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Abstract. Consider the space of two-dimensional vector functions whose components
and curl are square integrable with respect to the degenerate weight given by the radial
variable. This space arises naturally when modeling electromagnetic problems under
axial symmetry and performing a dimension reduction via cylindrical coordinates. We
prove that if the original three-dimensional domain is convex then the multigrid V-
cycle applied to the inner product in this space converges, provided certain modern
smoothers are used. For the convergence analysis, we first prove several intermediate
results, e.g., the approximation properties of a commuting projector in weighted norms,
and a superconvergence estimate for a dual mixed method in weighted spaces. The
uniformity of the multigrid convergence rate with respect to mesh size is then established
theoretically and illustrated through numerical experiments.

1. Introduction

Multigrid methods can be made to work for problems involving the curl and diver-
gence operators, notwithstanding their large kernels, as is now well known, thanks to the
papers [2, 22]. The purpose of this work is to extend such techniques to axisymmetric
problems where one only has control of curl through a weighted norm. Weighted Sobolev
spaces arise naturally when deriving the weak formulations of standard boundary value
problems under axial symmetry. Using cylindrical coordinates (r, θ, z), we can reduce
three-dimensional (3D) problems in unweighted spaces to two-dimensional (2D) ones set
in weighted spaces, the weight function being the radial coordinate r. The dimensional
reduction from 3D to 2D is an attractive feature as it can significantly reduce the com-
putational expense. But when the axis of symmetry is contained in the domain, the
degeneracy of the weight r necessitates careful mathematical treatment. Our concern in
this paper is the rigorous study of the convergence of multigrid applied to a bilinear form
in one such weighted space, namely Hr(curl, D), which we now define.

It is a space of vector functions v on the rz-plane with certain integrability properties.
Letting the components of v be denoted by vr and vz, and curl by

(1.1) curlrzv = ∂zvr − ∂rvz,

we define
Hr(curl, D) =

{
v ∈ L2

r(D)2 : curlrzv ∈ L2
r(D)

}
.

Here D is a polygonal subset of the rz-plane and L2
r(D) is the set of all real valued

measurable functions on D with
∫

D
u2 r dr dz < ∞. It is well known that L2

r(D) is a
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Hilbert space with the weighted inner product defined by

(u, v)r =

∫

D

r uv dr dz.

The space Hr(curl, D) is also Hilbert with the inner product

(1.2) Λ(u,v) = (curlrzu, curlrzv)r + (u,v)r.

The goal of this paper is to analyze the application of multigrid to the bilinear form Λ(·, ·).
Bilinear forms like Λ(·, ·) arise when deriving variational formulations from Maxwell

equations in cases when the material properties and geometry are axisymmetric. Since
such details have been well explained by many authors [3, 8, 17], we shall not dwell on them
here. It suffices to say that the 3D Maxwell system (consisting of six scalar equations
for the six components of the electric and magnetic fields) decouples into two systems
of three equations each, one called the azimuthal problem and the other the meridian

problem. The meridian problem is for the components in the right half of the rz-plane
(sometimes called the meridian half-plane) of the electric field, which we may denote by
Erz = Erer + Ezez. The components Er and Ez are functions of r and z alone (as there
is no θ dependence due to axial symmetry). In the time-harmonic case, Erz satisfies

(1.3) curlrz

(
1

µ
curlrzErz

)
− ω2ǫErz = F ,

where µ is the magnetic permeability, ǫ is the dielectric constant, F represents given
sources, all of which are axisymmetric, and ω is the wave number. Note that in (1.3),
while curlrz(·) is as defined in (1.1), the operator curlrz(·) takes scalar functions to vector
functions by

(1.4) curlrzφ ≡ (−∂zφ,
1

r
∂r(rφ)).

Throughout this paper we say that a scalar valued function is “axisymmetric” if it is
is invariant under any rotation about the r = 0 axis. A vector function is said to be
axisymmetric if its scalar components in cylindrical coordinates are axisymmetric. The
variational formulation for equations like (1.3) are naturally posed in Hr(curl, D).

Although the above mentioned meridian problem gives rise to a complex and indefinite
variational formulation in Hr(curl, D), a first step towards analyzing multigrid algorithms
for it would be an analysis of the multigrid algorithm applied to the Hr(curl, D)-inner
product over the real field. Even with this simplification, the analysis is nontrivial because
of the difficulties caused by the kernel of the curl operator and the degenerate weight.
Techniques to overcome the former difficulty are now well known, thanks to the papers [1,
2, 22], and we shall make extensive use of their ideas. Some important results to handle
difficulties caused by the degenerate weight are available in [17, 18, 21]. However, we
need to develop more tools in weighted spaces of vector valued functions arising in our
problem.

Mathematical analysis of finite elements for axisymmetric problems is a subject of in-
creasing interest. Many of the basic properties of the Sobolev spaces needed for scalar
problems and Stokes flow were established in [6], while the same for the Maxwell system
were proved more recently in [3]. Simple finite elements for the azimuthal problem were
analyzed in [21]. It was followed by an analysis of finite elements for the meridian prob-
lem [17]. Other studies on the performance of finite elements for axisymmetric Maxwell



MULTGRID IN WEIGHTED Hr(curl) 3

equations include [14, 18, 24]. Previous papers have also investigated the application of
multigrid techniques to the weighted spaces arising from axisymmetric Maxwell equations.
Multigrid for the azimuthal problem is analyzed in [21]. In [8] one finds another multigrid
analysis, but using line relaxations. In contrast, our aim in this paper is the analysis of the
V-cycle multigrid algorithm using the less expensive smoothers of [2] and [22]. This has
direct application to time-dependent and potential application to time-harmonic meridian
problems.

Since the applications we have in mind are those reduced from three to two dimensions
by axial symmetry, we think of the domain D as the restriction to the meridian half-
plane of some 3D axisymmetric domain Ω. In particular, we have in mind cases when
the boundary ∂D intersects the r = 0 axis. We assume that D is a bounded, connected
domain with a Lipschitz polygonal boundary ∂D partitioned into two disjoint subsets,
namely its intersection with the r = 0 axis, denoted by Γ0, and the remainder, denoted
by Γ1. If Γ0 is empty, the weight function r is not degenerate and there is little difficulty
in extending the known techniques. Here we consider the case when Γ0 has positive (one-
dimensional) measure. Furthermore, to avoid topological complications, we assume that
Γ1 is connected and D is simply connected.

In addition to Hr(curl, D), we shall also need a number of other weighted spaces. For
the convenience of the reader, we collect all their definitions, and the definitions of various
norms in one place. In general, we denote the norm on a function space X by || · ||X .
However, more often used norms have special notations, e.g., the inner product (·, ·)r

induces the norm ‖·‖r on L2
r(D), while the bilinear form Λ(·, ·) in (1.2) induces the norm

‖v‖r,curl = (‖v‖2
r + ‖curlrzv‖2

r)
1

2

on Hr(curl, D). Let Hk
r (D), for any k ≥ 1, be the space of all functions in L2

r(D) whose
distributional derivatives up to order k are in L2

r(D). The norm and seminorm on Hk
r (D)

are defined in the usual way. Let H̃1
r (D) = L2

1/r(D) ∩H1
r (D), where

L2
1/r(D) = {u ∈ L2(D) : ‖u‖2

L2

1/r
(D) :=

∫

D

1

r
u2 dr dz <∞}.

Then

‖v‖ eH1
r (D) = (‖v‖2

H1
r (D) + ‖v‖2

L2

1/r
(D))

1

2

defines a norm on H̃1
r (D). Further, the seminorm and norm

|v| eH2
r (D) =

(∣∣∣∣
1

r
∂r(rv)

∣∣∣∣
2

H1
r (D)

+ |∂zv|2H1
r (D)

) 1

2

,

‖v‖ eH2
r (D) = (|v|2eH2

r (D)
+ ‖v‖2

eH1
r (D) + ‖∂zv‖2

L2

1/r
(D))

1

2 ,

define the Hilbert space

H̃2
r (D) = {v ∈ H̃1

r (D) : ‖v‖ eH2
r (D) <∞}.

