basis for Vh such that the basis functions in Eout(Mh) come first. With vh set to such test
functions, (25) reduces to an equation involving only φh:

∑

K∈Th

[
〈φh, vh〉∂outK − 〈φh, vh〉∂inK\∂inΩ

]

= (f, vh)Ω − 〈~β · ~n g, vh〉∂inΩ

(48)

for all vh ∈ Eout(Mh). As a consequence, the stiffness matrix of (25) is block triangular:
(
A 0
B C

)(
Φ
U

)
= F (49)

where A, B and C are sparse matrix blocks, and F is the corresponding load vector. This
clearly shows that we can solve for Φ first and the result can then be used to compute uh
(or U) locally, element by element.

Additionally, note that in the decomposition Vh = Eout(Mh) ⊕ Rh, all the functions in
Vh having discontinuities inside elements lie in the Eout(Mh)-component. Therefore, when
making the stiffness matrix of the bilinear form ah( (uh, φh), vh), there is no need to integrate
basis functions with discontinuities within the element. Indeed, as seen in (48), the term

involving integration within elements, namely (uh, ~β · ~∇ vh), vanishes for vh in Eout(Mh), so
there is no need to compute this integral.

Finally, suppose we enumerate the basis for Mh in such a way that functions on Γ`−1

appear before those on Γ` (see the definition of the layers in §3.4). Then the matrix A in (49)
is a square triangular matrix. In this case, Φ can be found fast using backsubstitution. Since
this is the only globally coupled system to solve, the remaining (local) computations for uh
can be locally optimized (or parallelized).

4.2. A one-dimensional example. We begin with a simple one-dimensional example to
show the enhanced accuracy and stability of the DPG method compared to the DG method.
The model problem on Ω = (0, 1) that we shall consider is

u′ = f, u(0) = u0,

with data u0 ∈ R and f ∈ L2(0, 1) set so that the exact solution is

u(x) = arctan(α(x− x0))
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Figure 4. Convergence for the one-dimensional example

where x0 = 1 and α = 100. We use the analogue of our spectral DPG method (of Section 2)
in one dimension, i.e., K = (0, 1) and the test space is Vp(K) = Pp+1(K).

Figure 4 shows the error in u vs. p in a semilog plot. While both methods exhibit
exponential convergence, the error for the DPG method is one order less than that for the
DG method. The gap between the two convergence curves grows with increasing coefficient
α that controls the “steepness” of the solution.

The different behavior of the two methods is further illustrated in Figures 5(a) and 5(b)
that show the graphs of the approximate solutions for some values of p. Both methods
deliver the exact value of the flux at x = 1. Contrary to the DG method, however, the
DPG solution u within the element is “disconnected” from value at 1 and delivers the best
approximation error in L2-norm. This manifests itself with a less oscillatory behavior of
the solution. Our numerics also confirmed Theorem 2.1, i.e., when we compared the DPG
solution with the L2-projection of the exact solution, we found the difference to be zero (of
the order of round-off errors).

4.3. h and p convergence to a solution with discontinuity. Following [12], we con-
sider a square domain Ω = (−1, 1)2 wherein an advection problem is set up so that
~β = (1, 9/10) and the exact solution is

u(x, y) =





sin(π(x+ 1)2/4 sin(π(y − 9x/10)/2)
for − 1 ≤ x ≤ 1, 9x/10x < y < 1,

e−5(x2+(y−9x/10)2)

for − 1 ≤ x ≤ 1, −1 ≤ y < 9x/10.

This u has a discontinuity along the line y = 9x/10. As in [12], we first mesh Ω by an n×n
quadrilateral mesh aligned with the line of discontinuity (see [12, Fig. 10] for details). Since
our method is based on triangular meshes ([12] only considered quadrilateral meshes), we
further split each of the quadrilaterals into two triangles by connecting their diagonals of
positive slope. Another difference with the experiment in [12] is that while [12] needed to
include a stabilizing lower order reaction term for theoretical reasons, we do not need to,
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Figure 5. The enhanced stability of DPG approximations, compared to the
DG ones, in the case of a model transport problem with a layer at the right
end

hence we solve the purely advective problem. We report the errors in uh and φh for the
cases n = 5, 9, 17, 33 and p = 1, . . . , 5 in Figure 6.