Functions in H̃1
r (D) are well known to have zero trace on Γ0 [3, 21]. It is also known

that functions in H1
r (D) have traces in L2

r(Γ1), i.e., for φ in H1
r (D), the trace φ|Γ1

makes
sense as a function in L2

r(Γ1), but trace on Γ0 is not defined in general [23]. Let D(D)
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denote the space of all infinitely differentiable functions that are compactly supported
in D. Then we can define the tangential trace operator γt : D(D)2 7→ H̃1

r (D)′ by

(1.5) 〈γt(v), φ〉 =

∫

Γ1

r v · tφ ds for all φ ∈ H̃1
r (D),

where 〈·, ·〉 denotes duality pairing in H̃1
r (D), and t is the unit tangent vector on ∂D,

oriented counterclockwise. In [17, Proposition 2.2], it is shown that γt extends to a

continuous linear map from Hr(curl, D) to H̃1
r (D)′. Moreover, the integration by parts

formula

(1.6) 〈γt(v), φ〉 = (v, curlrzφ)r − (curlrzv, φ)r

holds for all v in Hr(curl, D) and φ in H̃1
r (D). Here curlrz is as defined in (1.4).

The boundary conditions for the 3D problem gives rise to boundary conditions on
Γ1. We consider the perfect electric boundary condition on ∂Ω, which asserts that the
3D electric field has zero tangential component on ∂Ω. In the axisymmetric case, this
boundary condition, loosely speaking, translates into an essential boundary condition of
the form Erz · t = 0 on Γ1. More precisely, the weak solution will lie in the subspace of
functions that are in the kernel of the tangential trace operator γt. Define

Hr,⋄(curl, D) = {v ∈ Hr(curl, D) : γt(v) = 0} ,
H1

r,⋄(D) =
{
φ ∈ H1

r (D) : φ|Γ1
= 0
}
,

which are closed subspaces of Hr(curl, D) and H1
r (D), respectively. In fact, the multigrid

algorithm we shall give is for an equation posed in a subspace of Hr,⋄(curl, D). The case
of Hr(curl, D) without boundary conditions is similar and simpler.

We conclude this introduction with an outline of the remainder of the paper. There are
a number of preliminary results we need before proceeding with the multigrid analysis.
The first involves two commuting projectors with suitable approximation properties in
weighted norms, which we present in the next section. In Section 3, we present and
analyze an auxiliary mixed method which will prove to be a significant tool in our multigrid
analysis of the positive definite problem related to the meridian problem. Although our
primary interest in this paper is the meridian problem, the auxiliary mixed problem is
in fact a weak variational problem of an azimuthal problem, and it is interesting in its
own right. Section 4 describes the multigrid algorithm, and the succeeding section proves
its uniform convergence. In Section 6, we present numerical results providing empirical
support to the theoretical results. Finally, we summarize the results of the paper and
discuss future work in Section 7.

2. Commuting projectors

The purpose of this section is to exhibit a projector ΠW
h into the Nédélec finite el-

ement [25] subspace of Hr,⋄(curl, D) that has a commutativity property involving the
L2

r(D)-orthogonal projection ΠS
h into a space of piecewise constant functions. We shall

heavily use the commutativity and approximation properties of this projector in the next
section.
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First, let us define the finite element subspaces onto which the projections map. Let

N1 = {(a− bz, c + br) : a, b, c ∈ R} ,
P1 = {c0 + c1r + c2z : ci ∈ R for i = 0, 1, 2} .

Assume that D is meshed by a finite element triangulation Th satisfying the usual geo-
metrical conformity conditions [15]. For simplicity, we assume that Th is quasiuniform
with a representative mesh size h. The finite element spaces we shall use are

Vh =
{
u ∈ H1

r (D) : u|K ∈ P1 for all K ∈ Th

}
,

Wh = {v ∈ Hr(curl, D) : v|K ∈ N1 for all K ∈ Th} ,
Vh,⋄ = {v ∈ Vh : v|Γ1

= 0} ,
Wh,⋄ = {v ∈ Wh : γt(v) = 0} ,
Sh =

{
u ∈ L2

r(D) : u|K is constant for all K ∈ Th

}
.

Projectors into these finite element spaces with commutativity properties have been con-
structed previously. Indeed, in [17], we find projectors Π̂V

h , Π̂W
h , and Π̂S

h onto Vh,⋄, Wh,⋄,
and Sh respectively. In particular, it is proved in [17] that they satisfy

curlrzΠ̂
W
h v = Π̂S

hcurlrzv(2.1)

‖Π̂W
h v − v‖r ≤ Ch|v|H1

r (D)(2.2)

for all v in H1
r (D) (see [17, Lemma 5.1] for (2.1) and [17, Lemma 5.3] for (2.2)). The

projection Π̂S
hφ equals the L2

r(K)-orthogonal projection of φ for allK intersecting Γ0, while
for the remaining elements K ′, it equals the (unweighted) L2(K ′)-orthogonal projection
of φ.

Unfortunately, these projectors are inadequate for our purposes in this paper. Let ΠS
h

denote the L2
r(D)-orthogonal projection into Sh. For our analysis later (in particular,

in the proof of Theorem 3.3), we need a projector ΠW
h that satisfies the commutativity

property in (2.1) with ΠS
h . The projector Π̂S

h of [17] is not equal to ΠS
h . Therefore, the

remainder of this section is devoted to the construction of the projector ΠW
h with the

properties we need, as listed in the following theorem.

Theorem 2.1. Let ΠS
h : L2

r(D) → Sh be the L2
r(D)-orthogonal projection. There is a

projector ΠW
h : Hr,⋄(curl, D) → Wh,⋄ such that

(1) ΠW
h is well defined and continuous on Hr,⋄(curl, D),

(2) the commutativity property

ΠS
hcurlrzu = curlrzΠ

W
h u,

holds for all u in Hr,⋄(curl, D),
(3) the approximation property

∥∥u − ΠW
h u
∥∥

r,curl
≤ C inf

uh∈Wh,⋄

‖u − uh‖r,curl

holds for all u in Hr,⋄(curl, D).

Above, and in the rest of the paper, we use C to denote a generic constant independent
of the functions involved in norm estimates, which may take different values at different
occurrences. We remark that the projector ΠW

h is continuous on Hr,⋄(curl, D), whereas
typical projectors into the Nédélec space, such as Nédélec’s original projector [25], as well
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as the projector Π̂W
h , require more regularity due to edge-based degrees of freedom. This

is achieved by a global definition of ΠW
h without local degrees of freedom, given in the

proof of this theorem below.
For the proof and subsequent analysis, we will need an “exact sequence property”

and the so-called “discrete Helmholtz decomposition,” but adapted to our weighted inner
product setting. Because we have assumed that Γ1 is connected andD is simply connected,
it follows that the sequence

(2.3) 0 −−−→ Vh,⋄
gradrz−−−−→ Wh,⋄

curlrz−−−→ Sh −−−→ 0

is exact, as proved in Appendix A. This means that the map curlrz : Wh,⋄ 7→ Sh is
surjective and its null space coincides with the gradrz(Vh,⋄). Such results are standard
in the case of no boundary conditions or when boundary conditions hold on the entire
boundary. In our application, a boundary condition is prescribed only on part of ∂D,
namely Γ1. Since we have not been able to locate a reference for the proof of exactness
in this case, we include a short proof in Appendix A.

Next, let us adapt the well known discrete Helmholtz decomposition to our weighted
norms. Given a vh in Wh,⋄, there is a unique φh in Vh,⋄ satisfying

(gradrzφh, gradrzψh)r = (vh, gradrzψh)r for all ψh in Vh,⋄.

The unique existence of φh is guaranteed by the Lax-Milgram lemma, which may be
invoked for this variational problem thanks to [21, Proposition 2.1]. It is trivial to verify
the stability estimate

(2.4) ‖gradrzφh‖r ≤ ‖vh‖r.

Let rh = vh − gradrzφh. Then the weighted discrete Helmholtz decomposition is

vh = gradrzφh + rh.

Note that the components of the decomposition are orthogonal with respect to the
weighted inner products of both L2

r(D)2 and Hr(curl, D).
To characterize rh further, let curl′rz : Sh 7→ Wh,⋄ be defined by

(curl′rzsh,wh)r = (sh, curlrzwh)r, for all sh in Sh and wh in Wh,⋄,

i.e., curl′rz is the adjoint of curlrz : W h,⋄ → Sh, with respect to the weighted inner
product (·, ·)r. By the exactness of (2.3),

gradrz(Vh,⋄) = ker(curlrz)

where ker(curlrz) denotes the null space of curlrz in Wh,⋄. Hence the orthogonality of rh

with gradrz(Vh,⋄) implies that rh is in the range of the adjoint curl′rz, i.e., there is an
element ah in Sh such that

rh = curl′rzah,

and moreover, ah is unique due to the injectivity of curl′rz (which follows from the surjec-
tivity of curlrz in the exact sequence (2.3)). In other words, an alternate way of stating
the decomposition is that for all vh in Wh,⋄, there is a unique ah in Sh and a unique φh

in Vh,⋄ such that

(2.5) vh = gradrzφh + curl′rzah.

We shall now use this decomposition to prove Theorem 2.1.
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Proof of Theorem 2.1. Define ΠW
h : Hr,⋄(curl, D) → Wh,⋄ by

(ΠW
h v, gradrzηh)r = (v, gradrzηh)r for all ηh in Vh,⋄,(2.6a)

(curlrzΠ
W
h v, sh)r = (curlrzv, sh)r for all sh in Sh.(2.6b)

We will now verify that the asserted statements hold for this ΠW
h .

(1) First of all, observe that (2.6) is a square system of equations. Indeed, due to the
exactness of (2.3), the number of equations in (2.6) equal

dim(Vh,⋄) + dim(Sh) = dim(gradrz(Vh,⋄)) + dim(curlrz(Wh,⋄))

= dim(ker(curlrz)) + dim(curlrz(Wh,⋄))

= dim(Wh,⋄)

by the rank-nullity theorem. Thus, we only need to show that the kernel of the linear
system (2.6) is trivial. If v = 0, then the right hand side of (2.6) is zero, so

(ΠW
h v, gradrzηh + curl′rzsh)r = 0 for all ηh in Vh,⋄ and sh in Sh.

This implies that ΠW
h v = 0, by the weighted discrete Helmholtz decomposition of Wh,⋄.

Therefore, ΠW
h is well defined.

Before we proceed to prove the continuity of ΠW
h on Hr,⋄(curl, D), let us note that

(2.7) ‖sh‖r ≤ C‖curl′rzsh‖r for all sh ∈ Sh.

This follows from [17, Theorem 6.1(2)], which asserts that

(2.8) ‖vh‖r ≤ C‖curlrzvh‖r for all vh ∈ R⊥

h

where R⊥

h denotes the orthogonal complement of gradrz(Vh,⋄) in Wh,⋄ in the weighted
L2

r(D)-norm. Indeed, (2.8) implies that

‖curl′rzah‖r = sup
vh∈R

⊥

h

(curl′rzah,vh)r

‖vh‖r

≥ sup
vh∈R

⊥

h

(ah, curlrzvh)r

C ‖curlrzvh‖r

=
1

C
‖ah‖r ,

which proves (2.7).
Now, to prove the continuity of ΠW

h , let us first use the weighted discrete Helmholtz
decomposition (2.5) and write ΠW

h v = gradrzφh + curl′rzah, with φh in Vh,⋄ and ah in Sh.
Setting ηh = φh in (2.6a) and sh = ah in (2.6b) and applying Cauchy-Schwarz inequality,

‖gradrzφh‖r ≤ ‖v‖r, and

‖curl′rzah‖2
r = (curlrzv, ah)r ≤ ‖curlrzv‖r ‖ah‖r

≤ ‖curlrzv‖r C ‖curl′rzah‖r

by (2.7). Hence, the stated continuity of ΠW
h follows by the stability of the weighted

discrete Helmholtz decomposition.
(2) Commutativity is clear from (2.6b) and the definition of ΠS

h .
(3) To prove the error estimate, consider an arbitrary u in Hr,⋄(curl, D) and uh in Wh,⋄.

Use the weighted discrete Helmholtz decomposition to split

ΠW
h u − uh = gradrzψh + curl′rzbh,
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with ψh in Vh,⋄ and bh in Sh. Then, by (2.6),

(ΠW
h u − u,ΠW

h u − uh)r = (ΠW
h u − u, gradrzψh + curl′rzbh)r

= (ΠW
h u − u, curl′rzbh)r

= (curlrzΠ
W
h u, bh)r − (uh, curl′rzbh)r − (u − uh, curl′rzbh)r

= (curlrzu, bh)r − (curlrzuh, bh)r − (u − uh, curl′rzbh)r,

and hence
∥∥ΠW

h u − uh

∥∥2

r
= (u − uh,Π

W
h u − uh)r + (curlrz(u − uh), bh)r − (u − uh, curl′rzbh)r.

Now, using the Cauchy-Schwarz inequality,
∥∥ΠW

h u − uh

∥∥2

r
≤ ‖u − uh‖r,curl

(
‖ΠW

h u − uh‖r + ‖bh‖r + ‖curl′rzbh‖r

)

≤ C‖u − uh‖r,curl ‖ΠW
h u − uh‖r,

where we have applied (2.7) to bh, and used the stability of the discrete Helmholtz de-
composition. The triangle inequality now yields the estimate

∥∥u − ΠW
h u
∥∥

r
≤ C ‖u − uh‖r,curl .

Finally, since

‖curlrz(u − ΠW
h u)‖r = ‖curlrzu − ΠS

hcurlrzu‖r ≤ ‖curlrzu − curlrzuh‖r,

we have

‖u − ΠW
h u‖r,curl ≤ C‖u − uh‖r,curl.

Since uh in Wh,⋄ is arbitrary, this proves the stated approximation property. �

The following corollary gives more specific estimates in terms of the meshsize h, under
certain conditions.

Corollary 2.1. Let u be in H1
r (D)2. The approximation property

∥∥u − ΠW
h u
∥∥

r,curl
≤ Ch

(
|u|H1

r (D)2 + |curlrzu|H1
r (D)

)

holds provided that curlrzu is in H1
r (D), and

(2.9)
∥∥u − ΠW

h u
∥∥

r
≤ Ch|u|H1

r (D)2

holds provided that curlrzu is in Sh.

Proof. In the case that curlrzu is in H1
r (D), the first estimate follows directly from The-

orem 2.1(3) and (2.2), by taking uh = Π̂W
h u.

Now suppose curlrzu is in Sh. Then the following estimate of Theorem 2.1(3)

‖u − ΠW
h u‖r,curl ≤ C‖u − Π̂W

h u‖r,curl

reduces to simply

‖u − ΠW
h u‖r ≤ C‖u − Π̂W

h u‖r

because of the commutativity properties. Indeed, curlrzΠ̂
W
h u = Π̂S

hcurlrzu = curlrzu and
similarly curlrzΠ

W
h u = curlrzu. Using (2.2), the estimate (2.9) then follows. �
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3. A dual mixed problem

In our multigrid analysis presented later, we will use an intermediate mixed variational
problem to obtain several estimates. This mixed problem, which is interesting in its own
right, is the subject of the present section. We will prove that the problem is well posed
and provide error estimates for the discrete solution.

The problem can be stated as follows: Find z in Hr,⋄(curl, D) and p in L2
r(D) satisfying

(3.1)
(z,w)r − (p, curlrzw)r = 0, for all w in Hr,⋄(curl, D),

(s, curlrzz)r = (s, f)r, for all s in L2
r(D).

Observe that this is a variational formulation of the boundary value problem

z = curlrzp on D,

curlrzz = f on D,

z · t = 0 on Γ1,

which can also be written as the second-order boundary value problem

(3.2) curlrz curlrz p = f on D, and curlrzp · t = 0 on Γ1.

The differential operator appearing here is the same as the second order operator appear-
ing in the equation defining the azimuthal component (Eθ) of the axisymmetric Maxwell
equations (for a homogeneous medium). Interestingly, this “azimuthal” operator plays
an important role in the multigrid analysis of the “meridian” operator. Problem (3.1)
is independently interesting because of the above mentioned connection to the azimuthal
Maxwell system. Indeed, a primal variational formulation of (3.2), but with different
boundary conditions, is analyzed in [21]. In this section, we will analyze the dual varia-
tional formulation (3.1).

We begin with the following lemma, which will help in proving that the mixed prob-
lem (3.1) is well posed (cf. Lemma A.1 in Appendix A).

Lemma 3.1. The map curlrz : Hr,⋄(curl, D) 7→ L2
r(D) is surjective.

Proof. Let s be in L2
r(D). It is shown in [5, 21] that there exists a unique u in V θ satisfying

(3.3) (curlrzu, curlrzv)r = (s, v)r for all v ∈ V θ,

where V θ := {v ∈ H̃1
r (D) : v = 0 on ∂D}. This implies that s = curlrzcurlrzu in L2

r(D),
by (1.6) and the density of D(D) in L2

r(D). Hence, setting w = curlrzu, we find that

(3.4) s = curlrzw.