It is clear from Figure 6 that the DPG method converged under h and p refinements as
if the solution were infinitely regular (see Figure 6). We observed a similar behavior for the
DG method as well. Such observations demonstrate the advantage of using discontinuous
finite elements with meshes aligned with the solution discontinuity. For the standard DG
method, this observation was made in [12], where DG is compared with the streamline
diffusion method. While the streamline diffusion solution can also be improved by aligning
meshes with shock lines [21], its convergence rate remains limited by the regularity of the
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(a) Log-log plots of ‖u− uh‖ for various h and p values

(b) Log-log plots of flux errors ‖φ− φh‖ 1
β ,Eh

Figure 6. The hp convergence of the DPG method (log-log plots) for the
Houston-Schwab-Süli example [12]

solution, as observed in [12]. Since our purpose is a comparison of DG and DPG, we note
here that the errors we observed for the DG method (not shown in the figure), as in § 4.2,
remained higher than that of the DPG method. Figure 6 suggests that exponential rates
of convergence can be obtained with the DPG method, even for discontinuous solutions,
once an adaptive strategy to align the meshes with the shocks is implemented.

The data that was used to plot Figure 6 also shows the rate of the convergence. Fig-
ure 6(a) indicates that ‖u − uh‖ converges at the rate hp+1 (for p = 1 . . . 5). This is in
accordance with Theorem 3.3. On the other hand, Figure 6(b) shows that the fluxes con-
verge such that ‖φ− φh‖h, 1

β
,Th

goes to zero at the rate of hp+2.5, which is one order more
than what we were able to prove in Theorem 3.3.
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(a) h-refinement: DPG converges at a higher rate

(b) p-refinement: DPG gives lower error

Figure 7. The DPG method performs better than the DG method under
both h and p refinements for the Peterson example [17]. Both plots are in a
log-log scale.

4.4. The Peterson example. Next, we consider the well-known Peterson example [17].
Peterson’s mesh of the unit square is a specific quasiuniform mesh of the type appearing in
Figure 8, obtained from an n× n partition of the unit square, but with additional vertical
lines through some mesh vertices such that the new lines divide the unit square into, say m,
vertical strips (see [17] for details). On such meshes, we apply the UDG and DPG method
to the problem ∂u/∂y = 0, u(x, 0) = sin 6x, x ∈ (0, 1). The results in Figure 7 show that
the DPG method delivers better results than the standard DG method. Figure 7(a) is
obtained with p = 1 and four progressively finer meshes: first with n = 6,m = 3, second
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(a) The DPG solution (b) The DG solution

Figure 8. DPG solutions exhibit less crosswind diffusion than DG solutions.
In this example, the flow is upward.

with n = 12,m = 6, third with n = 24,m = 8, and fourth with n = 48, m = 16. This
allows us to study the case of h-refinement. On the other hand, Figure 7(b) is obtained
by fixing the mesh with n = 6, m = 3, and increasing the degree p from 0 through 5. The
results clearly demonstrate the well-known 0.5-order suboptimality of the DG method in
the h-refinement case, but more interestingly, also show that the DPG method converges
at the optimal rate.

We also present the solutions uh obtained with both DG and DPG methods when the
inflow data is u(x, 0) = x2 in Fig. 8. We used piecewise constant approximations (p = 0).
Observe that as the flow proceeds upwards, the values ‘diffuse’ horizontally for DG case,
while there is little indication of such crosswind diffusion for the DPG method with the
optimal test functions.

5. Concluding remarks

5.1. Summary. We proved optimal error estimates for uh in h and p. Using the known
best approximation estimates [20] for a quasiuniform mesh of meshsize h, we obtain as a
corollary of Theorem 3.3 that

C‖u− uh‖Ω ≤
hs1

ps1
|u|Hs1 (Ω) + (

1

|~β|h1/2
)
hs2−1/2

ps2−1/2
|u|Hs2 (Ω) (50)

with some C independent of h and p and any 0 ≤ s1 ≤ p + 1 and 0 ≤ s2 ≤ p + 2. If the
solution is smooth, choosing s1 = p+1 and s2 = p+2, we obtain the optimal h-convergence
rate of O(hp+1). The p-convergence rate is also optimal.

Note however that there may be room for improvement in the techniques used in the
current proof. In Theorem 3.3 and (50), note that the regularity on u that we need to
obtain the optimal convergence rate is higher than expected. Furthermore, for the fluxes,
we proved a rate of convergence that is suboptimal by one order, but numerical experiments
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Edges covered by a face
Foreground edges

Inflow faces without data

Foreground points
Background points

Figure 8. Top view of a 3D mesh. To obtain the 3D mesh, keep the back-
ground points on the plane of the paper and raise the foreground points one
unit from the paper. The inflow direction is emanating from the paper.

to formulate a generalization of our method by combining with the mixed method. This
is because the space for uh in our method and in the mixed method is the same (one can
proceed, for instance, along the same lines as in [6]). However, proving hp estimates with
p independent constants for such a method does not appear to be an easy task.

The case of variable transport direction !β can be handled by projecting !β into an appro-
priate finite element space. In particular, a low order method can be immediately written

down if we approximate !β by its lowest-order Raviart-Thomas interpolant ΠRT
h

!β. Then,

whenever ∇ · !β = 0, the approximant ΠRT
h

!β is a piecewise constant vector field with contin-
uous interelement normal components. Hence, by simply modifying our test space Vp(K) to

align with ΠRT
h

!β within each element K, we obtain a low-order generalization of the DPG

method to the case of variable !β with minimal modifications. To obtain truly high-order

methods for variable !β, our test space must take into account the variable advection.
This and other generalizations become clearer, once we view the method presented here

as a particular case of a more general paradigm for constructing schemes, not only for
the transport problem or its singular perturbation, but indeed for a much larger class
of problems. The new paradigm is to find a space of optimal test functions tailored for
any particular problem. It turns out that the framework of DG methods offers a unique
opportunity to locally compute test functions that approach optimality in the sense of
reproducing the exact stability properties of the boundary value problem at the discrete
level. This approach and its connection to the space of test functions presented here will
be clarified in a sequel.

Appendix A. Proof of Theorem 2.2

This section is devoted to a proof of Theorem 2.2. Before we embark on this, we need
to develop several intermediate results. Recall that Eout denotes the extension from the
outflow boundary. Now, let us also define the extension from inflow boundary, denoted by
Ein as follows. Given a function µ on ∂inK, the function Ein µ on K coincides with µ on

∂inK and is independent of η1 (i.e., it is constant along the !β-direction).

Figure 9. Top view of a 3D mesh. To obtain the 3D mesh, keep the back-
ground points on the plane of the paper and raise the foreground points one
unit from the paper. The inflow direction is emanating from the paper.

indicate that the fluxes do converge at optimal order. A sharper analysis shedding light on
these issues can be valuable.

In every numerical experiment we performed, without exception, the DPG method gave
more accurate solutions than the standard DG method. Numerical experiments confirm
the theoretically proved optimal rate of convergence for the primal variable uh.

Of course, the full potential of the method is not indicated by an estimate like (50).
Indeed, one can achieve exponential rate of convergence by constructing a variable-degree
analogue where each element K is endowed with its own trial space of degree pK . The
fluxes must be chosen to be of degree one plus the maximum of the degrees from adjacent
elements. A full study of the variable degree version, together with an hp-adaptive scheme
which automatically selects h or p refinement in different locations, is postponed to a future
work.

5.2. The three-dimensional case. The entire analysis of Section 2 holds in any dimen-
sion, including three. The sole reason we restricted ourselves to the two-dimensional case
in Section 3 is that Lemma 3.1 does not hold for general tetrahedral meshes. This fact
does not seem to be well known, so we indicate a counterexample in Figure 9. In the mesh
shown therein, there is no tetrahedron whose inflow boundary is wholly contained in the
global inflow boundary of the domain.

In situations like in Figure 9, we may choose to appropriately bisect the ‘problematic’
tetrahedra so that Lemma 3.1 does hold at each stage. Alternately, while generating
tetrahedral meshes by advancing front meshing algorithms, we can ensure that elements
at each front are such that Lemma 3.1 is satisfied. Notice that Lemma 3.1 is required
not only for the analysis of our method, but also for practical implementation. Indeed, the
process of splitting the mesh into layers S` (see § 3.4) yields an enumeration of flux degrees
of freedom that makes the matrix for φh’s triangular, and hence suitable for fast solution
by backsubstitution. Therefore any extra effort to obtain meshes of the required type is
likely to pay off in the final analysis. (Note that Lemma 3.1 is needed to obtain triangular
matrices even when using the standard UDG method.) These and related algorithmic issues
will be studied in the future.
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5.3. Further studies. We outline a few directions in which we are pursuing further stud-
ies. The singularly perturbed convection-diffusion problem is of great interest. It is easy
to formulate a generalization of our method by combining with the mixed method. This
is because the space for uh in our method and in the mixed method is the same (one can
proceed, for instance, along the same lines as in [10]). However, proving hp estimates with
p independent constants for such a method does not appear to be an easy task.