Note that w is in L2
r(D)2, since ‖curlrzu‖r ≤ C‖u‖ eH1

r (D) by [21, Proposition 3.1]. In fact,

these two norms are equivalent as u is in V θ. Moreover, by (3.4) curlrzw is in L2
r(D), so w

is in Hr(curl, D). However, we want to express s as the curl of a function in Hr,⋄(curl, D).
To this end, we first define W 0 by

W 0 :=
{
w ∈ Hr,⋄(curl, D) : (w, gradrzq)r = 0 for all q ∈ H1

r,⋄(D)
}

and let P 0 denote the orthogonal projection from Hr(curl, D) to W 0 in the (·, ·)r-inner
product. Clearly, if we show that

(3.5) s = curlrz(P
0w),

the proof of the lemma will be complete.
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Considering any ψ in D(D), it is easy to check that

(3.6) curlrzψ is in W 0.

Furthermore, since ψ is in D(D),

(curlrz(P
0w), ψ)r = (P 0w, curlrzψ)r by (1.6),

= (w, curlrzψ)r by (3.6),

= (s, ψ)r by (1.6) and (3.4).

Since D(D) is dense in L2
r(D) (see e.g. [23]), we have proved (3.5). �

Theorem 3.1. There exists a unique z in Hr,⋄(curl, D) and a unique p in L2
r(D) satis-

fying (3.1). Moreover, there is a constant Cstability > 0 independent of f such that

‖z‖r,curl + ‖p‖r ≤ Cstability‖f‖r.

Proof. By the Babuška-Brezzi theory of mixed methods [13], the theorem will follow once
we verify the inf-sup condition

(3.7) C1 ‖s‖r ≤ sup
v∈Hr,⋄(curl,D)

(curlrzv, s)r

‖v‖r,curl

for all s in L2
r(D),

and coercivity on the kernel,

(3.8) ‖v‖r,curl ≤ C2 ‖v‖r for all v in G,

where G is the kernel defined by

G =
{
w ∈ Hr,⋄(curl, D) : (curlrzw, s)r = 0 for all s in L2

r(D)
}
.

Above, C1 and C2 are two constants independent of the functions involved.
The inf-sup condition (3.7) is equivalent to asserting that the adjoint of the operator

curlrz : Hr,⋄(curl, D) 7→ L2
r(D)

is bounded from below, which is equivalent to the surjectivity of the above curl map
(by standard arguments using the Closed Range Theorem, see e.g., [13, § II.1]). This
surjectivity is precisely the assertion of Lemma 3.1. Hence, it only remains to verify (3.8),
which is obvious, since v is in G if and only if curlrzv = 0, so that ‖v‖r,curl = ‖v‖r for all
v in G. �

Next, we prove a regularity result under the assumption that the revolution of D about
the axis of symmetry, namely Ω, is convex. Denote by L̆2(Ω) and H̆k(Ω) the subspaces of
axisymmetric functions of L2(Ω) and Hk(Ω), respectively, for k ≥ 1. The restriction map
g(r, θ, z) 7→ gD(r, z) given by

gD(r, z) = g(r, 0, z), for all (r, z) in D

is an isometry (up to a factor of
√

2π) from L̆2(Ω) onto L2
r(D). The reverse operation

will be denoted by superscripting functions with Ω, i.e., given η(r, z) on D, the function

ηΩ is defined by ηΩ(r, θ, z) = η(r, z). Thus (gD)Ω = g, for g in L̆2(Ω).
With the use of such notations, we will now prove the following estimates, which will

be useful in our multigrid analysis.
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Theorem 3.2. If the revolution of D is convex, then there is a constant Cregularity > 0
such that the solution (z, p) of (3.1) satisfies

‖z‖H1
r (D)2 ≤ Cregularity ‖f‖r ,

‖p‖ eH2
r (D) ≤ Cregularity ‖f‖r ,

for any data f in L2
r(D).

Proof. Let (z, p) solve (3.1). Define pθ = pΩeθ. Then recalling the expression

(3.9) div q =
1

r
∂r(rqr) +

1

r
∂θqθ + ∂zqz

for divergence in cylindrical coordinates, we find that

div pθ = 0 on Ω,

pθ · n = 0 on ∂Ω.

The last equality follows because the unit outward normal n on ∂Ω is orthogonal to eθ.
Furthermore, from the first equation of (3.1), we know that the equality z − curlrzp = 0
holds in the distributional sense. Since z is in L2

r(D)2, the equality

(3.10) z = curlrzp

in fact holds in L2
r(D)2. By writing out the three-dimensional curl in cylindrical coordi-

nates, we observe that

(3.11) curlpθ = (curlrzp)
Ω = zΩ,

where for axisymmetric vector fields v = vrer + vzez, the revolution is defined by vΩ =
vΩ

r er + vΩ
z ez. Thus curlpθ is in L2(Ω)3. Combining these observations, we find that pθ

is in H(curl,Ω) ∩H0(div,Ω), a space which is well known to be continuously imbedded
in H1(Ω) whenever Ω is convex [20]. Thus

‖pθ‖H
1(Ω) ≤ C

(
‖pθ‖H(curl,Ω) + ‖pθ‖H(div,Ω)

)

≤ C
(
‖p‖L2

r(D) + ‖curlrzp‖L2
r(D)2

)

≤ C
(
‖p‖L2

r(D) + ‖z‖L2
r(D)2

)

≤ C‖f‖r,(3.12)

where in the last step we have used Theorem 3.1.
The second equality of the variational problem (3.1) shows that curlrzz = f holds in

L2
r(D). Translating this for zΩ, we have

curlzΩ = fΩeθ on Ω,

div zΩ = 0 on Ω,

zΩ × n = 0 on ∂Ω.

The last equality holds because γt(z) = 0, and the second, div zΩ = 0, follows from (3.11).
Now using the continuous imbedding of H0(curl,Ω) ∩ H(div,Ω) into H1(Ω) on convex
domains [20], we obtain

(3.13) ‖zΩ‖H
1(Ω) = ‖ curlpθ‖H

1(Ω) ≤ C‖f‖r.
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We will now use a result of [3, Proposition 3.17] that states that the r, θ, and z components

of H̆
1
(Ω) are isometrically equivalent (up to a factor of

√
2π) to H̃1

r (D), H̃1
r (D), and

H1
r (D), respectively. The first inequality of the theorem follows immediately from this

and the above estimate, since ‖z‖H1
r (D)2 ≤ C‖zΩ‖H

1(Ω).
For the second estimate of the theorem, we again use the above mentioned result of [3]

to get

1

2π
(‖curlpθ‖2

H
1(Ω) + ‖pθ‖2

H
1(Ω)) =

1

2π

(∥∥(−∂zp
Ω)er +

1

r
∂r(rp

Ω)ez

∥∥2

H
1(Ω)

+ ‖pθ‖2
H

1(Ω)

)

= ‖∂zp‖2
eH1

r (D) +
∥∥1

r
∂r(pr)

∥∥2

H1
r (D)

+ ‖p‖2
eH1

r (D)

≥ ‖p‖2
eH2

r (D) .

This together with (3.12) and (3.13) completes the proof. �

Let us now consider the mixed finite element approximation of (3.1). The discrete
problem is to find zh in W h,⋄ and ph in Sh satisfying

(3.14)
(zh,wh)r − (ph, curlrzwh)r = 0, for all wh in Wh,⋄,

(sh, curlrzzh)r = (sh, f)r, for all sh in Sh.

At this point, we can proceed to analyze the discrete mixed method by verifying the condi-
tions of the Babuška-Brezzi theory, which would yield a priori error estimates. However,
for our multigrid analysis, we will need error estimates in a slightly more specialized
form, so we will provide a direct error analysis. We will also prove a higher order estimate
obtained via duality. These results are collected in the next theorem.

Theorem 3.3. Suppose z in Hr,⋄(curl, D) and p in L2
r(D) solve (3.1).

(1) There is a unique zh in Wh,⋄ and a unique ph in Sh satisfying (3.14).
(2) The following error estimate holds:

‖z − zh‖r ≤
∥∥z − ΠW

h z
∥∥

r
.

(3) If Ω is convex, and f is in Sh, then
∥∥ΠS

hp− ph

∥∥
r
≤ Ch2‖f‖r.

Proof. Proof of (1): Suppose f = 0 in (3.14). Then by setting wh = zh, we get zh = 0.
Then

(ph, curlrzwh)r = 0 for all wh in Wh,⋄,

which implies that ph = 0 by the exactness of (2.3), and this completes the proof.
Proof of (2): By subtracting (3.14) from (3.1), we get

(z − zh,wh) − (p− ph, curlrzwh)r = 0 for all wh in Wh,⋄,(3.15)

(sh, curlrz(z − zh))r = 0 for all sh in Sh(3.16)

Let wh = zh − ΠW
h z. Then Theorem 2.1(2) implies that

curlrzwh = curlrzzh − curlrz(Π
W
h z) = curlrzzh − ΠS

h(curlrzz)

= ΠS
h(curlrz(zh − z))

= 0.
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The last equality was due to (3.16). With this wh in (3.15), we have

(z − zh,wh)r = 0.