The case of variable transport direction ~β can be handled by projecting ~β into an appro-
priate finite element space. In particular, a low order method can be immediately written

down if we approximate ~β by its lowest-order Raviart-Thomas interpolant ΠRT
h
~β. Then,

whenever ∇ · ~β = 0, the approximant ΠRT
h
~β is a piecewise constant vector field with contin-

uous interelement normal components. Hence, by simply modifying our test space Vp(K) to

align with ΠRT
h
~β within each element K, we obtain a low-order generalization of the DPG

method to the case of variable ~β with minimal modifications. To obtain truly high-order

methods for variable ~β, our test space must take into account the variable advection.
This and other generalizations become clearer, once we view the method presented here

as a particular case of a more general paradigm for constructing schemes, not only for
the transport problem or its singular perturbation, but indeed for a much larger class
of problems. The new paradigm is to find a space of optimal test functions tailored for
any particular problem. It turns out that the framework of DG methods offers a unique
opportunity to locally compute test functions that approach optimality in the sense of
reproducing the exact stability properties of the boundary value problem at the discrete
level. This approach and its connection to the space of test functions presented here will
be clarified in a sequel.

Appendix A. Appendix: Proof of Theorem 2.2

This section is devoted to a proof of Theorem 2.2. Before we embark on this, we need
to develop several intermediate results. Recall that Eout denotes the extension from the
outflow boundary. Now, let us also define the extension from inflow boundary, denoted by
Ein as follows. Given a function µ on ∂inK, the function Ein µ on K coincides with µ on

∂inK and is independent of η1 (i.e., it is constant along the ~β-direction).

Lemma A.1. Suppose φ in L2(∂outK) and µ in L2(∂inK). Then

〈~β · ~n Eout φ, Ein µ〉∂K = 0. (51)

Moreover, using the norm defined in (20), we have

‖Ein φ‖β,∂outK
= ‖φ‖β,∂inK . (52)

Proof. By integration by parts, we have

〈~β · ~nEout φ,Ein µ〉∂K = (~β · ~∇Eout φ,Ein µ)K

+ (Eout φ,∇ · (~β Ein µ))K ,

and both terms on the right are zero. This proves (51).
Now let us prove (52). Recall the coordinate system aligned with the flow, defined in (10).

Project K onto the η1 = 0 hyperplane along the ~β-direction to obtain a N − 1 dimensional

domain D, meshed with simplices Dj (see Fig. 10) in one less dimension. The flow field ~β
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Figure 9. The flow isomorphism

Lemma A.2. Let φ ∈ L2(∂outK). Using the norm defined in (19), we have

‖Qφ‖ 1
β

,∂outK = ‖φ‖ 1
β

,∂inK
(57)

Furthermore, the operator Qp of (17) is related to Q by

Qp = ΠMQ. (58)

Proof. By (55), we know that

〈Qφ, µ〉∂outK = 〈φ, Eout µ〉∂inK ∀µ ∈ L2(∂outK),

while by (52) of Lemma A.1, we know that

〈φ, Eout µ〉∂inK = 〈"β · "nin
φ

"β · "nin

, Eout µ〉∂inK = −〈"β · "nout Ein(
φ

"β · "nin

), µ〉∂outK ,

where "nin and "nout denote the unit outward normals on ∂inK and ∂outK, respectively. Com-
bining, we conclude that

〈Qφ, µ〉∂outK = −〈"β · "nout Ein(
φ

"β · "nin

), µ〉∂outK ∀µ ∈ L2(∂outK),

Thus, we find that

Qφ = −"β · "nout Ein(
φ

"β · "nin

).

In view of this, we can use (53) of Lemma A.1 with φ/"β · "nin in place of φ, to get

∑

Fout⊆∂outK

|"β · "nFout|
∥∥∥∥ Ein(

φ

"β · "nin

)

∥∥∥∥
2

Fout

=
∑

Fin⊆∂inK

|"β · "nFin
|
∥∥∥∥

φ

"β · "nin

∥∥∥∥
2

Fin

,

or in other words,
∑

Fout⊆∂outK

1

|"β · "nFout|
‖Qφ‖2

Fout
=

∑

Fin⊆∂inK

1

|"β · "nFin
|
‖φ‖2

Fin
.

(a) A tetrahedron projected to 4 triangles
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Lemma A.2. Let φ ∈ L2(∂outK). Using the norm defined in (19), we have

‖Qφ‖ 1
β

,∂outK = ‖φ‖ 1
β

,∂inK
(57)

Furthermore, the operator Qp of (17) is related to Q by

Qp = ΠMQ. (58)

Proof. By (55), we know that

〈Qφ, µ〉∂outK = 〈φ, Eout µ〉∂inK ∀µ ∈ L2(∂outK),

while by (52) of Lemma A.1, we know that

〈φ, Eout µ〉∂inK = 〈"β · "nin
φ

"β · "nin

, Eout µ〉∂inK = −〈"β · "nout Ein(
φ

"β · "nin

), µ〉∂outK ,

where "nin and "nout denote the unit outward normals on ∂inK and ∂outK, respectively. Com-
bining, we conclude that

〈Qφ, µ〉∂outK = −〈"β · "nout Ein(
φ

"β · "nin

), µ〉∂outK ∀µ ∈ L2(∂outK),

Thus, we find that

Qφ = −"β · "nout Ein(
φ

"β · "nin

).

In view of this, we can use (53) of Lemma A.1 with φ/"β · "nin in place of φ, to get

∑

Fout⊆∂outK

|"β · "nFout|
∥∥∥∥ Ein(

φ

"β · "nin

)

∥∥∥∥
2

Fout

=
∑

Fin⊆∂inK

|"β · "nFin
|
∥∥∥∥

φ

"β · "nin

∥∥∥∥
2

Fin

,

or in other words,
∑

Fout⊆∂outK

1

|"β · "nFout|
‖Qφ‖2

Fout
=

∑

Fin⊆∂inK

1

|"β · "nFin
|
‖φ‖2

Fin
.

(b) The case of triangles

Figure 10. The flow isomorphism

generates an isomorphism from D onto ∂inK as well as ∂outK. We denote the former by Fin

and the latter by Fout.
The values of Ein µ on Fout(Dj) are mapped over from Fin(Dj). Since Fout(Dj) is mapped

to Fin(Dj) by the map Fin ◦F−1
out, which is a transformation whose Jacobian is constant on

Fout(Dj), integration via a change of variable shows that

‖Ein µ‖2
Fout(Dj)

=
|Fout(Dj)|
|Fin(Dj)|

‖µ‖2
Fin(Dj)

. (53)

Now, consider the solid Sj formed by the faces Fout(Dj), Fin(Dj), filled by line segments

parallel to ~β. Since ~β · ~n = 0 on all faces of this solid other than Fout(Dj) and Fin(Dj), by
the divergence theorem, we find that

0 =

∫

Sj

∇ · ~β dx = |~β · ~nFout(Dj)| |Fout(Dj)|

+ |~β · ~nFin(Dj)| |Fin(Dj)|.
Using this in (53), we find that

|~β · ~nFout(Dj)| ‖Ein µ‖2
Fout(Dj)

= |~β · ~nFin(Dj)| ‖µ‖2
Fin(Dj)

.

Summing over all j, we obtain (52). �

Now, let us define the exact local solution operators, in analogy with the discrete ones
in (17). Namely, we define

Q : L2(∂inK) 7−→ L2(∂outK), U : L2(∂inK) 7−→ L2(K),

as follows: Given φ in L2(∂inK), the functions Qφ and Uφ are defined by

−(Uφ, ~β · ~∇ v)K + 〈Qφ, v〉∂outK = 〈φ, v〉∂inK , (54)

for all v in

V (K)
def
= {ν ∈ L2(K) : β · ~∇ ν ∈ L2(K)}. (55)
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The next result concerns the operators Q and Qp. Recall that ΠM denotes the L2-orthogonal
projection onto Mh (it obviously acts face by face).