In other words,

(z − zh, (zh − z) + (z − ΠW
h z))r = 0

so an application of the Cauchy-Schwarz inequality shows that ‖z − zh‖r ≤
∥∥z − ΠW

h z
∥∥

r
.

Proof of (3): We proceed by a duality argument, suitably modified. Let εz in Hr,⋄(curl, D)
and εp in L2

r(D) solve (3.1) with f set to ΠS
hp − ph. Let their discrete counterparts be

εz,h in Wh,⋄ and εp,h in Sh, which solve (3.14) with f set to ΠS
hp − ph. Then by (3.14)

and (3.15),
∥∥ΠS

hp− ph

∥∥2

r
= (ΠS

hp− ph, curlrzεz,h)r

= (p− ph, curlrzεz,h)r

= (z − zh, εz,h)r

= (z − zh, εz,h − εz)r + (z − zh, εz)r.(3.17)

Now, since f is given to be in Sh,

curlrzz = curlrzzh = f.

This together with the definition of {εz, εp} imply that the last term in (3.17) vanishes:

(εz, z − zh)r = (εp, curlrz(z − zh)) = 0.

Using this in (3.17) and continuing,
∥∥ΠS

hp− ph

∥∥2

r
= (z − zh, εz,h − εz)r

≤ ‖z − zh‖r ‖εz,h − εz‖r

≤
∥∥z − ΠW

h z
∥∥

r

∥∥εz − ΠW
h εz

∥∥
r

by item (2)

≤ Ch2 |z|H1
r (D)2 |εz|H1

r (D)2 , by Corollary 2.1.

Since the revolution of D is convex, by the regularity result of Theorem 3.2,

|εz|H1
r (D)2 ≤ C‖ΠS

hp− ph‖r.

Thus, ∥∥ΠS
hp− ph

∥∥2

r
≤ Ch2 |z|H1

r (D) ‖ΠS
hp− ph‖r.

Canceling the common factor and applying Theorem 3.2 again, we obtain the required
estimate. �

Remark 3.1. Item (3) of Theorem 3.3 can be thought of as a superconvergence result, as
it shows that we obtain quadratic convergence for ΠS

hp − ph even when using piecewise
constant approximation spaces. In this respect, this result is similar to certain known
superconvergence error estimates derived via duality arguments for the Raviart-Thomas
mixed method [16, 19, 27], albeit without a degenerate weight function.

Remark 3.2. There is an analogue of the mixed problem (3.1) in the case of the fully
three-dimensional curl curl operator, sometimes called the dual mixed formulation (see
e.g. [7] where it used for eigenvalue analysis). However, this method is not practically
popular in the 3D case as its implementation requires a basis for exactly divergence-free
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finite element spaces, which is not easy to construct. This difficulty is absent in the
axisymmetric case.

4. The multigrid algorithm

In this section, we present the multigrid algorithm and state a uniform convergence
result for the algorithm. We now assume the typical geometrical multigrid setting, where
the discrete solution space is based on the finest mesh T in a sequence of nested refine-
ments of a coarse mesh. Let T1 be the coarsest mesh subdividing D. Typically T1 is
small enough so that the cost of solving our finite element problem on it is negligible.
For k = 2, 3, . . . , J , the mesh Tk is obtained from Tk−1 by connecting the midpoints of
all edges. We want to efficiently solve a finite element problem on the mesh T = TJ by
multigrid.

The multilevel finite element spaces are Nédélec spaces on each of the meshes, i.e., let

Wk = {v ∈ Hr(curl, D) : v|K ∈ N1 for all K ∈ Tk, and γt(v) = 0}.

Define Λk : Wk → Wk by

(Λkuk,vk)r = Λ(uk,vk) for all uk,vk ∈ Wk.

The multigrid algorithm we present is for solving a linear system on the finest level, of
the type ΛJu = f .

To describe the algorithm, we first need to define certain smoothing operators Rk :
Wk 7→ Wk. These could be additive or multiplicative subspace correction operators based
on any of the subspace decompositions of [2] and [22]. To describe them, first let Dv

k

denote the “vertex patch” domain formed by the union of all triangles in Tk connected
to the mesh vertex v. Define W v

k = {v ∈ Wk : supp(v) ⊆ Dv

k}. For every mesh
edge e, let Φe denote the Whitney edge basis function, and let W e

k denote span(Φe). The
decomposition of [2], adapted to our setting, is

(4.1) Wk =
∑

v∈Vk

W v

k +
∑

e∈E ∗

k

W e

k

where Vk is the set of nodes in the mesh Tk that are not on Γ̄1, and E ∗
k is the set of edges

of the mesh Tk that are not on Γ1 but have both nodes on Γ1. The last set E ∗
k may appear

“pathological,” but it is needed in mixed boundary condition cases like ours, as its edges
are not covered by any of the vertex patches in the first sum of (4.1).

To be clear, let us exhibit the decomposition for a uk in Wk. Let Ek denote the set of
edges in the mesh that are not on Γ1. Then the basis expansion of uk is

uk =
∑

e∈Ek

ceΦe.

Now, for each v ∈ Vk, define E 1
k,v and E 2

k,v as

E
1
k,v =

{
e ∈ Ek : one endpoint of e is v and the other is on Γ̄1

}
,

E
2
k,v =

{
e ∈ Ek : one endpoint of e is v and the other is not on Γ̄1

}
.
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When summing over the vertex patches, the edges of E 2
k,v are counted twice. Hence,

setting

uv

k :=
∑

e∈E 1

k,v

ceΦe +
∑

e∈E 2

k,v

1

2
ceΦe,

we have
uk =

∑

v∈Vk

uv

k +
∑

e∈E ∗

k

ceΦe.

This shows that Wk can indeed be decomposed as in (4.1).
The other subspace decomposition, due to [22], reads as follows in our application:

(4.2) Wk =
∑

e∈Ek

W e

k +
∑

v∈Vk

gradrzV
v

k ,

where V v

k is the (one-dimensional) space of continuous scalar functions supported on Dv

k

which are linear on each triangle of Dv

k and vanish on ∂Dv

k.
We can use either (4.1) or (4.2) to construct additive or multiplicative smoothers. The

details are standard, so we present only the algorithm for the block Gauss-Seidel type
multiplicative smoothing iteration

ui+1 = GSk(ui,f)

where the procedure GSk(·, ·) is given below. Let Wk,i, i = 1, 2, . . . , Nk be an enumeration
of the subspaces in either of the decompositions (4.1) or (4.2). Define Λk,i : Wk,i 7→ Wk,i

by
(Λk,ivi,wi)r = Λ(vi,wi), for all vi,wi in Wk,i.

Let the L2
r(D)2-orthogonal projection onto Wk,i be denoted by Qk,i.

Algorithm 4.1 (Multiplicative smoothing). Given ui in Wk, calculate ui+1 = GSk(ui,f)
in Wk as follows:

(1) Set u
(0)
i = ui.

(2) For j = 1, 2, . . . , Nk, compute

u
(j)
i = u

(j−1)
i + Λ−1

k,jQk,j(f − Λku
(j−1)
i ).

(3) Set the result ui+1 to be u
(Nk)
i .

Standard arguments show that this iteration can be rewritten as

ui+1 = ui +Rk(f − Λkui),

with
Rk = (I − (I − Pk,Nk

)(I − Pk,Nk−1) · · · (I − Pk,1))Λ
−1
k ,

where Pk,j is the orthogonal projection into Wk,j in the Λ(·, ·)-inner product. With such
a smoother Rk, or an additive Jacobi type smoother based on the same decompositions
(whose details we omit), we can now describe the multigrid algorithm. Let the L2

r(D)2-
orthogonal projection onto Wk be denoted by Qk.

Algorithm 4.2 (V-cycle). Given u and f in Wk, define the output MGk(u,f ) in Wk by the
following recursive procedure:

(1) Set MG1(u,f ) = Λ−1
1 f .

(2) For k > 1, define MGk(u,f) recursively:
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(a) v(1) = u +Rk(f − Λku).
(b) v(2) = v(1) + MGk−1(0, Qk−1(f − Λkv

(1))).
(c) v(3) = v(2) +Rt

k(f − Λkv
(2)).

(d) Set MGk(u,f ) = v(3).

It is well known [10] that the V-cycle iterates xi+1 = MGk(xi,f), approximating the
exact solution x = Λ−1

k f , are connected through a linear error reduction operator Ek, i.e.,

x − xi+1 = Ek(x − xi).

The following is our main result on the convergence of the V-cycle algorithm. Its proof is
given in the next section.

Theorem 4.1. Assume that Ω, the revolution of D, is convex. There exists a positive

number δ < 1 such that

0 ≤ Λ(Eku,u) ≤ δ Λ(u,u), for all u in Wk and all k ≥ 1.

The number δ is independent of the mesh size and refinement level.

5. Multigrid analysis

In this section, we prove Theorem 4.1 by verifying two conditions in a standard abstract
framework for multigrid analysis [2, 9, 10, 12]. We state the conditions and its implication
as the next lemma and omit its well known proof. The analysis of this section is heavily
based on the techniques introduced in [2]. Let Pk denote the orthogonal projection into
Wk in the Λ(·, ·)-inner product.

Lemma 5.1. The assertion of Theorem 4.1 follows from the two conditions below:

(1) Existence of a stable decomposition: There exists a constant C1 > 0 independent of

the meshsizes and k, such that for all v in (I −Pk−1)Wk, there is a decomposition

v =

Nk∑

j=1

vj , with vj in Wk,j,

satisfying
Nk∑

j=1

Λ(vj ,vj) ≤ C1Λ(v,v).

(2) Limited interaction: There exists a constant C2 > 0, independent of k, such that

Nk∑

j=1

Nk∑

l=1

|Λ(vj,wl)| ≤ C2

(
Nk∑

j=1

Λ(vj,vj)

)1

2
(

Nk∑

k=1

Λ(wl,wl)

)1

2

for all vj in Wk,j, wl in Wk,l, and k ≥ 1.

The remainder of this section is devoted to the verification of the two conditions of
Lemma 5.1. Note that the first condition only involves functions on two levels, k and
k − 1. The second involves an inequality of functions in just one level k. For this reason,
we can simplify our notation and use subscripts H and h for k−1 and k, respectively. The
mesh Th is a refinement of TH , and H = 2h. Previously defined notations with these new
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subscripts have the obvious definitions, e.g., ΠS
H denotes the weighted L2

r(D)-orthogonal
projection into SH , the space of piecewise constant functions with respect to the mesh TH ,
etc. Before verifying the conditions, we need a number of preliminary results. Throughout
this section we tacitly assume that Ω, the revolution of D, is convex in order to invoke
the regularity results of Theorem 3.2.

Lemma 5.2. For all ph in Sh,

(5.1)
∥∥ph − ΠS

Hph

∥∥
r
≤ CH ‖curl′rzph‖r .

Proof. Given ph in Sh, define z in Hr,⋄(curl, D) and p in L2
r(D) as the solution of (3.1)

with f = curlrzcurl′rzph, i.e.,

(z,w)r − (p, curlrzw)r = 0 for all w in Hr,⋄(curl, D)

(s, curlrzz)r = (s, curlrzcurl′rzph)r for all s in L2
r(D).

Then, with zh = curl′rzph, the pair {zh, ph} obviously satisfies

(zh,wh)r − (ph, curlrzwh)r = 0 for all wh in W h,⋄

(sh, curlrzzh)r = (sh, curlrzcurl′rzph)r for all sh in Sh.

Moreover,

(5.2) curlrzz = curlrzzh in L2
r(D).

By the triangle inequality,

(5.3)
∥∥ph − ΠS

Hph

∥∥
r
≤ ‖ph − p‖r +

∥∥p− ΠS
Hp
∥∥

r
+
∥∥ΠS

Hp− ΠS
Hph

∥∥
r
.

We now estimate each of the terms on the right hand side above.
Beginning with the middle term, and using a standard weighted norm approximation

estimate (see e.g. [4, 11]), we have
∥∥p− ΠS

Hp
∥∥2

r
≤ CH2 |p|2H1

r (D) ≤ CH2
(
‖p‖2

H1
r (D) + ‖r−1p‖2

r

)
.

The right hand side is bounded because p is in H̃2
r (D), by Theorem 3.2. Moreover, as

in [21, Proposition 3.1], it can be bounded further by CH2(‖r−1∂r(rp)‖2
r + ‖∂zp‖2

r), which
is the same as CH2‖curlrzp‖2

r. Thus,

(5.4)
∥∥p− ΠS

Hp
∥∥

r
≤ CH‖curlrzp‖r.

Furthermore, since

‖curlrzp‖2
r = (curlrzp, z)r cf. (3.10)

= (p, curlrzz)r by (1.6)

= (p, curlrzzh)r by (5.2)

= (curlrzp, zh)r by (1.6)

= (curlrzp, curl′rzph)r,

by the Cauchy-Schwarz inequality, we obtain ‖curlrzp‖r ≤ ‖curl′rzph‖r. Thus (5.4) yields

(5.5)
∥∥p− ΠS

Hp
∥∥

r
≤ CH ‖curl′rzph‖r .

Next, consider the first term on the right hand side of (5.3). Using triangle inequality,

‖p− ph‖r ≤
∥∥p− ΠS

hp
∥∥

r
+
∥∥ΠS

hp− ph

∥∥
r
.
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The term
∥∥p− ΠS

hp
∥∥

r
can be bounded by the same type of argument that led to (5.5).

Theorem 3.3(3) provides a bound for the other term. Then the inverse estimate [4,
Lemma 4] yields

‖p− ph‖r ≤ Ch ‖curl′rzph‖r + Ch2 ‖curlrzcurl′rzph‖r

≤ Ch ‖curl′rzph‖r .(5.6)

The only remaining term on the right hand side of (5.3) is bounded by using (5.6) and
the fact that orthogonal projectors have unit norm:

(5.7)
∥∥ΠS

Hp− ΠS
Hph

∥∥
r
≤ ‖p− ph‖r ≤ Ch ‖curl′rzph‖r .

Collecting the estimates of (5.5), (5.6) and (5.7) in (5.3), we have
∥∥ph − ΠS

Hph

∥∥
r
≤ C(H + h) ‖curl′rzph‖r .

Since h ≤ CH , this completes the proof. �

The next lemma is crucial in proving the uniform convergence of the multigrid V-cycle
and is modeled after the lemmas in [2]. We shall make significant use of the weighted
discrete Helmholtz decomposition discussed in Section 2. Recall that as per our previous
remarks on the notation, PH denotes the Λ-orthogonal projection into the coarser of the
two spaces.

Lemma 5.3. Let wh be in W h,⋄. If the weighted discrete Helmholtz decomposition of

wh − PHwh is

wh − PHwh = gradrzφh + curl′rzah,

with φh in Vh,⋄ and ah in Sh, then

‖φh‖r ≤ CH ‖(I − PH)wh‖r

‖curl′rzah‖r ≤ CH ‖(I − PH)wh‖Λ ,

where ‖ · ‖Λ ≡ ‖ · ‖r,curl.

Proof. We first prove the second inequality. Define zh in Wh,⋄, given the above ah, by

(5.8) Λ(zh, qh) = (curl′rzah, qh)r for all qh in W h,⋄.

Observe that zh is orthogonal to gradrzVh,⋄. By setting qh = curl′rzah above,

‖curl′rzah‖2
r = Λ(zh, curl′rzah) = Λ(zh, (I − PH)wh − gradrzφh)

= Λ(zh, (I − PH)wh) = Λ(zh − zH , (I − PH)wh)

≤ ‖zh − zH‖Λ ‖(I − PH)wh‖Λ ,(5.9)

for any zH in WH,⋄. Next, we choose a suitable zH and estimate ‖zh − zH‖Λ.
To this end, first define z in Hr,⋄(curl, D), given the above zh, by (3.1) with f =

curlrzzh, i.e.,

(z,w)r − (p, curlrzw)r = 0 for all w in Hr,⋄(curl, D)

(s, curlrzz)r = (s, curlrzzh)r for all s in L2
r(D).

Then define zH in WH,⋄ by the analogue of (3.14) on the coarser of the meshes, i.e.,

(zH ,wH)r − (pH , curlrzwH)r = 0 for all wH in WH,⋄

(sH , curlrzzH)r = (sH , curlrzzh)r for all sH in SH .