Lemma A.2. Let φ ∈ L2(∂outK). Using the norm defined in (19), we have

‖Qφ‖ 1
β
,∂outK

= ‖φ‖ 1
β
,∂inK

(56)

Furthermore, the operator Qp of (17) is related to Q by

Qp = ΠMQ. (57)

Proof. By (54), we know that

〈Qφ, µ〉∂outK = 〈φ,Eout µ〉∂inK ∀µ ∈ L2(∂outK),

while by (51) of Lemma A.1, we know that

〈φ,Eout µ〉∂inK = 〈~β · ~nin
φ

~β · ~nin

,Eout µ〉∂inK

= −〈~β · ~nout Ein(
φ

~β · ~nin

), µ〉∂outK ,

where ~nin and ~nout denote the unit outward normals on ∂inK and ∂outK, respectively. Com-
bining, we conclude that

〈Qφ, µ〉∂outK = −〈~β · ~nout Ein(
φ

~β · ~nin

), µ〉∂outK

for all µ ∈ L2(∂outK). Thus, we find that

Qφ = −~β · ~nout Ein(
φ

~β · ~nin

).

In view of this, we can use (52) of Lemma A.1 with φ/~β · ~nin in place of φ, to get

∑

Fout⊆∂outK

|~β · ~nFout |
∥∥∥∥Ein(

φ

~β · ~nin

)

∥∥∥∥
2

Fout

=
∑

Fin⊆∂inK
|~β · ~nFin

|
∥∥∥∥

φ

~β · ~nin

∥∥∥∥
2

Fin

,

or in other words,

∑

Fout⊆∂outK

1

|~β · ~nFout |
‖Qφ‖2

Fout
=

∑

Fin⊆∂inK

1

|~β · ~nFin
|
‖φ‖2

Fin
.

Thus we have proved (56).
To prove (57), it suffices to observe that on each element, Qpφ is the discrete spectral ap-

proximation to the exact solution Qφ, hence by the superconvergence result of Theorem 2.1,
we find that Qpφ−ΠMQφ = 0. �

We need two more lemmas before we proceed to obtain bounds for the local solution
operators.
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Lemma A.3. Suppose w is in Pp(K) and v is the function in Vp(K) obtained via Lemma 2.1
satisfying

v|∂outK = 0, ~β · ~∇ v = w. (58)

Then

‖v‖2
β,∂inK

≤ 1

|~β|
hβ,K‖w‖2

K , (59)

‖v‖2
K ≤

1

|~β|2
h2
β,K‖w‖2

K . (60)

Proof. We use the notations in the proof of Lemma A.1. Let v̂ denote the function obtained
by mapping the values of v|∂inK to D, i.e.,

v̂(η2, . . . , ηN) = v(Fin(0, η2, . . . , ηN)).

Then, since |Fin(Dj)| |~β · ~nFin(Dj)| = |Dj| |~β|, we obtain by a change of variable that

‖v‖2
Fin(Dj)

=
|Fin(Dj)|
|Dj|

‖v̂‖2
Dj

=
|~β|

|~β · ~nFin(Dj)|
‖v̂‖2

Dj
. (61)

Now, let fout(η2, . . . , ηN) and fin(η2, . . . , ηN) denote the η1-components of Fout(0, η2, . . . , ηN)
and Fin(0, η2, . . . , ηN), respectively. Then the inflow and outflow boundaries are the graphs
of fin and fout, respectively. By (58),

v(η1, . . . , ηN) =

∫ η1

fout(η2,...,ηN )

1

|~β|
w(s, η2, . . . , ηN) ds (62)

When we evaluate this expression on the inflow boundary η1 = fin(η2, . . . , ηN), we obtain
values of v̂. Consequently, (61) implies that

‖v‖2
β,∂inK

=
∑

j

|~β|
∫

Dj

|v̂|2 dη2 . . . dηN

= |~β|
∫

D

∣∣∣∣∣

∫ fin(η2,...,ηN )

fout(η2,...,ηN )

1

|~β|
w(s, η2, . . . , ηN) ds

∣∣∣∣∣

2

dη2 . . . dηN

≤ 1

|~β|
hβ,K

∫

K

|w|2 dη1 . . . dηN ,

and the first estimate of the lemma follows.
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For the second estimate, we again use (62).