MULTGRID IN WEIGHTED Hr(curl) 19

Since zh is orthogonal to gradrzVh,⋄, it is clear that zh is in the range of curl′rz by the
weighted discrete Helmholtz decomposition of Wh,⋄. Thus, there is a unique ph in Sh such
that curl′rzph = zh. In other words,

(zh,wh)r − (ph, curlrzwh)r = 0 for all wh in Wh,⋄,

which is the first equation of the formulation (3.14). The second equation of (3.14) is also
satisfied by zh trivially since f = curlrzzh. Therefore, by Theorem 3.3(2),

‖z − zh‖r ≤
∥∥z − ΠW

h z
∥∥

r
,

‖z − zH‖r ≤
∥∥z − ΠW

H z
∥∥

r
,

which implies

‖zh − zH‖r ≤
∥∥z − ΠW

h z
∥∥

r
+
∥∥z − ΠW

H z
∥∥

r
by the triangle inequality,

≤ CH|z|H1
r (D)2 by Corollary 2.1,

≤ CH ‖curlrzzh‖r by Theorem 3.2.(5.10)

We also need to estimate ‖curlrz(zh − zH)‖r. By the definition of zH and Lemma 5.2,

‖curlrz(zh − zH)‖r =
∥∥curlrzzh − ΠS

Hcurlrzzh

∥∥
r

≤ CH ‖curl′rzcurlrzzh‖r .

Combining this with (5.10), we get

(5.11) ‖zh − zH‖2
Λ ≤ CH2

(
‖curlrzzh‖2

r + ‖curl′rzcurlrzzh‖2
r

)

This estimate is not yet in a form we can use in (5.9). To simplify its right hand side,
define Λh : Wh,⋄ → Wh,⋄ by

(Λhvh,wh)r = Λ(vh,wh) for all wh in Wh,⋄,

we observe that Λhzh = curl′rzah by (5.8), and

‖Λhzh‖2
r = (Λhzh,Λhzh)r = Λ(zh,Λhzh)

= (zh,Λhzh)r + (curlrzzh, curlrz(Λhzh))r

= Λ(zh, zh) + Λ(curl′rzcurlrzzh, zh)

= ‖zh‖2
r + 2 ‖curlrzzh‖2

r + ‖curl′rzcurlrzzh‖2
r .

Hence, returning to (5.11) and overestimating its right hand side,

‖zh − zH‖2
Λ ≤ CH2 ‖Λhzh‖2

r = CH2 ‖curl′rzah‖2
r .

Using this estimate in (5.9), we have

‖curl′rzah‖2
r ≤ CH ‖curl′rzah‖r ‖(I − PH)wh‖Λ,

from which the second inequality of the lemma follows.
It now only remains to prove the first estimate of the lemma. Let ψ in H1

r,⋄(D) be the
unique solution (see [21]) of

(gradrzψ, gradrzη)r = (φh, η)r for all η in H1
r,⋄(D).(5.12)

Then [21, Theorem 2.1] gives the regularity estimate

(5.13) |ψ|H2
r (D) ≤ C ‖φh‖r .
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Observe that for any ψH in VH,⋄,

(5.14)
(gradrzφh, gradrzψH)r = Λ(gradrzφh, gradrzψH)

= Λ(wh − PHwh, gradrzψH) = 0.

We will use this with ψH = Π̂V
Hψ, where Π̂V

H is the previously mentioned projection of [17].
Proceeding by a standard duality argument [26],

‖φh‖2
r = (φh, φh)r = (gradrzψ, gradrzφh)r by (5.12),

= (gradrzψ − gradrzΠ̂
V
Hψ, gradrzφh)r by (5.14),

≤ CH|ψ|H2
r (D) ‖gradrzφh‖r by [17, Lemma 5.3],

≤ CH ‖φh‖r ‖gradrzφh‖r by (5.13).

Canceling the common factor, and using the stability estimate (2.4),

‖φh‖r ≤ CH ‖gradrzφh‖r

≤ CH ‖wh − PHwh‖r ,

which finishes the proof of the lemma. �

We can now prove the convergence of multigrid as an iterative method.

Proof of Theorem 4.1. By Lemma 5.1, we only need to verify the two conditions there.
For verifying the second condition on the limited interaction of smoothing subspaces, we
can use standard techniques [2, 12]. Hence we omit it.

Let us now verify the first condition on the existence of a stable decomposition for the
case of the smoothing subspaces of [2], namely (4.1). Given any wk in (I − Pk−1)Wk, let

wk = gradrzφk + rk

be its weighted discrete Helmholtz decomposition, with φk in Vk = {v ∈ H1
r,⋄(D) : v|K ∈

P1 for all K ∈ Tk} and rk in Wk. By Lemma 5.3,

‖φk‖r ≤ Chk−1 ‖wk‖r ,(5.15)

‖rk‖r ≤ Chk−1 ‖wk‖Λ .(5.16)

Let V v

k = {v ∈ Vk : supp(v) ⊆ Dv

k}. Then, by using the decomposition

(5.17) Vk =
∑

v∈Vk

V v

k ,

we split

φk =
∑

v∈Vk

φv

k, with φv

k in V v

k ,

while we split rk by the decomposition of (4.1) as

rk =
∑

v∈Vk

rv

k +
∑

e∈E ∗

k

re

k, with rv

k in W v

k , re

k in W e

k .

Setting wv

k = gradrzφ
v

k + rv

k, we want to show that

(5.18)
∑

v∈Vk

Λ(wv

k,w
v

k) +
∑

e∈E ∗

k

Λ(re

k, r
e

k) ≤ CΛ(wk,wk).
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Expanding the terms and using the orthogonality of the discrete Helmholtz decomposition
and the weighted inverse estimate [4, Lemma 4], we obtain

∑

v∈Vk

‖wv

k‖2
Λ +

∑

e∈E ∗

k

‖re

k‖2
Λ =

∑

v∈Vk

‖gradrzφ
v

k + rv

k‖2
Λ +

∑

e∈E ∗

k

‖re

k‖2
Λ

=
∑

v∈Vk

(
‖gradrzφ

v

k‖2
r + ‖rv

k‖2
r + ‖curlrzr

v

k‖2
r

)
+
∑

e∈E ∗

k

‖re

k‖2
Λ

≤ C
∑

v∈Vk

(
h−2

k ‖φv

k‖2
r + (1 + h−2

k ) ‖rv

k‖2
r

)
+ C

∑

e∈E ∗

k

h−2
k ‖re

k‖2
r

≤ Ch−2
k

(
‖φk‖2

r + ‖rk‖2
r

)
.

By (5.15) and (5.16),
∑

v∈Vk

‖wv

k‖2
Λ +

∑

e∈E ∗

k

‖re

k‖2
Λ ≤ Ch−2

k h2
k−1‖wk‖2

Λ,

which proves (5.18). Thus the condition on the existence of the stable decomposition is
verified for the smoothing subspaces of (4.1).

A similar and simpler argument verifies the existence of a stable decomposition for the
subspaces of (4.2) as well. We omit the details. �

6. Numerical Results

In this section, we illustrate our previous theoretical results by numerical examples. We
will first report the practically observed convergence rate for the approximate solution of
the dual mixed problem of Section 3. This will serve as a test of the sharpness of our
theoretical error estimates. We will then report the iteration counts for the multigrid
V-cycle applied to Λhx = f for a few choices of the domain and f . Note that the V-cycle
operator can also be used as a preconditioner for Λh and numerical experiments using it
so have already been reported in [17] in the context of solving a div-curl system.

For computer implementation of the mixed method, we need to assemble the matrix
representations of the operators Ah : Wh,⋄ 7→ W ′

h,⋄ and Bh : Wh,⋄ 7→ S ′
h defined by

Ahuh(wh) = (uh,wh)r for all uh,wh ∈ Wh,⋄

Bhuh(sh) = −(curlrzuh, sh)r for all uh ∈ Wh,⋄, sh ∈ Sh.

Let A and B denote the matrix representations of Ah and Bh, respectively, in terms of the
standard local bases for Wh,⋄ and Sh (consisting of the Whitney functions Φe, and the
indicator functions of triangles). Then (3.14) can be rewritten as the linear system

Az + Btp = 0,

−B z = f,

where z and p denote the vectors of coefficients in the basis expansions of zh and ph,
respectively. The vector f is computed from the right hand side of (3.14) as usual. In
practice, we compute p and z by solving

Cp = f,

Az = g,
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Table 6.1. Mixed problem convergence rates

level ‖z − zh‖r order ‖p− ph‖r order
∥∥ΠS

hp− ph

∥∥
r

order
1 0.305150 0.123463 0.044430
2 0.152784 0.998 0.059647 1.05 0.011144 1.995
3 0.076486 0.998 0.029553 1.013 0.002791 1.997
4 0.038263 0.999 0.014743 1.003 0.000698 1.999
5 0.019135 1 0.007367 1.001 0.000175 2
6 0.009568 1 0.003683 1 0.000044 2
7 0.004784 1 0.001842 1 0.000011 1.999
8 0.002392 1 0.000921 1 0.000003 2

where C = BA−1Bt and g = −Btp. Both these systems can be solved via the conjugate
gradient method as C and A are symmetric and positive definite. Note that when solving
the first equation, for each application of C, we use another inner conjugate gradient
iteration to obtain the result of multiplication by A−1.

In Table 6.1, we report the L2
r(D)-norm of the observed errors in the mixed method

approximations of z, p, and ΠS
hp. In this case, f = −3, p = r2 and z = (0, 3r). The

domain D was the chosen to be the unit square. The coarsest mesh is obtained by dividing
the unit square into two uniform triangles by connecting the points (0,0) and (1,1). This
is mesh level 0. Higher levels are obtained by successive refinements. Each refinement is
performed by connecting the midpoints of each edge, so the mesh size reduces by 1/2, and
the finest mesh (level 8) is roughly of size 1/256. The order of convergence is computed
as log2(ej−1/ej), where ej is the computed L2

r(D)-norm of the error at mesh level j.
From the table, we observe that the approximations for z and p converge at first order.

This convergence for z is in accordance with Theorem 3.3(2). The convergence for p is
also in accordance with the theorem, because by triangle inequality

‖p− ph‖r ≤ ‖p− ΠS
hp‖r + ‖ΠS

hp− ph‖r

and although Theorem 3.3(3) asserts that the last term is O(h2), the first term on the
right hand side, being O(h), dominates. That the last term indeed superconverges at
double the order is verified in the last row of the table.

Next, we verify the uniform convergence of the multigrid V-cycle algorithm for Λhx =
f . We apply the V-cycle algorithm to the three different domains shown in Figure 1.
Domain I is convex and its revolution is also convex, while Domain II is convex, but its
revolution is nonconvex, and Domain III and its revolution are both nonconvex. The
initial mesh (level 1) for domain I and II consists of two congruent right triangles, and for
domain III, it consists of four congruent right triangles. In all cases, we obtain the next
level mesh by connecting the edge midpoints of all triangles.

Table 6.2 reports the convergence rate when f = 0. We apply the Gauss-Seidel smoother
with the subspace decomposition (4.2). For successive finite element spaces WH,⋄ ⊂ Wh,⋄,
the prolongation matrix that we used for implementation is the matrix whose (i, j)-th
entry is

∫
ei

φj · ti, where ei denotes the i-th edge of mesh Th that is not on Γ1, ti denotes
the unit tangent vector of this edge, and φj is the j-th basis function of WH,⋄. The
restriction matrix is the transpose of the prolongation matrix. For each fine level mesh,
the initial value x0 was chosen randomly using the standard library in C++. The stopping
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(a) Domain I (b) Domain II (c) Domain III

Figure 1. Domains

Table 6.2. V-cycle convergence rates

Convergence rate
Level Domain I Domain II Domain III

2 0.27 0.29 0.32
3 0.37 0.35 0.41
4 0.43 0.41 0.40
5 0.42 0.40 0.40
6 0.41 0.41 0.41
7 0.41 0.41 0.41
8 0.41 0.41 0.41
9 0.41 0.41 0.41

criterion is ‖xn‖r,curl / ‖x0‖r,curl < 10−7, where xn is the result of the n-th iteration (which

measures the reduction in the error since the exact solution is zero). The convergence
rate is computed by taking the average of ‖xn‖r,curl / ‖xn−1‖r,curl.

As we see from the table, the convergence rate is nearly constant and seems bounded
independently of the mesh size. Additionally, although we assumed that the revolution of
the two-dimensional domain is convex throughout the paper in order to prove the uniform
convergence result, it appears that even when the revolution of the domain is nonconvex,
the convergence rate is independent of the mesh size.

7. Conclusions

We showed that the multigrid V-cycle converges at a uniform rate with respect to the
mesh size when applied to the inner product of Hr,⋄(curl, D).

Some of the intermediate results we obtained on the way to the multigrid proof are
interesting by themselves. For example, we constructed a commuting projector ΠW

h into
Wh,⋄, whose domain is the entire Hr,⋄(curl, D) (without any further regularity). We
analyzed a dual mixed problem and it discretization and obtained a superconvergence
result in weighted norms.

To handle more practical applications, we must extend our results to the time harmonic
case, where the additional difficulty of the indefiniteness of the bilinear form will play a
role. Furthermore, design of efficient solvers become complicated in practical scattering
and radiation problems where we must additionally deal with the truncation of an infi-
nite domain. Finally, since axisymmetric bodies typically have non-axisymmetric modes
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excitable by non-axisymmetric data, we are interested in pursuing problems that are “al-
most” axisymmetric in the sense that solutions can be expanded as a finite series in the
θ-variable.

Appendix A. Proof of the exact sequence property

We prove the exactness of the sequence (2.3) under the assumption that Γ1 is connected
and D is simply connected.

The injectivity of gradrz : Vh,⋄ 7→ Wh,⋄ is trivial, so let us proceed to prove the next
item in the exact sequence property, namely gradrz(Vh,⋄) equals the null space of curlrz :
Wh,⋄ 7→ Sh, which is denoted by ker(curlrz). It is obvious that gradrz(Vh,⋄) ⊆ ker(curlrz).
Since D is simply connected, any wh ∈ Wh,⋄ satisfying curlrzwh = 0 coincides with a
gradient, say gradrzφh, and by comparing the polynomial degrees, φh is in Vh. Moreover,
φh can be chosen to be in Vh,⋄, because t·gradrzφh = 0 on Γ1 and because Γ1 is connected.

Thus, it only remains to prove that curlrz : Wh,⋄ 7→ Sh is surjective. For this we only
need the connectedness of D as we see below.

Lemma A.1. The map curlrz : Wh,⋄ → Sh is surjective.

Proof. The collection of indicator functions χK , for all mesh elements K, spans Sh. There-
fore, to prove the lemma, it suffices to show that there is a uK

h in Wh,⋄ such that

(A.1) curlrzu
K
h = χK

for all mesh elements K. To do this we need a commuting projector. We use the projectors
Π̂W

h and Π̂S
h of [17] which we already introduced earlier (although this proof works equally

well, mutatis mutandis, with Nédélec’s original projector [25]).
To begin, consider all mesh elements K near Γ0, specifically those in

T
0

h = {K ∈ Th : K̄ ∩ Γ̄0 is non-empty}.
Let αK

p (u) = (
∫

K
rp dr dz)−1

∫
K
rp curlrzu dr dz. Then, for anyK in T 0

h , choose a function

uK in D(K)2 with nonzero αK
1 (uK). By rescaling this function if necessary, we can assume

without loss of generality that αK
1 (uK) = 1. Then consider the interpolant uK

h ≡ Π̂W
h uK .

Recalling the definition of Π̂W
h in [17], we find that all the degrees of freedom defining Π̂W

h

applied to uK vanish, except the interior degree of freedom on K, namely
∫

K
r curlrzu

K .
Therefore, by the commutativity property (2.1),

curlrz(u
K
h ) = Π̂S

hcurlrzu
K = αK

1 (uK)χK = χK .

Thus, we have proved (A.1) for all K in T 0
h .

To consider the remaining elements, let K ′ be an element sharing a mesh edge with an
element K in T 0

h . Let u′ denote an infinitely differentiable vector function supported in
K̄ ∪ K̄ ′ such that αK ′

0 (u′) 6= 0. Then,

curlrz(Π̂
W
h u′) = Π̂S

h(curlrzu
′) = αK ′

0 (u′)χK ′

+ αK
1 (u′)χK .

Thus, with uK
h as set previously, and with uK ′

h = (Π̂W
h u′ − αK

1 (u) uK
h )/αK ′

0 (u′),

curlrz(u
K ′

h ) =
curlrz(Π̂

W
h u′) − αK

1 (u′)χK

αK ′

0 (u′)
= χK ′
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so that (A.1) is proved for all elements in T 1
h = {K1 ∈ Th \T 0

h : K1 shares an edge with
some K ∈ T 0

h } as well.

The proof is completed by generalizing to T
j

h = {K ′ ∈ Th \ ∪j−1
ℓ=0T

ℓ
h : K ′ shares an

edge with some K ∈ T
j−1

h }, for j ≥ 1, and formalizing an induction argument. �
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