‖v‖2
K =

∑

j

∫ fin(η2,...,ηN )

fout(η2,...,ηN )

∫

Dj

∣∣∣∣∣

∫ η1

fout(η2,...,ηN )

1

|~β|
w(s, η2, . . . , ηN) ds

∣∣∣∣∣

2

dη2 . . . dηN dη1

≤
∫ fin(η2,...,ηN )

fout(η2,...,ηN )

∫

D

hβ,K

|~β|2

∫ fin(η2,...,ηN )

fout(η2,...,ηN )

|w(s, η2, . . . , ηN)|2 ds dη2 . . . dηN dη1

≤
h2
β,K

|~β|2

∫

K

|w(s, η2, . . . , ηN)|2 ds dη2 . . . dηN .

This finishes the proof. �

Lemma A.4. Suppose ψ is in Mp+1(∂outK) and v is the function in Vp(K) satisfying

v|∂outK = ψ, ~β · ~∇ v = 0.

Then

‖v‖2
K ≤

hβ,K

|~β|
‖ψ‖2

β,∂outK
.

Proof. Map ψ from ∂outK to D using the flow isomorphism to obtain a function ψ̂ on D.
Then, evaluating the norm ‖v‖2

K as an iterated integral,

‖v‖2
K =

∑

j

∫ fin(η2,...,ηN )

fout(η2,...,ηN )

∫

Dj

|ψ̂(η2, . . . , ηN)|2 dη2 . . . dηN dη1 (by Fubini)

=
∑

j

∫ fin(η2,...,ηN )

fout(η2,...,ηN )

|~β · ~nFout(Dj)|
|~β|

‖ψ‖2
Fout(Dj)

dη1 (cf. (61))

≤hβ,K
|~β|
‖ψ‖2

β,∂outK
,

as the maximum value of |fin − fout| is hβ,K . �

Proof of Theorem 2.2. To prove the bound on Qpφ in (21), we use Lemma A.2 and the fact
that orthogonal projectors have unit norm, so that

‖Qpφ‖2
1
β
,∂outK

=
∑

Fout⊆∂outK

1

|~β · ~nFout |
‖Qpφ‖2

Fout

=
∑

Fout⊆∂outK

1

|~β · ~nFout |
‖ΠMQφ‖2

Fout

≤
∑

Fout⊆∂outK

1

|~β · ~nFout|
‖Qφ‖2

Fout
= ‖Qφ‖2

1
β
,∂outK

,
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and complete using (56).
To prove the bound on Upφ, let v in Vp(K) be a function as in Lemma A.3 satisfying

v|∂outK = 0, ~β · ~∇ v = Upφ.

Substituting this v in the definition (17) of Up, we obtain

‖Upφ‖2
K = 〈φ, v〉∂inK ≤ ‖φ‖ 1

β
,∂inK
‖v‖β,∂inK

≤ ‖φ‖ 1
β
,∂inK

h
1/2
β,K

|~β|1/2
‖Upφ‖K

by Lemma A.3, so the proof of (21) is finished.
To prove (22), first consider Qf

pz. In its definition, namely in (18), we can set v to be the

function given by Lemma A.4 with ψ = Qf
pz/|~β · ~n|. Then

‖Qf
pz‖2

1
β
,∂outK

= (z, v) ≤ ‖z‖K
h

1/2
β,K

|~β|1/2

∥∥∥∥∥
1

|~β · ~n|
Qf
pz

∥∥∥∥∥
β,∂outK

= ‖z‖K
h

1/2
β,K

|~β|1/2
‖Qf

pz‖ 1
β
,∂outK

.

Next, consider Uf
pz. In this case, we set v to be the function in Vp(K) with ~β · ~∇ v = −Uf

pz
and v|∂outK=0, given by Lemma A.3. Substituting this v into (18), and applying (60) of
Lemma A.3, we have

‖Uf
pz‖2

K = (z, v) ≤ ‖z‖K‖v‖K ≤ ‖z‖K
hβ,K

|~β|
‖Uf

pz‖K .

This proves the last estimate of the theorem and finishes the proof. �
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[12] P. Houston, C. Schwab, and E. Süli, Stabilized hp-finite element methods for first-order hyperbolic
problems, SIAM J. Numer. Anal., 37 (2000), pp. 1618–1643 (electronic).

[13] T. J. R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion,
in Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc.
Mech. Engrs., New York, 1979), vol. 34 of AMD, Amer. Soc. Mech. Engrs. (ASME), New York, 1979,
pp. 19–35.
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